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Abstract

We develop a theory of endogenous uncertainty and business cycles in which short-lived

shocks can generate long-lasting recessions. In the model, higher uncertainty about fundamen-

tals discourages investment. Since agents learn from the actions of others, information flows

slowly in times of low activity and uncertainty remains high, further discouraging investment.

The unique equilibrium of this economy displays uncertainty traps — self-reinforcing episodes

of high uncertainty and low activity. While the economy recovers quickly after small shocks,

large temporary shocks may have nearly permanent effects on the level of activity. The econ-

omy is subject to an information externality but uncertainty traps remain even in the efficient

allocation. We extend our framework to include additional features of standard business cycles

models and show that uncertainty traps can substantially worsen recessions and increase their

duration, even under optimal policy interventions.

JEL Classification: E32, D83

∗We thank Chunzan Wu for superb research assistance.

1



1 Introduction

One of the central features of macroeconomic activity is its high persistence. The NBER

definition of business cycles implies that it takes for the U.S. economy close to 40 months on

average to recover from a through until the next peak. Business cycles are also asymmetric: it

takes about 17 months for the economy to move from peak to through, so that recoveries last

on average more than twice as long as downfalls. These features have been visible during in the

2007-2009 crisis. The unemployment rate increased from 4.4% in May 2007 to 10% in October 2009

and has barely decreased to a level 7.9% in early 2013.

What explains these prolonged declines in economic activity? In this paper, we develop a

quantitative theory of endogenous uncertainty and business cycles to explain these phenomena.

The theory captures two key forces. First, higher uncertainty about fundamentals discourages

investment. Second, economic agents can learn from the actions of others. The interaction between

these two forces creates room for uncertainty traps — self reinforcing episodes of high uncertainty

and low activity. In times of low activity information flows slowly and uncertainty stays high, further

discouraging investment. This explains why low activity may persist under good fundamentals.

We first develop a baseline theory that includes only the essential features of the mechanism,

and then we extend the model in various dimensions for a quantitative evaluation. In the model,

firms choose to undertake an irreversible investment whose return depends on an imperfectly ob-

served fundamental. Beliefs about that fundamental are common to all firms, but can be regularly

updated using various signals. Formally, we define uncertainty as the variance of the prior about

the fundamental. Information, in turn, diffuses through a simple social learning channel: the higher

the number of firms that invests, the larger the number of signals received by firms and the stronger

the reduction in their uncertainty.

This environment naturally produces an interaction between beliefs and economic activity.

Firms are more likely to invest if they hold more optimistic or less uncertain beliefs about the

fundamental. Therefore, low uncertainty is associated with a high investment rate. At the same

time, the law of motion for beliefs depends on the investment rate through social learning. When

few firms invest, uncertainty rises and the firms’ optimism, captured by the mean of the beliefs

distribution, is less likely to fluctuate.

Using this setup we demonstrate the existence of uncertainty traps. Formally, we define an

uncertainty trap as the coexistence of multiple stationary points in the joint dynamics of uncertainty

and economic activity for a given mean of the distribution of beliefs. We refer to these fixed points as

regimes. Due to the complementarity between investment and information diffusion, in high-activity

regimes there is low uncertainty and in low-activity regimes there is high uncertainty. Despite this

multiplicity, the recursive equilibrium is uniquely pinned down by the stochastic evolution of the

mean level of beliefs. But, because of it, the unique equilibrium is prone to nonlinear dynamics

and asymmetries. For example, the long-run response to a temporary negative shock becomes

considerably more protracted when its magnitude is above some threshold. The economy quickly

recovers after a small temporary shock, but it may permanently shift into a low activity regime
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after a large shock of the same duration. In turn, a positive temporary shock of sufficient magnitude

can put the economy back on track.

As in other theories of social learning, there are inefficiently low levels of investment because

agents do not internalize the effect of their actions on common information. This inefficiency

naturally creates room for welfare-enhancing policy interventions. To find these policies, we study

the problem of a constrained planner that is subject to the same informational constraints as

private agents. We find that the socially constrained-efficient allocation can be implemented with

aggregate-beliefs dependent subsidies. For example, it could be desirable to subsidize investment in

times of high uncertainty and low activity. However, under certain conditions, the optimal policy

does not eliminate the uncertainty traps. Therefore, while policy interventions may be desirable,

they do not necessarily eradicate the nonlinearities generated by the complementarity between

uncertainty and economic activity.

After characterizing the model, we evaluate the quantitative importance of the uncertainty

traps. For that, we extend the baseline model to bring it closer to general real business cycle mod-

els. Among other features, we generalize the capital accumulation process by adding an intensive

margin. We also introduce a risk-averse representative household with endogenous labor supply. To

estimate the importance of uncertainty traps, we compare the outcomes from our extended model

with a restricted setup in which uncertainty is not allowed to adjust endogenously. In preliminary

numerical exercises, we find that uncertainty traps make economic downturns more persistent and

pronounced relative to a framework with fixed uncertainty.

The emphasis on the wait-and-see effect of uncertainty on investment is shared with a recent

literature that studies how changes in the volatility of productivity shocks affects the economy,

such as Arellano et al. (2012), Bachmann and Bayer (2009), Bloom (2009), Bloom et al. (2012),

and Schaal (2012). Two features set us apart from that literature. First, these papers focus on

uncertainty induced by time-varying volatility in productivity. In contrast, our learning approach

enables us to dissociate subjective uncertainty from volatility in fundamentals. While in our setup

volatility generates uncertainty, there can also be periods of high uncertainty with constant volatil-

ity. Second, in our analysis the movements in uncertainty are endogenous. That literature focuses,

in contrast, on exogenous volatility shocks to productivity. These two distinguishing features create

the additional propagation of shocks that we explore in the paper.

The notion of uncertainty in this paper seems justified in the face of systematic references by

businessmen and commentators to high levels of uncertainty in the aftermath the 2007-2009 reces-

sion despite the decline in several measures of volatility.1 Indeed, our theory allows for uncertainty

to persist in a context with low volatility. The advantage of allowing for endogenous uncertainty

movements (as opposed to exogenous volatility shocks) is that endogenous uncertainty is better able

to deliver persistent macroeconomic series. Because high volatility events are short-lived, models

that focus on that type of shock are hard to reconcile with the persistence of recessions. In contrast,

1Measures of aggregate and idiosyncratic volatility such as the VIX volatility index have substantially declined
since 2009, as shown in Schaal (2012). Another interesting source of uncertainty suggested in the literature, from
which we abstract in this paper, is policy uncertainty. See Baker et al. (2012); Fernández-Villaverde et al. (2011).
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subjective uncertainty traps can deliver persistence in a low-volatility context.

Endogenous movements in uncertainty can be modeled in different ways. We make this notion

operative using a simple concept of social learning. Intuitively, we envision firms holding bits and

pieces of information about a shared fundamental; when a firm invests or hires, its actions reveal

information about the state of the economy to other agents. Hence, our analysis relates to papers

on fads and herding in the tradition of Banerjee (1992), Bikhchandani et al. (1992), and Chamley

and Gale (1994). A number of studies, such as Cunningham (2004), Kaustia and Knüpfer (2009),

Khang (2012), and Patnam (2011), empirically document the relevance of social learning in various

contexts such as investment in the semiconductor industry, stock market entry decisions, housing

purchases, and R&D expenditures. Social learning about technology has also been demonstrated to

be important in other contexts such as economic development, as shown by Foster and Rosenzweig

(1995) and Hausmann and Rodrik (2003).

Our analysis also relates to a theoretical macroeconomic literature that studies environments

with learning from market outcomes such as Rob (1991), Caplin and Leahy (1993), Zeira (1994),

Veldkamp (2005), Ordonez (2009), and Amador andWeill (2010), as well as to papers on endogenous

volatility over the business cycle, such as Bachmann and Moscarini (2011) and DErasmo and Boedo

(2011). Specially related is the analysis in Van Nieuwerburgh and Veldkamp (2006). In their model,

agents hold beliefs about a fundamental and the signal-to-noise ratio varies procyclically; this

delays recoveries because agents discount new information more heavily in recessions. However,

in that paper, uncertainty about the fundamental provides a weak feedback and the economy

quickly learns its way out of a recession. The key feature that distinguishes our analysis is the

presence of irreversible investments. The option value created by irreversibilities offers a strong

additional motive for agents to defer investment in uncertain times. The interaction between social

learning and irreversible investment leads, in our setup, to nearly permanent effects of uncertainty

on economic activity.

The paper is structured as follows. Section 2 presents the baseline model and the definition

of the recursive equilibrium. Section 3 characterizes the partial-equilibrium investment decision of

an individual firm, the uniqueness of the equilibrium, the existence of uncertainty traps, and the

welfare implications. Section 4 features the preliminary quantitative analysis using an extended

model. Section 5 concludes. Proofs are relegated to the appendix.

2 Suggestive Evidence

The central channel in the theory is the feedback between uncertainty and investment. We

argue that the inactivity of firms during recessions slows down the diffusion of information, creating

uncertainty and discouraging further investment. Therefore, the model predicts that recessions are

times where both uncertainty and firm inactivity are high, and that these features may persist even

if productivity has recovered. In this section we provide first-pass evidence consistent with these

features of the model.
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2.1 Uncertainty over the Business Cycle

The literature that studies the impact of uncertainty shocks establishes that the variance in

idiosyncratic shocks to productivity increases during bad times. Bloom et al. (2012) demonstrate

that the dispersion of plant- and industry- level shocks to productivity is counter-cyclical and

peaks in recessions. Other commonly used measures of firm-level volatility, such as the VIX index

of volatility in stock market returns or the dispersion in firm level sales, reproduce the same pattern.

Our theory is more specifically concerned with subjective uncertainty. Direct measures of sub-

jective uncertainty are also available and exhibit similar counter-cyclical patterns. Different surveys

ask respondents to assess the main reasons why they prefer to postpone economic decisions. Ac-

cording to the National Federation of Independent Business (2012), 40% of answers rank “economic

uncertainty” as the most critical problem that they faced in 2012. A more systematic evidence comes

from the Michigan Survey of Consumers, which shows a peak during recessions in the percent of

consumers who state that “uncertain future” is the main reason to postpone purchases of durable

goods in the United States (see figure 1). A similar pattern is observed in the UK, where firm’s

perceived uncertainty increases during recessions according to the CBI Industrial Trends Survey.

Leduc and Liu (2012) argue that these subjective measures of uncertainty are countercyclical.

Other measures of subjective uncertainty with strong counter-cyclical patterns are the variance

of ex-post forecast errors about economic conditions and the dispersion of beliefs featured in Bach-

mann et al. (2013). In bad times, agents hold more heterogeneous beliefs about future economic

conditions. Our model allows for short-lived dispersion of beliefs among economic agents within

each period, and predicts that the within-period variance of beliefs is larger when uncertainty is

high and economic activity is low.

0
.0

2
.0

4
.0

6
.0

8
.1

U
nc

er
ta

in
ty

1980 1990 2000 2010
Year

Share of Consumers Responding ’Uncertain Future’

Figure 1: Subjective Uncertainty over Time (Source: Michigan Survey of Consumers)
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2.2 Share of Zeros in Investment over the Business Cycle

A second piece of evidence consistent with the basic mechanism that we present concerns the

incidence of firm inactivity during recessions. While aggregate investment naturally is counter-

cyclical, we emphasize a microeconomic channel based on the inactivity of firms. Because firms

face indivisible investment choices, their incentives to invest are low when uncertainty is high. In

turn, we posit that lack of activity slows down diffusion of information. Therefore, we expect to

see a higher fraction of firms that do not invest when the level of activity is low.

The literature on lumpy adjustment studies the distribution of investment rates over the business

cycle, but it focuses more on investment spikes rather than zeros. In this literature, Cooper and

Haltiwanger (2006) report that 8% of plant-year observations in the United States between 1972

and 1998 have investment rates below 1% in absolute value. For us, the important question is

how this fraction varies over the business cycle. Gourio and Kashyap (2007) report the share of

investment zeros for the US and Chile between 1975 and 2000, arguing that in both countries

the share of exact or near-zeros is “strongly countercyclical”. They report a correlation between

aggregate investment and the share of investment rates close to zero of -0.94 in the US and -0.56

in Chile. Since aggregate investment is strongly procyclical, this implies that the share of zeros or

near-zeros in firm-level investment is countercyclical.

We complement this evidence with data on the prevalence of exact and near-zeros in investment

for a longer time series that includes the current recession. For that, we use quarterly data from

Compustat between 1975 and 2012. We follow Eisfeldt and Rampini (2006) in using the variable

Property, Plant and Equipment as proxy for physical capital at the firm level. Figure 2 shows the

share of firms with zero or near-zero investment rates. To compute these figures, we first restrict

the Compustat dataset to firms with non-missing investment rates at the quarterly level and to

quarters with at least 500 such firms. Then, we calculate the share of zeros or near-zeros in each

quarter. The figure shows the average shares across all quarters in each year, distinguishing between

all firms and firms in manufacturing only.
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Figure 2: Share of firms with Zero or Near-Zero Investment (Source: Compustat)

On average, 2% of firms display zero investment rates at the quarterly level. In turn, the
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share of inactive firms is countercyclical. For the years in which the series overlaps with the

Gourio and Kashyap (2007) data, both series display similar properties.2 Interestingly, for the

recent recession investment inactivity spikes and remains relatively high after economic activity

has recovered. In 2012, 4.9% of firms display zero change in capital. Similar patterns are observed

for the share of firms near zero investment in absolute value. For example, the average share of

firms with investment rate below 1% is 33%, and with investment rate below 2% is 53%, and both

measures peak in bad times. Figure 3 shows the positive correlation between uncertainty from the

Michigan Consumer Survey and the share of firms with zero investment from Compustat. The

years corresponding to the 2007-2009 crisis and its aftermath appear on the upper right area of the

graph.

1978 1979 1980

1981

1982

1983

1984

1985

1986 1987
1988

1989

1990 1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001
2002

2003

2004

20052006 2007

2008

20092010

20112012

Correlation: 0.59

0
.0

1
.0

2
.0

3
.0

4
.0

5
Z

er
o 

In
ve

st
m

en
t (

C
om

pu
st

at
)

0 .02 .04 .06 .08 .1
Uncertainty (Michigan Survey)

Data (1978−2012)

Lowess Fit

Figure 3: Uncertainty and Share of Firms with Zero Investment

3 Baseline Model

We present a stylized model that features only the necessary ingredients to generate uncertainty

traps. The intuitions from this simple model as well as the laws of motion governing the dynamics

of uncertainty carry through to the full model that we use for our numerical analysis.

3.1 Population and Technology

Time is discrete. There is a large, fixed number of firms N̄ indexed by n ∈
{
1, . . . , N̄

}
. Each

firm has a unique investment opportunity that produces output xn which is the sum of two com-

ponents: a persistent common component θ which denotes the economy’s fundamental as well as

2Gourio and Kashyap (2007) use establishment level data from the Census Bureau’s Annual Survey of Manufac-
turers. The correlation between the share of firms with investment rate below 2% in their data and in Compustat is
0.65.
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an idiosyncratic transitory component εxn,

xn = θ + εxn.

The common component follows a random walk, so that the next period’s fundamental is

θ′ = θ + εθ. (1)

The innovations
(
εθ, εxn

)
are independent and normally distributed,

εθ ∼ N
(
0, γ−1

θ

)
and εxn ∼ N

(
0, γ−1

x

)
.

To produce, a firm must pay a fixed cost f , drawn each period from the continuous cumulative

distribution F with mean f̄ and variance σf . Once production has taken place, the firm exits

the economy and is immediately replaced by a new firm with an investment opportunity. This

assumption ensures that the mass of firms in the economy remains constant.3

Upon exit, the firm receives the flow payoff u(xn). Firms have constant absolute risk-aversion4,

u (xn) =
1

a

(
1− e−axn

)
,

where a is the coefficient of absolute risk aversion.

3.2 Timing and Information

At the beginning of each period, firms decide whether to invest or not without knowing their

productivity xn. Their decision therefore depends on their beliefs about the unobserved fundamen-

tal θ. As time unfolds, they learn about θ in various ways. First, firms learn about the fundamental

from a public signal Y observed at the end of each period,

Y = θ + εy (2)

where εy ∼ N (0, γ−1
y ). This signal captures the information released by statistical agencies or the

media. Second, they learn by observing total production in the economy: when firm n invests, its

output xn is observed by all the other firms. Since θ cannot be distinguished from the idiosyn-

cratic term εxn, production xn acts as a noisy signal of the fundamental. Because of the normality

assumption, a sufficient statistic for the information provided by each firm’s individual output is

the public signal

X ≡
1

N

∑

n∈I

xn = θ + εXN , (3)

3The assumption that firms exit when they invest is for tractability of the baseline model and it can be relaxed.
4The assumption of risk aversion is not necessary for the results. We include it for technical reasons in the

general-equilibrium uniqueness proof. In the simulation of the numerical model, we show that the main mechanisms
carry through with risk neutrality.
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where N ∈
{
1, . . . , N̄

}
is the endogenous number of firms that invest, I is the set of such firms and

where

εXN ≡
1

N

∑

n∈I

εxn ∼ N
(

0, (Nγx)
−1
)

.

It is important to note that the precision of this signal, Nγx, increases with the number of investing

firms, N . The higher N is, the more precise is the information collected by each individual firm by

observing production. Social learning takes place through this channel in the economy.

Under the assumption of a common initial prior, and because all signals become public at the

end of a period, beliefs are common across firms. Our normality assumptions about the signals and

the fundamental allow us to describe beliefs about θ by

θ | I ∼ N
(
µ, γ−1

)
,

where I is the information set at the beginning of the period. The mean of the distribution µ

captures the optimism of agents about the state of the economy, while γ represents the precision of

their beliefs about the fundamental. Precision γ is inversely related to the amount of uncertainty

in the economy: as γ increases, the variance of beliefs decreases and uncertainty declines. The

aggregate state space of the economy therefore reduces to the common beliefs (µ, γ).

The timing of events is summarized in Figure 4.

N firms decide to invest
based on common beliefs

and investment costs

Production takes place;
Public signals X and Y

are observed

Beliefs are updated

...

t+1t

Figure 4: Timing of events

3.3 Firm Problem

In each period, given fixed cost f and beliefs about the fundamental (µ, γ), a firm can either

wait or invest. Its value is

V (µ, γ, f) = max
{
V W (µ, γ) , V I (µ, γ)− f

}
, (4)

where V W (µ, γ) is the value of the firm if it waits until the next period and V I (µ, γ) is the value

of the firm after incurring the investment cost f .

We assume that the number of firms N̄ is large enough so that firms behave competitively.

Specifically, they do not internalize the impact of their decisions on aggregate information. The
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firm’s problem yields an optimal investment rule χ (µ, γ, f) ∈ {0, 1}, such that5

χ (µ, γ, f) =







1 if invests ⇔ V I (µ, γ)− f ≥ V W (µ, γ)

0 otherwise.
(5)

When a firm waits, it starts the next period with new beliefs (µ′, γ′) about the fundamental and a

new draw of the fixed cost f ′. Therefore, the value of waiting is

V W (µ, γ) = βE
[
V
(
µ′, γ′, f ′

)
|µ, γ

]
. (6)

In turn, when a firm invests it receives output x and exits. Therefore, the value of investing, net

of the fixed cost, is

V I (µ, γ) = E [u (x) |µ, γ]

= E

[
1

a

(
1− e−a·x

)
|µ, γ

]

=
1

a

(

1− e
−aµ+ a2

2

(
1
γ
+ 1

γx

))

. (7)

3.4 Law of Motion for Common Beliefs (µ, γ)

Firms start the period with beliefs (µ, γ). By period’s end, they have observed the public signals

X and Y defined in (3) and (2). Standard rules for Bayesian updating imply that the common

posterior about θ is normally distributed with mean and precision of information equal to

µpost =
γµ+ γyY +NγxX

γ + γy +Nγx
,

γpost = γ + γy +Nγx.

These standard updating rules have a straightforward interpretation: the mean of the posterior

belief is a precision-weighted average of the past belief µ and the new signals, Y and X, whereas its

precision is the sum of the precision of the prior belief, γ, and the precision of the the new signals.

The pair (µpost, γpost) describes the beliefs by period’s end. Between the two periods, the

fundamental θ evolves according to the random walk (1). Therefore, beliefs about next period’s

fundamental θ′ are normally distributed with mean and precision equal to

µ′ = µpost =
γµ+ γyY +NγxX

γ + γy +Nγx
, (8)

γ′ =

(
1

γpost
+

1

γθ

)−1

=

(
1

γ + γy +Nγx
+

1

γθ

)−1

≡ Γ (N, γ) . (9)

Conditions (8) and (9) are the laws of motions for beliefs. The first moment, µ′, depends on

the aggregate public signals X and Y . The number of investing firms, N, determines the quality

5We assume that firms choose to invest in the case of indifference. This assumption is innocuous as these events
happen with probability 0.
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of the public signal X. In turn, the evolution of the precision of information γ′ only depends on N

and γ. The higher N is, the more precise the public signal X is and the higher the precision of the

beliefs about θ′. We let Γ (N, γ) in (9) be the law of motion of the precision of information.

3.5 Law of Motion for the Number of Investing Firms N

From (5), a firm invests if its cost fn falls below the threshold V I (µ, γ)−V W (µ, γ). Therefore,

the process for the number of investing firms N satisfies

N
(

µ, γ, {fn}1≤n≤N̄

)

=
N̄∑

n=1

χ (µ, γ, fn) =
N̄∑

n=1

1I
(
V I (µ, γ)− fn ≥ V W (µ, γ)

)
. (10)

Since the investment rule χ (µ, γ, fn) is a function of the random fixed cost, the number of investing

firms is a random variable that depends on the realization of the shocks {fn}1≤n≤N̄ . As these costs

are i.i.d., the ex-ante probability of investment for each firm is

p (µ, γ) ≡ F
(
V I (µ, γ)− V W (µ, γ)

)
.

and the ex-ante distribution of N is binomial,

N ∼ Bin
(
N, p (µ, γ)

)
.

Note that because the shocks {fn}1≤n≤N are independent from the fundamental θ and invest-

ment decisions are made before the observation of {xn}1≤n≤N , the law governing N is a simple

function of beliefs (µ, γ). In particular, there is nothing to learn from the non-investment of firms,

nor from the realization of N itself.

3.6 Recursive Equilibrium

We are ready to define a recursive equilibrium:

Definition 1. A recursive equilibrium consists of a policy function χ (µ, γ, f), value functions

V (µ, γ, f), V W (µ, γ), V I (µ, γ), laws of motions for aggregate beliefs {µ′, γ′}, and a number of

investing firms N
(

µ, γ, {fn}1≤n≤N̄

)

, such that

1. The value function V (µ, γ, f) solves (4), with V W (µ, γ) and V I (µ, γ) defined according to

(6) and (7), with the corresponding policy function χ (µ, γ, f) in (5);

2. The aggregate beliefs (µ, γ) evolve according to (8) and (9); and

3. The number N
(

µ, γ, {fn}1≤n≤N̄

)

of firms that invest is given by (10).
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4 Equilibrium Characterization

We first characterize the optimal investment decision of a firm given the laws of motions for

beliefs. Because of the irreversibility of their investment, we show that firms are less likely to invest

when uncertainty is high through a standard option value effect. We then establish the existence

and uniqueness of a recursive equilibrium and characterize its key properties. In particular, we

examine the interaction between firms’ behavior in the face of uncertainty and social learning.

This interaction leads to episodes of self-sustaining uncertainty and low activity, which we call

uncertainty traps. We provide sufficient conditions on the parameters that guarantee the existence

of uncertainty traps. We then discuss the type of aggregate dynamics that they imply. The response

of the economy to shocks is highly non-linear: large, short-lived shocks may plunge the economy into

long-lasting recessions. Finally, we characterize the planning problem and show that uncertainty

traps still exist in the efficient allocation. We also discuss policy implications.

4.1 Investment Rule Given the Evolution of Beliefs

The optimal investment rule χ (µ, γ, f) crucially depends on how beliefs evolve in the economy.

We therefore begin by establishing two simple lemmas about the dynamics of aggregate beliefs.

Evolution of the Mean of Beliefs Using (8), we can characterize the stochastic process for

the mean of beliefs about the fundamental.

Lemma 1. For a given number of investing firms N , the mean of beliefs µ follows a random walk

with time-varying volatility s,

µ
′

|µ, γ = µ+ s (N, γ) ε,

where s (N, γ) ≡
(

1
γ − 1

γ+γy+Nγx

) 1
2
and ε ∼ N (0, 1).

Proof. The full statements and proofs of propositions are relegated to the Appendix.

The mean of beliefs captures the optimism of agents about the fundamental. It evolves stochas-

tically due to the the arrival of new information. Its volatility s (N, γ) is time-varying because

the amount of information that firms collect over time is endogenous. In particular, it depends

negatively on the current precision of beliefs γ. In times of low uncertainty, when γ is high, agents

trust their current information and put less weight on new signals, making the mean of beliefs more

stable. The volatility of the mean of beliefs also depends positively on the number of active firms,

N . When N is large, more information flows to agents, making beliefs more likely to jump.

Evolution of Uncertainty The precision of beliefs captures the uncertainty of agents about the

fundamental and its dynamics play a key role for the existence of uncertainty traps. It is random as

a result of the finiteness of the number of firms. Conditioning on the realization of N , the dynamics

of γ is deterministic and allows for a simple analytical characterization.
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Lemma 2. The precision of next-period beliefs γ′ increases with N and γ. For a given number

of investing firms N , the law of motion for the precision of beliefs γ′ = Γ (N, γ) admits a unique

stable fixed point in γ.

0

γ
′

γ

γ

γ

N = 0

N = .2N̄

N = .4N̄
N = .6N̄

N = N̄

Γ
(
N(γ), γ

)

Figure 5: Example of dynamics for belief precision γ

The thin solid curves on Figure 5 depict Γ (N, γ) for different values of N . As stated in Lemma

2, an increase in the level of activity raises the next period precision of information γ′ for any level

of γ in the current period. Since N is between 0 and N , the support of the ergodic distribution of γ

must be between the two bounds γ and γ̄ defined as the fixed points γ ≡ Γ(0, γ) and γ̄ ≡ Γ(N̄ , γ̄).

Intuitively, γ is the precision level reached if no firm invests for a long period of time, while γ̄ is

the level reached if all firms invest during a long period of time.

In equilibrium, N is endogenous and varies with γ. Assuming for the moment that N (γ) is

an increasing step function, the figure illustrates how the feedback from uncertainty to investment

opens up the possibility of multiple stationary points in the dynamics of the precision, and therefore

uncertainty. For the chosen path of N (γ), the function γ′ = Γ (N (γ) , γ) depicted by the solid curve

in Figure 5 has three stable fixed points. Below, we formally establish that this type of multiplicity

is a generic feature of the recursive equilibrium.

Optimal Timing of Investment How does the individual investment decision depend on

beliefs? Intuitively, a more optimistic firm is more likely to invest since the expected return on

investment is higher. In turn, uncertainty may reduce investment for two reasons. First, risk averse

firms dislike uncertain payoffs. Second, since investment is costly and irreversible, there is an option

value of waiting: in the face of uncertainty, firms prefer to delay investment to gather additional
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information and avoid downside risks.

The following proposition formally establishes the validity of this intuition and provides a char-

acterization of the optimal investment behavior.

Proposition 1. Under Assumption 1 and for some p(µ, γ) ∈ P defined in the appendix, for a

perceived information flow characterized by N ∼ Bin
(
N, p (µ, γ)

)
and γx sufficiently small, there

exists a unique cutoff for the fixed costs fc (µ, γ) ∈ R∪ {−∞,∞} such that firms invest if and only

if f ≤ fc (µ, γ). The cutoff fc (µ, γ) is strictly increasing in µ and γ.

This partial equilibrium result characterizes the investment rule given the random number

of investing firms N (µ, γ) and the laws of motion for µ and γ. Firms invest if and only if the

idiosyncratic fixed cost falls below the threshold fc (µ, γ). An important result for what follows is

that the probability of investment decreases with uncertainty.

4.2 Existence and Uniqueness

We have described in Lemmas 1 and 2 how beliefs depend on the number of investing firms,

and, in Proposition 1, how firms’ investment decisions are affected by beliefs. In the latter, firms

make their decisions with the perception that N follows a binomial distribution Bin
(
N, p (µ, γ)

)

for some function p (µ, γ) ∈ P. We now close the equilibrium by requiring that the perceived

behavior of firms is consistent with their actual investment decisions: p (µ, γ) = F (fc (µ, γ)) . The

next proposition shows that such a general equilibrium exists and is unique.

Proposition 2. Under the regularity conditions in Assumptions 1 and 2 stated in the appendix,

and for γx small enough, a recursive equilibrium exists and is unique. The expected number of

investing firms is increasing in the mean of beliefs µ and increasing in precision γ.

Figure 6 depicts the expected number of investing firms as a function of beliefs (µ, γ). The

partial equilibrium results from Proposition 1 carry through to the general equilibrium: the number

of investing firms increases as they become more optimistic about the fundamental (µ high) or less

uncertain (γ high). In turn, as we illustrated in the example of figure 5, the last result opens the

possibility of multiple fixed points in the dynamics of uncertainty.

14



E[N ]

N

0

γ
µ

E[N ]

Figure 6: Example of aggregate investment pattern

5 Uncertainty Traps

We now describe the key mechanism at work behind uncertainty traps.

5.1 Definition and Existence

We assume at this point that the total number of firms N̄ is large enough, so that

n (µ, γ) ≡
N (µ, γ)

N̄
≃ F (fc (µ, γ)) .

With this assumption, we can treat n as a deterministic function of beliefs, ignoring fluctuations

due to the finiteness in the number of firms.6 We are now ready to define an uncertainty trap:

Definition 2. Given some mean beliefs µ0, there is an uncertainty trap if there are at least two

locally stable fixed points in the dynamics of beliefs precision γ′ = Γ (N (µ0, γ) , γ) .

We refer to these fixed points in the dynamics of γ as regimes to emphasize that they are not

distinct equilibria. Indeed, the presence of uncertainty traps does not imply that there are multiple

equilibria in the model. In fact, Proposition 2 establishes that there is a unique rational expectation

equilibrium. While multiple values of γ may satisfy the equation γ = Γ (N (µ, γ) , γ), the regime

that prevails at any given time is uniquely determined by the history of past aggregate shocks.

6We must be careful when taking the limit as N → ∞. If we kept γx constant, a law of large number would
apply and θ would be fully revealed through the social learning channel. We instead assume that the precision of
each individual signal goes to 0 as we add firms: γx

(
N
)
= γx/N . This ensures that all our previous results as well

as the laws of motion for information are maintained, substituting N with n = N/N . In particular, the precision of
X remains the same: Nγx

(
N̄
)
= nγx.
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However, because of shocks to µ, there is always a strictly positive probability that the economy

switches endogenously between regimes.

Do uncertainty traps always arise? The following proposition establishes formally that uncer-

tainty traps exist for a range of mean of beliefs µ. An important condition for this result is that

the dispersion in the distribution of fixed costs, σf , is not too large. This ensures a strong enough

feedback from information to investment.7

Proposition 3. Under the conditions of Proposition 2 and for σf small enough, there exists a

non-empty interval [µl, µh] such that, for all µ0 ∈ (µl, µh), the economy features an uncertainty

trap with at least two regimes γl (µ0) < γh (µ0). Regime γl is characterized by high uncertainty and

low investment while regime γh is characterized by low uncertainty and high investment.

0

γ
′

γ

γl γh

µ
>

µ
h

µ
=

µ
h

µ
=
µ
l

µ
<
µ
l

n = 0
n = 1

n = F (fc)

Figure 7: Dynamics for precision γ for different values of µ

Figure 7 offers an example of the law of motion of γ for different values of µ. To understand

the mechanism at work, let us first focus on the thick solid curve, which shows the function γ′ =

Γ(N(µ, γ), γ) for a fixed intermediate value of µ. For small values of γ, uncertainty is high and

firms do not invest. As a result, they do not learn anything by observing aggregate activity and the

precision of beliefs γ′ remains low. As uncertainty decreases, firms are sufficiently certain about

the fundamental to start investing. As N increases, they learn more and more from each others’

production and γ′ starts to increase as well.

Notice that the thick curve crosses the 45◦ lines in three locus points. The middle intersection

is unstable but the other two are locally stable regimes, γl and γh, so that the economy might settle

7Intuitively, as the distribution of fixed costs becomes less dispersed, the fraction of investing firms n (µ, γ) reacts
quickly to changes in beliefs. See the appendix for details.
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for some time in their neighborhood. At γl, uncertainty is high and investment is low while the

opposite is true when the economy is at γh.

5.2 Dynamics: Non-linearity and Persistence

We have only considered so far the evolution of γ for a fixed µ, but as random shocks hit the

economy, and firms receive random signals, the mean of beliefs µ will start to change. In this

context, how stable are the regimes associated to γl and γh? Figure 7 provides the answer. Notice

that as long as µ stays between the two depicted values µl and µh, which correspond to the range

[µl, µh] from Proposition 3, the two regimes γl and γh remain stable. Therefore, as long as the

shocks to µ are not too large, the economy remains at the regime it is currently in.

For values of µ above µh, the dynamics of beliefs only admits the high-activity regime, while for

values below µl, it only admits the low-activity regime. Shocks to µ can therefore make one regime

unstable and force the economy to move to the other regime, if they are large enough or last for a

sufficiently long time. Proposition 3 establishes that the situation depicted in Figure 7 is a generic

feature of the equilibrium.
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Figure 8: Persistent Effects of Temporary Shocks

As we have seen, uncertainty traps give rise to non-linear aggregate dynamics: the economy

reacts very differently to large shocks in comparison to small ones. Figure 8 shows various simu-

lations that illustrate this feature using the example from Figure 7. The top panel presents three

different series of shocks to the mean of beliefs µ. The three series start from the high activity/low

uncertainty regime. The economy is then hit at t = 5 by a negative shock to µ, due to a particularly

bad realization of either the public signals or the fundamental. The economy returns to normal at
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t = 10. Across the three series, the magnitude of the initial shock is different.

The middle and bottom panels show the response of belief precision γ and the fraction of

investing firms n. The fraction of firms that invest prior to the shock is 1. The solid gray line

represents a small temporary shock. After the shock hits, firms still find it profitable to invest, the

fraction of investing firms remains equal to 1, and the precision of beliefs is unaffected. When the

economy is hit by a temporary shock of slightly larger magnitude, some firms stop investing, leading

to a gradual increase in uncertainty. As uncertainty rises, investment goes down even further and

the economy starts to drift towards the low regime. However, when mean beliefs recover, the

precision of information and the number of active firms quickly return to the high-activity regime.

In contrast, when the economy is hit by an even larger temporary shock, such as described by the

dotted line, the number of firms delaying investment is large enough to produce a self-sustaining

increase in uncertainty. The economy quickly shifts to the low-activity regime and remains there

even after mean beliefs recover to the initial position. The economy has fallen into an uncertainty

trap.
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Figure 9: Escaping an Uncertainty Trap

How does the economy escape from an uncertainty trap? Figure 9 depicts the evolution of the

economy after it is hit by the large shock from Figure 8. As before, the large negative shock hitting

the economy from periods 5 to 10 pushes the economy into the low activity-high uncertainty regime.

Eventually, the economy receives positive signals that lead to a temporary increase in mean beliefs

between periods 20 and 25, possibly because of a recovery in the fundamental. When the temporary

increase in average beliefs is not sufficiently strong, the recovery is short-lived. However, when the

temporary increase is sufficiently large, the economy reverts back to the high-activity regime. Once
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again, temporary shocks of sufficient magnitude to the fundamental may lead to nearly permanent

effects on the economy.

A number of additional lessons can be drawn from these simulations:

1. In this framework uncertainty is a by-product of recessions. This result echoes some of

the empirical findings by Bachmann et al. (2013) who show that uncertainty is caused by

recessions and thereby conclude that it is of secondary importance for the business cycle. We

show however that uncertainty may still have a large impact on the economy, even if it is not

what triggers recessions.

2. As in models with learning in the spirit of Van Nieuwerburgh and Veldkamp (2006), this

theory provides an explanation for asymmetries in business cycles In good times, since agents

receive a large flow of information, they react faster to shocks than in bad times.

3. The simulations also highlight that agents can be uncertain about the fundamental without

necessarily being uncertain about endogenous variables. For example, when the economy

is trapped in the low activity regime, firms are certain that they are uncertain: they can

accurately predict the low level of investment and output. This highlights a potential difficulty

with identifying uncertainty in the data. As implied by the model, the accuracy of forecasts

about variables like output may possibly be a bad proxy for uncertainty about fundamentals.

5.3 Policy Implications

The process through which information is released in this economy raises the question of effi-

ciency. In the decentralized equilibrium firms invest less often than they should from a social welfare

perspective because they do not internalize that their investments release information to the rest of

the economy. Proposition 4 shows that the decentralized economy is constrained inefficient. But a

simple policy instrument such as an investment subsidy that only depends on current beliefs (µ, γ)

is sufficient to make firms internalize their impact on the rest of the economy and implements the

efficient allocation.

Proposition 4. The decentralized competitive equilibrium is constrained inefficient and the efficient

utilitarian allocation can be implemented with positive investment subsidies τ (µ, γ) and a uniform

tax. In turn, when γx and σf are small, the efficient allocation is still subject to uncertainty traps.

Proposition 4 implies that firms are more likely to invest in the efficient allocation, but uncer-

tainty traps can still arise. If the planner does not have any additional information than agents

in the economy, it is still optimal to wait when uncertainty is too high. Hence, there still exists a

strong complementarity between information and the level of activity in the constrained efficient-

allocation, although uncertainty traps are less likely to arise in that case.
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6 Numerical Example

To illustrate the impact of uncertainty traps on business cycles fluctuations, we enrich the

model in several dimensions. We include a Cobb-Douglas production function that combines labor

and capital as inputs, and a representative household that supplies labor and owns the firms. We

also generalize the stochastic process followed by the fundamental. To see if the high persistence

predicted by the baseline model survives to optimal policy interventions, we focus on the problem

of the social planner. Since the planner internalizes the information externality, firms invest more

in the optimal allocation than in the competitive equilibrium. We can therefore be confident that if

uncertainty traps arise in the optimal allocation they will also arise in the competitive equilibrium.

6.1 Extended model

There are N̄ firms that operate a Cobb-Douglas technology to produce the unique consumption

good. A firm n employing l units of labor and k units of capital produces output

qn = (A+ Y ) kαn l
1−α
n ,

where

Y = θ + εy

θ′ = ρθθ + εθ

with distributions εθ ∼ N
(
0,
(
1− ρ2θ

)
γ−1
θ

)
and εy ∼ N

(
0, γ−1

y

)
and where A > 0 is the uncondi-

tional mean of total factor productivity. As in the baseline model, the stochastic process θ is the

fundamental of the economy but it now follows an AR(1) process instead of a random walk. Notice

that this assumptions should weaken the uncertainty traps since agents now know that, after a bad

shock, the fundamental will reverse towards its mean. We use (A+ Y ) as total factor productivity

instead of the perhaps more common exponential form to make sure that a change in the perceived

variance of Y does not influence the expectation of productivity.8

Firms can only invest if they have an investment opportunity. At the end of the period, a

firm without an opportunity will gain one with probability q. A firm cannot have more than one

opportunity at any time. A firm with an opportunity can invest an amount i > 0, per unit of

capital that it owns, at a cost f > 0, also per unit of capital. Therefore, the capital of a firm n

evolves according to

k′n = (1− δ + i) kn,

where δ denotes the depreciation rate. By making the investment costs proportional to the current

capital stock, we can aggregate the economy easily. Allowing firms to invest only if they have an

8While productivity could theoretically be negative, the variance of the distributions considered below are such
that it never happens in any of the simulations.
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investment opportunity generates the irreversibility of investment required to generate the option

value of waiting.

There is a risk-neutral representative consumer who supplies one unit of labor inelastically

and who discounts future utility at rate β. Risk neutrality implies that uncertainty only matters

through the irreversibility of investment.

The information structure and the timing of events are as follow:

1. All firms share the same prior distribution over the fundamental θ | I ∼ N
(
µ, γ−1

)
where µ

and γ denote the mean and the precision of beliefs.

2. Firms that hold an investment opportunity decide whether to invest or not.

3. Firms that invest receive a private signal xn = θ+ǫxn, where ǫ
x
n ∼ N

(
0, γ̃−1

x

)
, and then choose

labor ln.

4. The common shock y is revealed and observed by everyone. All firms produce and all actions

are observed.

5. Firms that do not hold an investment opportunity receive one with probability q.

6. Agents update their beliefs for next period.

As before, firms decide whether or not to invest based solely on the common information (µ, γ).

Once investment has taken place, each firm observes a private signal and, based on that signal,

hires workers. Since the number of workers hired is an increasing function of the signal received,

and because labor is observable, all firms can figure out all the private signals received by others.

Because of the normality of the random variables, this is equivalent to observing the public signal

X =
1

Ñ

∑

n∈I

xn = θ + εXN

where I is the set of firms investing, Ñ is the number of firms that invest and εXN ∼ N (0, (Ñ γ̃x)
−1).

Importantly, the precision of this aggregate public signal is increasing in Ñ . Firms also learn about

the fundamental by observing the aggregate productivity y. Here, it is the observation of the firms’

labor decision, instead output as in the baseline model, that reveals their private information. This

assumption allows us to keep the analysis tractable.

6.2 Social Planner

Because of the constant returns to scale in production and the overall linear structure of the

model we can aggregate the economy analytically. To do so we take the limit as the total number

of firms N̄ goes to infinity as the precision of each individual signal goes to zero. We do so in a

way that keeps the precision of public information unchanged. More precisely, we assume that the

precision of each private signal is γ̃x = γx/N̄ , and then take the limit as N̄ → ∞. In the limit, the

mass of each firm also goes to zero so that we have a mass 1 of firms.
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Under these assumptions, the laws of motion for the beliefs of agents replicate those in the

baseline model. The only difference is that, now, the next-period prior is adjusted to take into

account the fact that the fundamental θ follows an AR(1) process instead of a random walk,

µ′ = ρ
γµ+ γyY +NγxX

γ + γy +Nγx
(11)

γ′ =

(
ρ2

γ + γy +Nγx
+ (1− ρ2)σ2

θ

)−1

(12)

where N is now the fraction of firms investing; the limit of Ñ/N̄ as we move to the continuum.

We can now write the social planner’s problem. Denoting aggregate capital by K, the fraction

of firms with an investment opportunity by Q and the number of firms investing by N , the social

planner solves

V (µ, γ,K,Q) = max
0<N<Q

(A+ µ)Kα −KNf + E
[
βV

(
µ′, γ′,K ′, Q′

)
|µ, γ

]

subject to

K ′ = K (1− δ +Ni)

Q′ = Nq + (Q−N) + (1−Q)q

and to the laws of motion from equations 11 and 12.

It is clear from the planner’s problem that without the fluctuating investment opportunities,

which corresponds to having q and Q both equal to 1, the model would be a standard business

cycles model without any irreversibility of investment. The dynamics of Q, and the impact that N

has on it, is therefore the element that makes the option value of waiting a function of uncertainty.

6.3 Simulations

To illustrate that uncertainty traps can create additional persistence in the macroeconomic

aggregates, we proceed to a series of simulations. We first parametrize the model with the values

shown in Table 1. The time period is one month. The values for the discount rate β, the depreciation

rate δ and the share of capital in production α are standard.

Let us first look at some properties of the policy function. In Figure 10 we can see the investment

decision of firms as a function of the mean of beliefs µ for three levels of uncertainty. As in the

benchmark model, firms are more likely to invest when µ is high and uncertainty is low. Notice also

that when µ is at its steady state firms keep investing unless uncertainty is high, in which case they

are sufficiently worried about the state of the fundamental that they prefer to wait. This behavior

opens the possibility for uncertainty traps to exists. The dynamics of the precision of beliefs γ,

shown in Figure 11, suggests that we have indeed three stable points similar to those that exist in

the baseline model. These points are however only stable as long as µ, K and Q remains at their
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Parameter Value

Total factor productivity A = 1

Discount factor β = (0.95) 1/12

Depreciation rate δ = 1− (0.9) 1/12

Share of capital in production α = 0.4
Probability of receiving an investment opportunity q = 0.25

Cost of investment f = 0.15
Size of investment i = 0.1

Persistence of fundamental ρθ = 0.99
Precision of ergodic distribution of fundamental γθ = 400

Precision of public signal γy = 100
Precision of aggregated private signals when N = 1 γx = 15000

Table 1: Parameters values for the numerical simulations

steady-state value. As K declines, which would be the case in a recession, the return on capital

increases and firms invest more. As a result, more information is released and the low stable point

disappears. This is one important difference from the benchmark model. Here the uncertainty trap

is not globally stable if capital depreciates. We can however expect the mechanism to increase the

duration of recessions. To see how strong this effect is we now proceed to a series of simulations.

Figure 10: Investment decision N(µ, γ,K,Q) for K and Q constant at their steady-state level.

Figure 11: Dynamics of precision γ for µ and Q constant at their steady-state value.
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Figure 12: Evolution of the economy after a 5% negative shock to µ. The solid curve shows the
evolution of the economy according to the full model while the dashed curve shows the evolution
of a control economy in which the flow of public information is fixed at its steady-state level.
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We consider the evolution of an economy that suffers from a -5% shock to the mean of beliefs

µ that lasts 6 months. This shock could originate from a bad signal X or a bad productivity draw

Y . The impulse response functions are represented by the solid curves in Figure 12. The dashed

curves represent the response of a control economy in which we prevent the investment decision of

firms from affecting the information flow. Explicitly, we keep the N that enters in equations 11 and

12 constant at its steady-state level. Therefore, the difference between the two curves corresponds

to the the additional impact of the endogenous uncertainty.

Let us consider the full model first. On impact, firms become worried that their current and

future productivity will be low. The expected return adding capital becomes lower than its cost

and firms cut back on investment. As a result, less private signals are generated in the economy

and the precision of beliefs starts falling as can be seen in Panel (c). Once the shock is over,

agents start receiving signals suggesting that the fundamental is actually better than expectations.

Firms update their beliefs accordingly and, as shown in Panel (b), they become more optimistic.

The recovery is however impeded by the high degree of uncertainty which leads firms to delay

investment. Since investment remains low, firms receive little information about the fundamental

which maintains the high degree of uncertainty and delays the recovery.

We can evaluate the impact of the endogenous uncertainty by comparing the impulse response

functions of the full model to those of the control economy. There, since the flow of information

coming from the public signal X remains constant, firms quickly learn that the fundamental is

better than expected and the economy recovers quickly. We see a drop in output of about 6% in

the control economy while production shrinks by 9% in the full model. The trough of the recession

also happens 7 months later and the economy takes substantially more time to recover to its steady

state.

To understand the nonlinear nature of the model, it is useful to compare this 5% shock to µ

with a shock half as big. The impulse response functions of output to both shocks are shown in

Figure 13. We see that output barely reacts to the small shock. This shock is not sufficiently

strong to affect the investment decision in a significant way. As a result, the amount of information

received by firms does not change much and the economy recovers quickly.

Figure 13: Evolution of output after a 5% and 2.5% negative shock to µ.

In the simulations of Figure 12, the recovery is faster in the control economy because the

flow of information is kept constant at its steady-state level. In the full model, this flow depends
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endogenously on the optimal investment policy N(µ, γ,K,Q) and therefore on the full state space.

Since this object obviously depends on µ in an important way, one could imagine that the recovery

is slow in the full model only because µ remains low and that the uncertainty channel emphasized

in this paper is only a side-show. This is not so. To show this, we proceed to a new simulation

in which we keep γ constant at its steady-state level while allowing the flow of information in

the control group to vary endogenously with the other variables of the state space. Explicitly,

we use N(µ, γss,K,Q), where γss is the steady-state level of γ, in equations 11 and 12. The

impulse response functions for output are shown in Figure 14. The solid curve shows output in

the full model once again. The brown dashed curve shows the same economy with constant flow of

information as in Figure 12 while the purple curve shows the economy where information evolves

with N(µ, γss,K,Q). As we can see, the uncertainty channel is the main contributes significantly

to the depth and persistence of the recession.

Figure 14: Evolution of output after a 5% negative shock to µ in the full model, the economy with
constant flow of information and a control economy in which the flow of information evolves with
N(µ, γss,K,Q).

Finally, let us consider shocks to the precision of beliefs. As uncertainty only fluctuates endoge-

nously in the model, shocking γ directly violates our assumption of rational expectations. Keeping

this in mind, it is still an interesting exercise to understand the policy functions. Figure 15 shows

the impulse response functions of output, the mean of beliefs and the precision of beliefs when the

standard deviation of the prior distribution increases by 50%. We once again keep the flow of in-

formation constant at N ss in the control economy. As expected, output drops in both cases. In the

both economies, γ recovers according to equation 12, but since N is relatively high in the control

economy, the economy is faster. We can see that, in the full model, short shocks to uncertainty

persists for a relatively long time since they also slow the learning process.
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Figure 15: Endogenous vs exogenous uncertainty. Evolution of the economy after a 50% negative
shock to the standard deviation of the prior. The solid curve shows the evolution of the full
model while the dashed curve shows the evolution of a control economy in which the flow of public
information is fixed at its steady-state level.

7 Conclusion

We developed a quantitative theory of endogenous uncertainty that embeds social learning in a

standard model of irreversible investment. In the model, agents receive private information about

some fundamental and learn from the actions of others. During periods of high economic activity,

a large amount of information is revealed. In periods of low economic activity, information diffuses

slowly and uncertainty rises. High uncertainty encourages firms to defer investment in the future,

slowing the diffusion of information further.

We show that this interaction between social learning and the option value of investment creates

a powerful complementarity between information and economic activity. We derive conditions

under which this complementarity is strong enough to sustain two distinct locally stable steady

states in the dynamics of activity and uncertainty for a given level of optimism: a high activity/low

uncertainty regime and a low activity/high uncertainty one. We demonstrate that the equilibrium
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of the model is still unique, but that this multiplicity creates nonlinear dynamics in which recessions

can have a near permanent impact on the economy.

We explore the robustness of this mechanism in a quantitative version of the model that nests

the key components of our setup in a more traditional model of business cycles. Despite being at a

very preliminary stage, our simulations show some encouraging evidence that the effects of uncer-

tainty are robust and able to provide a sizable propagation mechanism with substantial persistence

of recessions. We are currently working on a full-fledged calibration and an empirical study to

complement these results.
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A Appendix

Proofs of the lemmas and propositions from the theoretical part are provided here. We start

with a number of assumptions and definitions.

Assumption 1. Parameters are such that βe
a2

2γθ < 1.

This assumption guarantees that a number of effects highlighted in the baseline model are

unambiguous and in particular that the option value of waiting is strong enough to dominate other

forces. It states in particular the following: risk aversion (a) and aggregate risk ( 1
γθ
) cannot be too

large, otherwise the incentives for waiting are greatly reduced (the condition states that the risk

induced by waiting never outweighs the option value of waiting).

Assumption 2. F is continuous, twice differentiable with bounded first and second derivatives.

We impose a number of regularity conditions on the cumulative distribution of investment costs

to guarantee that the equilibrium number of investing firms N (µ, γ) ∼ Bin
(
N̄ , F (fc (µ, γ))

)
is

well-behaved.

Definition 3. Define the following bounds and set:

1. Let γ̄ be the unique strictly positive solution of

γ̄ =

(
1

γ̄ + γy + N̄γx
+

1

γθ

)−1

= Γ
(
N̄ , γ̄

)
,

and γ the unique strictly positive solution of

γ =

(
1

γ + γy
+

1

γθ

)−1

= Γ (0, γ) ,

2. Let S = [µ, µ̄]× [γ, γ̄] , where µ and µ̄ are some arbitrary but large bounds on µ.

We restrict (µ, γ) to be in the domain S. Unfortunately, since shocks are normally distributed,

imposing bounds on µ restricts the equilibrium and makes the Bayesian learning formulas not

completely consistent with rationality. We ignore that matter for practical purposes as these

bounds are necessary to the fixed point theorems. With bounds large enough, this should be a

good enough approximation.

We define the set P in which the probability p (µ, γ) = F (fc (µ, γ)) that a firm invests will lie:

Definition 4. Let P be the set of twice-continuously differentiable functions p : (µ, γ) ∈ S −→ R

such that p has bounded first and second derivatives: ∀ (µ, γ) ∈ S, |pµ (µ, γ)| ≤ p̄µ , |pγ (µ, γ)| ≤ p̄γ ,

and |pxy (µ, γ)| ≤ p̄xy for (x, y) ∈ {µ, γ}2.

We also define the set G in which the firm’s surplus of waiting compared to investing will lie:
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Definition 5. Let G be the set of twice-continuously differentiable functions G of (µ, γ, f) ∈

S × R −→ R such that

1. G is weakly decreasing and convex in µ,

2. G is weakly decreasing in γ,

3. G is Lipschitz continuous of constant 1 in f ,

4. G has bounded first and second derivatives: ∀ (µ, γ, f) , |Gx (µ, γ)| ≤ Ḡx and |Gxy (µ, γ)| ≤

Ḡxy for (x, y) ∈ {µ, γ, f}2.

The bounds on the derivatives of N depend on those of G and vice-versa in equilibrium. In the final

version, we will need clean expressions (TO DO). In fact, differentiability may not obtain, so we

will have to rewrite the proofs with Lipschitz-continuous functions or perhaps semi-differentiability.

Let us now turn to the proofs.

Lemma 1. Mean beliefs µ follow a random walk with time-varying volatility,

µ
′

= µ+ s (N, γ) εµ,

where s (N, γ) =
(

1
γ − 1

γ+γy+Nγx

) 1
2
and ε ∼ N (0, 1).

Proof. Conditioning on the realization of N and on current information, expression (8) tells us that

µ′ is normally distributed (it is the sum of a constant, µ, and two normally distributed signals, Y

and X. Let us characterize its mean and variance:

E [µ′|µ, γ,N ] = E

[
γ · µ+ γy · Y +Nγx ·X

γ + γy +Nγx
|µ, γ,N

]

= µ,

V ar (µ′|µ, γ,N) = V ar

(
(γy +Nγx) θ + γyε

y +Nγxε
X
N

γ + γy +Nγx
|µ, γ,N

)

=

(
γy +Nγx

γ + γy +Nγx

)2
1

γ
+

(
γy

γ + γy +Nγx

)2
1

γy
+

(
Nγx

γ + γy +Nγx

)2
1

Nγx

=
1

γ
−

1

γ + γy +Nγx
.

We can therefore write µ′ as the sum of µ plus some normal innovation εµ with a variance that

depends on N and γ, N being random, distributed according to a binomial law.

Proposition 1 (full). For p (µ, γ) ∈ P such that N (µ, γ) ∼ Bin
(
N, p (µ, γ)

)
, under assumption

1 and for γx sufficiently low, for all (µ, γ) ∈ S, there exists a unique cutoff value fc (µ, γ) ∈

R ∪ {−∞,∞}, such that firms invest if and only if f ≤ fc (µ, γ). In addition, fc (µ, γ) is a strictly

increasing function of µ and γ.
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Proof. Using the definition 4, write the mapping T p : G −→ G for G (µ, γ, f) = V (µ, γ, f) −
(
V I (µ, γ)− f

)
as follows:

T pG (µ, γ) = max
{
0, βE

[
G
(
µ′, γ′, f ′

)
+ V I

(
µ′, γ′

)
− f

]
− V I

(
µ′, γ′

)
+ f

}
.

Substitute with the stopping value V I (µ, γ) = 1
a

(

1− e
−aµ+ a2

2

(
1
γ
+ 1

γx

))

:

T pG (µ, γ, f) = max

{

0, βE

[

G
(
µ′, γ′, f ′

)
+

1

a

(

1− e
−aµ′+ a2

2

(

1

γ′
+ 1

γx

)

)

− f

]

− V I (µ, γ) + f

}

= max

{

0, βE

[

G
(
µ′, γ′, f ′

)
+

1

a

(

1− e
−a(µ+s·ε)+a2

2

(

1
γ+γy+Nγx

+ 1
γθ

+ 1
γx

))

− f

]

−
1

a

(

1− e
−aµ+ a2

2

(

1
γ
+ 1

γx

)

)

+ f

}

= max

{

0, β

[

E
(
G
(
µ′, γ′, f ′

))
+

1

a

(

1− e
−aµ+a2

2

(

1
γ+γy+Nγx

+ 1
γθ

+ 1
γx

+s2
))

− f̄

]

−
1

a

(

1− e
−aµ+ a2

2

(

1
γ
+ 1

γx

)

)

+ f

}

= max







0,
1

a
e
−aµ+a2

2

(

1
γ
+ 1

γx

)

(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βE

[
G
(
µ′, γ′, f ′

)]

︸ ︷︷ ︸

≡Cp(G) (continuation value)







where the notation s (N (µ, γ) , γ) =
(

1
γ − 1

γ+γy+N(µ,γ)γx

) 1
2
denotes the standard deviation of µ

′

given (µ, γ) and N . Under assumption 1, the first term in the braces is positive: it is a strictly

decreasing, convex function of µ, and strictly decreasing function of γ.

We are going to show that T p is a well defined mapping from G to G. We show in addition that

it satisfies the Blackwell conditions, so that it is a contraction with a unique fixed point. Indeed,

T p satisfies the following properties:

1. Monotonicity: if G1 (µ, γ, f) ≤ G2 (µ, γ, f) for all (µ, γ) ∈ S, f ∈ R then

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βE

[
G1

(
µ′, γ′, f ′

)]
≤

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βE

[
G2

(
µ′, γ′, f ′

)]

so that (T pG1) (µ, γ, f) ≤ (T pG2) (µ, γ, f) for all (µ, γ) ∈ S, f ∈ R;

2. Discounting: for K ≥ 0,

1
ae

−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β) 1
a − βf̄ + βE [G (µ′, γ′, f ′) +K]

= 1
ae

−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β) 1
a − βf̄ + βE [G (µ′, γ′, f ′)] + βK

≤ (T pG) (µ, γ, f) + βK
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so that [T p (G+K)] (µ, γ, f) ≤ (T pG) (µ, γ, f) + βK for all (µ, γ) ∈ S, f ∈ R.

Therefore, T p is a contraction mapping that admits a unique fixed point. We only need to check

that it is well defined, i.e. that it remains in set G.

• Decreasing in µ

We want to show that T pG decreases with µ. The term 1
ae

−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

decreases

with µ, so we only need to check that βE [G (µ′, γ′, f ′)] does as well. Denote πN̄
N (p) =

(
N̄
N

)
pN (1− p)N̄−N .

Pick µ1 < µ2. We use the following notation:

Ei

[
G
(
µj + sε,Γ, f ′

)]
=

N̄∑

N=1

πN̄
N (p (µi, γ))

ˆ

G
(
µj + s (N, γ) ε,Γ (N, γ) , f ′

)
dΦ (ε) dF

(
f ′
)

with s (N, γ) =
(

1
γ − 1

γ+γy+Nγx

) 1
2
and Γ (N, γ) =

(
1

γ+γy+Nγx
+ 1

γθ

)−1
and ε ∼ N (0, 1) for i, j =

1, 2. A change in µ has a direct effect on G as a function of µ and another effect through the

expectation p (µ, γ). We are interested in the sign of

E2

[
G
(
µ2 + sε,Γ, f ′

)]
− E1

[
G
(
µ1 + sε,Γ, f ′

)]

= E2

[
G
(
µ2 + sε,Γ, f ′

)]
− E2

[
G
(
µ1 + sε,Γ, f ′

)]

︸ ︷︷ ︸

≤0 because Gdecreasing

+ E2

[
G
(
µ1 + sε,Γ, f ′

)]
− E1

[
G
(
µ1 + sε,Γ, f ′

)]
.

The first term is negative, which is good for us. The only nuisance term is the second one coming

from the change in beliefs. We are going to show that it is a O (γx), i.e. negligible when γx is

small. Using the notation gN (µ, γ) ≡
´

G (µ+ s (N, γ) ε,Γ (N, γ) , f ′) dΦ (ε) dF (f ′) and ΠN (p) =
∑N

n=1 π
N̄
n (p) , rewrite the following:

Ep

[
G
(
µ+ sε,Γ, f ′

)]
=

N̄∑

N=1

πN̄
N (p)

ˆ

G
(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
dΦ (ε) dF

(
f ′
)

︸ ︷︷ ︸

≡gN (µ,γ)

Summing by parts:

Ep

[
G
(
µ+ sε,Γ, f ′

)]
= gN̄ (µ, γ)−

N̄−1∑

N=1

ΠN (p) · (gN+1 − gN ) (µ, γ) .

Taking the derivative with respect to p, we obtain

∂

∂p
Ep

[
G
(
µ+ sε,Γ, f ′

)]
= −

N̄−1∑

N=1

Π′
N (p) · (gN+1 − gN ) (µ, γ)
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Let us now control the terms (gN+1 − gN ) (µ, γ). To that end, let us look at the following term:

∣
∣G
(
µ+ s (N + 1, γ) ε,Γ (N + 1, γ) , f ′

)
−G

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)∣
∣

≤
∣
∣G
(
µ+ s (N + 1, γ) ε,Γ (N + 1, γ) , f ′

)
−G

(
µ+ s (N, γ) ε,Γ (N + 1, γ) , f ′

)∣
∣

+
∣
∣G
(
µ+ s (N, γ) ε,Γ (N + 1, γ) , f ′

)
−G

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)∣
∣

≤ Ḡµ |ε (s (N + 1, γ) − s (N, γ))|+ Ḡγ |Γ (N + 1, γ)− Γ (N, γ)|

where we have used the fact that G is bi-Lipschitz continuous. Therefore,

|(gN+1 − gN ) (µ, γ)| ≤ Ḡµ |(s (N + 1, γ)− s (N, γ))|

ˆ

|ε| dΦ (ε) + Ḡγ |Γ (N + 1, γ)− Γ (N, γ)|

≤ Ḡµ |(s (N + 1, γ)− s (N, γ))|+ Ḡγ |Γ (N + 1, γ) − Γ (N, γ)| .

We just need to check that these terms are small:

|s (N + 1, γ) − s (N, γ)| ≤
γx

(γ + γy)
2 = O (γx)

|Γ (N + 1, γ) − Γ (N, γ)| =
γ2θγx

(γθ + γ + γy +Nγx) (γθ + γ + γy + (N + 1) γx)

≤
γ2θγx

(γθ + γ + γy)
2 = O (γx) .

We can now go back to the nuisance term

∣
∣
∣
∣

∂

∂p
Ep

[
G
(
µ+ sε,Γ, f ′

)]
∣
∣
∣
∣
= O (γx) ,

where we have used the fact that Π′
N (p) is a polynomial of degree N̄ − 1 and is thus bounded on

the interval [0, 1]. We may now conclude. For γx small enough, the continuation value Cp (G) will

be strictly decreasing. Its derivative,

∂

∂µ
Cp (G) = −e

−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

︸ ︷︷ ︸

<−e
−aµ̄+ a2

2
1
γ̄

(

1−βe
a2
2γθ

)

<0

+ βEp(µ,γ)

[
∂G

∂µ

]

︸ ︷︷ ︸

≤0

+ β
∂p

∂µ
︸︷︷︸

·

≤p̄µ

∂

∂p
Ep

[
G
(
µ+ sε,Γ, f ′

)]

︸ ︷︷ ︸

O(γx)

is strictly negative for γx small enough. Therefore, for a small enough γx, T
pG is weakly decreasing

in µ.

• Decreasing in γ

The proof is based on the same argument as the one we just developed. The derivative of the

continuation value with respect to γ is:
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∂

∂γ
Cp (G) = −

a

2γ2
e−aµ+ a2

2 (
1
γ
+ 1

γx
)
(

1− βe
a2

2γθ

)

︸ ︷︷ ︸

<− a
2γ̄

e
−aµ̄+ a2

2
1
γ̄

(

1−βe
a2

2γθ

)

<0

+ βEp(µ,γ)

[
∂G

∂γ

]

︸ ︷︷ ︸

≤0

+ β
∂p

∂γ
︸︷︷︸

·

≤p̄γ

∂

∂p
Ep [G (µ+ sε,Γ, f ′)]

︸ ︷︷ ︸

.

O(γx)

Therefore, for γx small enough, the derivative is strictly negative, bounded away from 0. The whole

mapping T pG is thus weakly decreasing in γ.

• Lipschitz in f of constant 1

Pick f1 < f2. This is trivially true:

|T pG (µ, γ, f2)− T pG (µ, γ, f1)| ≤ |[Cp (G)] (µ, γ, f2)− [Cp (G)] (µ, γ, f1)| = |f2 − f1| .

• Convex in µ

Take the second derivative of the continuation value:

∂2

∂µ2
Cp (G) = ae

−aµ+a2

2

(

1
γ
+ 1

γx

)

(

1− βe
a2

2γθ

)

︸ ︷︷ ︸

≥ae−aµ̄+a2

2
1
γ̄

(

1− βe
a2

2γθ

)

︸ ︷︷ ︸

independent ofγx

>0

+ βEp(µ,γ)

[
∂2G

∂µ2

]

︸ ︷︷ ︸

≥0

+β
∂p

∂µ
︸︷︷︸

≤p̄µ

·
∂

∂p
Ep

[
∂

∂µ
G
(
µ+ sε,Γ, f ′

)
]

+ β
∂2p

∂µ2

︸︷︷︸

≤p̄µµ

·
∂2

∂p2
E
[
G
(
µ+ sε,Γ, f ′

)]
.

The claim is proved by showing that the terms ∂
∂pEp

[
∂
∂µG (µ+ sε,Γ, f ′)

]

and ∂2

∂p2
E [G (µ+ sε,Γ, f ′)]

are O (γx). The argument extends the one developed in the proof for monotonicity.

∂2

∂p2
Ep

[
G
(
µ+ sε,Γ, f ′

)]
= −

N̄−1∑

N=1

Π′′
N (p) · (gN+1 − gN ) (µ, γ)

︸ ︷︷ ︸
= O (γx)

=O(γx)

since Π′′
N (p) is a polynomial of degree N̄−2 in p, therefore bounded on [0, 1]. Defining g

(µ)
N (µ, γ) ≡

´

Gµ (µ+ s (N, γ) ε,Γ (N, γ) , f ′) dΦ (ε) dF (f ′), we have

Ep

[
∂

∂µ
G (µ+ sε,Γ, f ′)

]

=

N̄∑

N=1

πN̄
N (p) g

(µ)
N (µ, γ) = g

(µ)

N̄
(µ, γ)−

N̄−1∑

N=1

ΠN (p) ·
(

g
(µ)
N+1 − g

(µ)
N

)

(µ, γ) .

Taking the derivative:

∂

∂p
Ep

[
∂

∂µ
G
(
µ+ sε,Γ, f ′

)
]

= −
N̄−1∑

N=1

Π
′

N (p) ·
(

g
(µ)
N+1 − g

(µ)
N

)

(µ, γ) .
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By a similar argument as before

∣
∣Gµ

(
µ+ s (N + 1, γ) ε,Γ (N + 1, γ) , f ′

)
−Gµ

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)∣
∣

≤ Ḡµµ |ε (s (N + 1, γ)− s (N, γ))|+ Ḡµγ |Γ (N + 1, γ) − Γ (N, γ)| ,

so that

∣
∣
∣

(

g
(µ)
N+1 − g

(µ)
N

)

(µ, γ)
∣
∣
∣ ≤ Ḡµµ |(s (N + 1, γ)− s (N, γ))|+ Ḡµγ |Γ (N + 1, γ)− Γ (N, γ)| = O (γx) .

The whole term Ep

[
∂
∂µG (µ+ sε,Γ, f ′)

]

is thus a O (γx), so for γx small enough, the second deriva-

tive of the continuation value Cp (G) is strictly positive, uniformly bounded away from 0. Convexity

(weak) is thus preserved by the mapping T pG.

• Regularity conditions: continuity, differentiability and boundedness

Skip for now.

• Existence and monotonicity of fc (µ, γ)

The existence of the cutoff is trivially guaranteed by the fact that the continuation utility is linear

in f . Firms invest iff

Cp (G) =
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βE

[
G
(
µ′, γ′, f ′

)]
≤ 0

⇔ f ≤ −
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ (1− β)
1

a
+ βf̄ − βE

[
G
(
µ′, γ′, f ′

)]
≡ fc (µ, γ) .

Notice that fc (µ, γ) = f − [Cp (G)] (µ, γ, f), so that the threshold inherits a number of properties

from the continuation value. In particular, fc (µ, γ) is strictly increasing in µ and γ, strictly concave

in µ for γx small enough.

We now turn to the general equilibrium results. Define the mapping:

Definition 6. Let M be the mapping from p : P −→ P such that

∀ (µ, γ) ∈ S, (Mp) (µ, γ) = F (fp
c (µ, γ))

where fc is defined as

fp
c (µ, γ) = −

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ (1− β)
1

a
+ βf̄ − βE

[
Gp
(
µ′, γ′, f ′

)]

and Gp is the unique fixed point of the mapping

Gp = T pGp.
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Proposition 2 (full). Under assumption 1, 2 and for γx small enough, an equilibrium exists and

is unique, i.e. there exists a unique fixed point p∗ ∈ P such that Mp∗ = p∗. In addition, the

investment decision of firms is characterized by the threshold f∗
c (µ, γ), strictly increasing in µ and

γ.

Proof. Unfortunately for our purpose, the mapping M does not satisfy the Blackwell conditions.

In particular, monotonicity does not obtain under the current assumptions. If p1 (µ, γ) ≤ p2 (µ, γ)

for all (µ, γ) ∈ S, even though the effect on Gpi is small, it is in general ambiguous and I cannot

conclude anything with regard to fp
c . We are still going to show that M defines a contraction from

P to P.

First, let us check that it is a well-defined mapping. Recall the definition of fp
c :

fp
c (µ, γ) = −

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ (1− β)
1

a
+ βf̄ − βE

[
Gp
(
µ′, γ′, f ′

)]

Given that Gp ∈ G, fp
c inherits a number of nice properties: it is twice-continuously differentiable,

with bounded first and second derivatives. Under assumption 2,Mp = F (fp
c ) preserves these

properties. So, M is a well-defined mapping from P to P. TO DO: check that the actual bounds

p̄µ, p̄γ , etc., are consistent with our assumptions on G.

We will now show that M defines a contraction. Take p1, p2 ∈ P. We must first control the

term‖ Gp1 −Gp2 ‖. Start with some G ∈ G, we have:

T piG (µ, γ, f) = max

{

0,
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄

+βEpi

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]}

How does T p2G compare to T p1G? First, remember that using the notation ΠN (p) =
∑N

n=1 π
N̄
n (p)

we can write the following:

Ep

[
G
(
µ+ sε,Γ, f ′

)]
=

N̄∑

N=1

πN̄
N (p)

ˆ

G
(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
dΦ (ε) dF

(
f ′
)

︸ ︷︷ ︸

≡gN (µ,γ)

= gN̄ (µ, γ)−
N̄−1∑

N=1

ΠN (p) · (gN+1 − gN ) (µ, γ)
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so that we can control the term:

∣
∣
∣Ep2

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep1

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

=

∣
∣
∣
∣
∣
∣

N̄−1∑

N=1

[ΠN (p2)−ΠN (p1)] · (gN+1 − gN ) (µ, γ)

∣
∣
∣
∣
∣
∣

≤ γx

(

Ḡµ

(γ + γy)
2 +

Ḡγγ
2
θ

(γθ + γ + γy)
2

)
N̄−1∑

N=1

|ΠN (p2)−ΠN (p1)|

where I have used some results established in proposition 1. The probability ΠN (p) is a polynomial

in p of degree N̄ , it is continuous on the compact [0, 1] and therefore uniformly continuous: ‖

ΠN (p2)−ΠN (p1) ‖≤ BN ‖ p2 − p1 ‖. Therefore, there exists a constant B ≥ 0 such that

∣
∣
∣Ep2

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]

− Ep1

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]∣
∣
∣ ≤ Bγx ‖ p2 − p1 ‖ .

What does it imply for (T p2G− T p1G) (µ, γ, f)? Assume WLOG that

Ep2

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

≥ Ep1

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

.

Then three cases arise:

1. Either the max is reached at 0 for both and (T p2G− T p1G) (µ, γ, f) = 0;

2. Or:

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βEp2

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

> 0

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ f − (1− β)
1

a
− βf̄ + βEp1

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

≤ 0

so that (T p1G) (µ, γ, f) = 0. In that case,

|(T p2G− T p1G) (µ, γ, f)| ≤ β
{

Ep2

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep1

[

G
(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]}

≤ βBγx ‖ p2 − p1 ‖

3. Or, last case, the max is reached on the right-hand side and the inequality directly applies

|(T p2G− T p1G) (µ, γ, f)| ≤ βBγx ‖ N2 −N1 ‖ .

Now, we must find out what happens after a number of iterations. To lighten notation, let us

denote Gi
n ≡ (T pi)nG.
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∣
∣
∣Ep2

[

G2
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep1

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

=
∣
∣
∣Ep2

[

G2
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep2

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

+Ep2

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep1

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

≤ βBγx ‖ p2 − p1 ‖ +
∣
∣
∣Ep2

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− Ep1

[

G1
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

(apply same argument as above)

≤ (1 + β)Bγx ‖ p2 − p1 ‖

Recursively, one can show that for n ≥ 1:

‖ (T p2)nG− (T p1)nG ‖≤ β
1− βn

1− β
Bγx ‖ p2 − p1 ‖

Since operators T pi are contractions, we can take the limit:

‖ Gp2 −Gp1 ‖≤
β

1− β
Bγx ‖ p2 − p1 ‖ . (13)

Now, what does this imply for ‖ fp2
c − fp1

c ‖? Recall the definition of the threshold:

fpi
c (µ, γ) = −

1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ (1− β)
1

a
+ βf̄ − βEpi

[
Gpi

(
µ′, γ′, f ′

)]

Therefore, we have:

|fp2

c (µ, γ)− fp1

c (µ, γ)| = β
∣
∣
∣Ep2

[

Gp2

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]

− Ep1

[

Gp1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]∣
∣
∣

= β
∣
∣
∣Ep2

[

Gp2

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]

− Ep2

[

Gp1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]

+Ep2

[

Gp1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]

− Ep1

[

Gp1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′

)]∣
∣
∣

≤ β

(
β

1− β
Bγx ‖ p2 − p1 ‖ +Bγx ‖ p2 − p1 ‖

)

≤
β

1− β
Bγx ‖ p2 − p1 ‖

The mapping is thus also continuous in fc, since we have:

‖ fp2
c − fp1

c ‖≤
β

1− β
Bγx ‖ p2 − p1 ‖ .
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We just have to conclude now with the mapping M:

|(Mp2 −Mp1) (µ, γ)| = |F (fp2
c (µ, γ))− F (fp1

c (µ, γ))|

=
∣
∣
∣F ′
(

f̃
)

(fp2
c (µ, γ)− fp1

c (µ, γ))
∣
∣
∣

(

for some f̃ ∈ [fp1
c (µ, γ) , fp2

c (µ, γ)]
)

≤
β

1− β
Bγx ‖ F ′ ‖ · ‖ p2 − p1 ‖ .

This tells us that the mapping M is continuous as long as F ′ is bounded, which is guaranteed by

assumption 2. But the best is yet to come: we can choose γx such that

β

1− β
Bγx ‖ F ′ ‖< 1.

In that case, the mapping M is actually a contraction! By the contraction mapping theorem, this

guarantees the existence and uniqueness of the equilibrium N ∗ for small values of γx.

Proposition 3 (full). Under assumption 1, 2 and for γx small enough, there exists a non-empty

interval [µl, µh], such that for all µ ∈ (µl, µh) and for σf low enough, there exists at least two

locally stable stationary points γl (µ) < γh (µ) in the dynamics of γ. Equilibrium γl (resp. γh) is

characterized by high uncertainty (resp. low) and low investment (resp. high).

Proof. Define the function

ϕN
µ (γ) =

(
1

γ + γy +N (µ, γ) γx
+

1

γθ

)−1

− γ.

By continuity of N = N̄ ·p (µ, γ) , ϕN
µ (γ) is a continuous function. Notice first that ϕN

µ (γ) ≥ 0 and

ϕN
µ (γ̄) ≤ 0:

ϕN
µ (γ) =

(
1

γ + γy +N (µ, γ) γx
+

1

γθ

)−1

− γ

≥

(
1

γ + γy
+

1

γθ

)−1

− γ = 0

ϕN
µ (γ̄) =

(
1

γ̄ + γy +N (µ, γ̄) γx
+

1

γθ

)−1

− γ̄

≤

(
1

γ̄ + γy + γx
+

1

γθ

)−1

− γ̄ = 0

We are going to show that when σf is low, there exists a range [µl, µh] such that for any µ∗ ∈ (µl, µh),

we can always find two points γ1 < γ2 with γ1, γ2 ∈ (γ, γ̄) such that ϕN
µ∗ (γ1) < 0 and ϕN

µ∗ (γ2) > 0.

This will imply, by the Intermediate Value Theorem, that there exists two values γ∗l < γ∗h with
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γ ≤ γ∗l < γ1 and γ2 < γ∗h ≤ γ̄ such that ϕN
µ (γ∗l ) = ϕN

µ (γ∗h) = 0, i.e. two distinct stationary points

in the dynamics of precision γ.

An important step in this proof is established in lemma 3 below, where we prove that as σf goes

to 0 the cutoff fσf

c converges uniformly towards some limit f0
c and that the number of investing

firms converges pointwise to the limit N0 (µ, γ) = N̄1I
(
f̄ ≤ f0

c (µ, γ)
)
.

We must first find a range of values for µ in which we are guaranteed to have multiple stationary

points for γ. We are going to use the fact that fσf

c is strictly increasing in µ and γ at a bounded

rate. Recall the definition:

fσf

c (µ, γ) = −
1

a
e
−aµ+ a2

2

(
1
γ
+ 1

γx

)(

1− βe
a2

2γθ

)

+ (1− β)
1

a
+ βf̄ − βEσf

[

Gσf (
µ′, γ′, f ′

)]

.

Since Gσf
has bounded derivatives, we can find upper and lower bounds for the derivatives of fσf

c

in µ and γ that are strictly positive, as long as γx is low enough. Denote these bounds fµ,fµ
and

fγ ,fγ
. The derivatives are:

0 < f
µ
≤

∂

∂µ
fσf

c (µ, γ) = e−aµ+ a2

2 (
1
γ
+ 1

γx
)
(

1− βe
a2

2γθ

)

+ βE

[
∂

∂µ
Gσf

]

+O (γx) ≤ fµ

0 < f
γ
≤

∂

∂γ
fσf

c (µ, γ) =
a

2γ2
e−aµ+ a2

2 (
1
γ
+ 1

γx
)
(

1− βe
a2

2γθ

)

+ βE

[
∂

∂γ
Gσf

]

+O (γx) ≤ fγ

Since f0
c is the uniform limit of continuous functions, it is continuous. The limit f0

c may not be

differentiable, but it is bi-Lipschitz continuous with Lipschitz constants
(

f
µ
, fµ

)

and
(

f
γ
, fγ

)

.

We know therefore that for µ low, f0
c (µ, γ̄) < f̄ (remember that f̄ is the mean of the fixed cost

distribution), and that for µ high, f0
c (µ, γ̄) > f̄ . By the Intermediate Value theorem, we know that

there exists a point µl at which f0
c (µl, γ̄) = f̄ . Since f0

c is strictly increasing in γ, we have that

f0
c (µl, γ) < f̄ . Using the fact that f0

c is bi-Lipschitz continuous, we have the following inequality:

f0
c (µ, γ) ≤ f0

c (µl, γ) + f̄µ · (µ− µl) .

Define µh = µl +
f̄−fc(µl,γ)

f̄µ
> µl. Then, for any µ ∈ (µl, µh):

f0
c (µ, γ) ≤ f0

c (µl, γ) + f̄µ · (µ− µl) < f̄ < f0
c (µ, γ̄) .

We will now show that the interval (µl, µh) is a range of values for µ in which we are guaranteed to

have two steady-states. Pick any µ∗ ∈ (µl, µh). Then f0
c (µ

∗, γ) < f̄ (meaning that N0 (µ∗, γ) = 0)

and f0
c (µ

∗, γ̄) > f̄ (meaning N0 (µ∗, γ̄) = N̄). By continuity of f0
c , we can pick (γ1, γ2) with

γ < γ1 < γ2 < γ̄, such that f0
c (µ

∗, γ1) < f̄ and f0
c (µ

∗, γ2) > f̄ . Therefore, N0 (µ∗, γ1) = 0 and
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N0 (µ∗, γ2) = N̄ . We have:

ϕN0

µ∗ (γ1) =

(
1

γ1 + γy +N0 (µ∗, γ1) γx
+ σ2

θ

)−1

− γ1

=

(
1

γ1 + γy
+ σ2

θ

)−1

− γ1 <

(
1

γ + γy
+ σ2

θ

)−1

− γ = 0

ϕN0

µ∗ (γ2) =

(
1

γ2 + γy +N0 (µ∗, γ2) γx
+ σ2

θ

)−1

− γ2

=

(
1

γ2 + γy + γx
+ σ2

θ

)−1

− γ2 >

(
1

γ̄ + γy + γx
+ σ2

θ

)−1

− γ̄ = 0.

Since Nσf
(µ, γ) −→

σf→0
N0 (µ, γ), for σf small enough, we will have: ϕNσf

µ∗ (γ1) < 0 and ϕNσf

µ∗ (γ2) >

0, which implies that there exists at least two locally stable steady-states γ∗l and γ∗h

(

ϕNσf

µ∗ (γ∗l ) = ϕNσf

µ∗ (γ∗h) = 0
)

with γ ≤γ∗l < γ1 and γ2 < γ∗h ≤ γ̄ (one can pick at least 2 locally stable steady-states because ϕNσf

µ∗

must cross the x -axis from above at least twice).

In what follows, we prove the technical lemma that establishes the continuity of the cutoff fσf

c

in σf .

Lemma 3. As σf → 0, the equilibrium cutoff value fσf

c converges uniformly towards some limit

f0
c :

sup
(µ,γ)∈S

∣
∣
∣fσf

c (µ, γ)− f0
c (µ, γ)

∣
∣
∣ −→
σf→0

0

and the number of investing firms converges pointwise to the following limit:

∀ (µ, γ) , Nσf

(µ, γ) = N̄ · F σf
(

fσf

c (µ, γ)
)

−→
σf→0

N0 (µ, γ) ≡ N̄ · 1I
(
f̄ ≤ f0

c (µ, γ)
)
.

Proof. This proof is similar to the proof of continuity of the mapping T p in p. Since N = N̄p,

we use N and p interchangeably from now on and abuse notation in saying that M is a mapping

for N : N −→ N . Pick two different variances for the fixed cost σf
1 and σf

2 . The notation T N,σf
i

denotes the mapping T for the value function G when N is the aggregate number of investing firms

perceived by agents and the fixed costs are distributed according to F σf
i .

Outline of the proof: Starting with the sane initial aggregate law N , we compare the objects

f
N,σf

1
c and f

N,σf
2

c after the first iteration of the mappings Mσf
1 and Mσf

2 . In a second step, we es-

tablish a recursive relationship to compare the same objects after an arbitrary number of iterations.

We then conclude that the limits of both contractions Nσf
i = lim

n→∞

(

Mσf
i

)n
N produce equilibrium

cutoffs that are close in the following sense:

‖ f
Nσ

f
2 ,σf

2
c − f

Nσ
f
1 ,σf

1
c ‖≤ Ā

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣
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for some strictly positive constant Ā, which suffices to establish the result.

• Start with some functionsG andN , identical for both mappings. Denote G
N,σf

i
n ≡

(

T N,σf
i

)n
G.

Let me prove by recursion that:

∣
∣
∣
∣

(

G
N,σf

2
n −G

N,σf
1

n

)

(µ, γ, f)

∣
∣
∣
∣
≤ β

1− βn

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

This is trivially true for n = 0. Assume it is true for until n ≥ 0, then:

∣
∣
∣
∣

(

G
N,σ

f
2

n+1 −G
N,σ

f
1

n+1

)

(µ, γ, f)

∣
∣
∣
∣

≤ β

∣
∣
∣
∣
E

σ
f
2

[

G
N,σ

f
2

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]

− E
σ
f
1

[

G
N,σ

f
1

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]∣
∣
∣
∣

≤ β

∣
∣
∣
∣
E

σ
f
2

[

G
N,σ

f
2

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]

− E
σ
f
1

[

G
N,σ

f
2

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]∣
∣
∣
∣

+β

∣
∣
∣
∣
E

σ
f
1

[

G
N,σ

f
2

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]

−E
σ
f
1

[

G
N,σ

f
1

n

(
µ+ s (N, γ) ε,Γ (N, γ) , f ′

)
]∣
∣
∣
∣

≤ β

∣
∣
∣
∣

ˆ

(

G
N,σ

f
2

n

(

µ+ s (N, γ) ε,Γ (N, γ) , f̄ + σf
2 υ
)

−G
N,σ

f
2

n

(

µ+ s (N, γ) ε,Γ (N, γ) , f̄ + σf
1υ
))

dΦ(ε) dΦ(υ)

∣
∣
∣
∣

+β × β
1− βn

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤ β

ˆ ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ |υ|dΦ(υ) + β2 1− βn

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ (Lipschitz of constant 1 in f)

≤ β
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+ β2 1− βn

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ = β

1− βn+1

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

which proves the recursion. Taking the limit GN,σf
i = lim

n→∞

(

T N,σf
i

)n
G:

∣
∣
∣GN,σf

2 −GN,σf
1

∣
∣
∣ ≤

β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ . (14)

Let us turn to the equilibrium cutoff rule:

∣
∣
∣
∣
f
N,σ

f
2

c (µ, γ)− f
N,σ

f
1

c (µ, γ)

∣
∣
∣
∣

= β
∣
∣
∣E

σ
f
2

[

GN,σ
f
2

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− E
σ
f
1

[

GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

= β
∣
∣
∣E

σ
f
2

[

GN,σ
f
2

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− E
σ
f
2

[

GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

+E
σ
f
2

[

GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]

− E
σ
f
1

[

GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f
′
)]∣
∣
∣

≤ β

(
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

+

∣
∣
∣
∣

ˆ (

GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f̄ + σf
2 υ
)

−GN,σ
f
1

(

µ+ s (N, γ) ε,Γ (N, γ) , f̄ + σf
1υ
))

dΦ(ε) dΦ(υ)

∣
∣
∣
∣

)

≤ β

(
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ (15)
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Let us now turn to the number of investing firms N . Denote N
σ
f
i

n ≡
(

Mσ
f
i

)n

N .

∣
∣
∣
∣

(

N
σ
f
2

1 −N
σ
f
1

1

)

(µ, γ)

∣
∣
∣
∣
≤ N̄

∣
∣
∣
∣
F σ

f
2

(

f
N,σ

f
2

c (µ, γ)

)

− F σ
f
1

(

f
N,σ

f
1

c (µ, γ)

)∣
∣
∣
∣

≤ N̄

∣
∣
∣
∣
F σ

f
2

(

f
N,σ

f
2

c (µ, γ)

)

− F σ
f
2

(

f
N,σ

f
1

c (µ, γ)

)

+ F σ
f
2

(

f
N,σ

f
1

c (µ, γ)

)

− F σ
f
1

(

f
N,σ

f
1

c (µ, γ)

)∣
∣
∣
∣

where we see that Nσf
2 may not always be close to Nσf

1 under the sup norm. The problem is that

the above expression could be close to 1 for a few of points if σf
i is low and f

N,σf
2

c 6= f
N,σf

1
c . However,

we now show that this is not a problem as they will be close on average. The only thing we need

for the final result is pointwise convergence for N .

•We will now establish a recursive relationship to compare the two objects f
N

σ
f
1

n ,σf
1

c and f
N

σ
f
2

n ,σf
2

c .

Assume that after n iterations of the mapping M, we have two different functions N
σf
2

n and N
σf
1

n

and that

∀ (µ, γ) ,

∣
∣
∣
∣
∣
f
N

σ
f
2

n ,σf
2

c (µ, γ)− f
N

σ
f
1

n ,σf
1

c (µ, γ)

∣
∣
∣
∣
∣
≤ An

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Let us study the following term:

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
2 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
2 −GN

σ
f
2

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
1 −GN

σ
f
1

1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
1 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

(16)

where we have controlled the first term by the same argument as in (14). We need to study the

second term:

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
1 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(

lim
m→∞

(

T N
σ
f
2

n+1
,σ

f
1

)m

G− lim
m→∞

(

T N
σ
f
1

n+1
,σ

f
1

)m

G

)

(µ, γ, f)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(

lim
m→∞

G
N

σ
f
2

n+1
,σ

f
1

m − lim
m→∞

G
N

σ
f
1

n+1
,σ

f
1

m

)

(µ, γ, f)

∣
∣
∣
∣
∣
.

Starting with the first iteration:
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∣
∣
∣
∣
∣

(

G
N

σ
f
2

n+1
,σ

f
1

1 −G
N

σ
f
1

n+1
,σ

f
1

1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣

ˆ

[

G

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]

dΦ(ε) dF σ
f
1
(
f ′
)
∣
∣
∣
∣

≤ β

[
ˆ

[

G

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)]

dΦ(ε) dF σ
f
1

(
f ′
)

+

ˆ

[

G

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]

dΦ(ε) dF σ
f
1
(
f ′
)
∣
∣
∣
∣

≤ β

[
ˆ

Ḡµ |ε|

∣
∣
∣
∣
s

(

N
σ
f
2

n+1, γ

)

− s

(

N
σ
f
1

n+1, γ

)∣
∣
∣
∣
dΦ(ε) dF σ

f
1

(
f ′
)
+

ˆ

Ḡγ

∣
∣
∣
∣
Γ

(

N
σ
f
2

n+1, γ

)

− Γ

(

N
σ
f
1

n+1, γ

)∣
∣
∣
∣
dΦ(ε) dF σ

f
1

(
f ′
)
]

≤ β

[

Ḡµ

∣
∣
∣
∣
s

(

N
σ
f
2

n+1, γ

)

− s

(

N
σ
f
1

n+1, γ

)∣
∣
∣
∣
+ Ḡγ

∣
∣
∣
∣
Γ

(

N
σ
f
2

n+1, γ

)

− Γ

(

N
σ
f
1

n+1, γ

)∣
∣
∣
∣

]

≤ β

(

Ḡµ
∂s

∂N
+ Ḡγ

∂Γ

∂N

) ∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)

(µ, γ)

∣
∣
∣
∣

≤ βBγx

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)

(µ, γ)

∣
∣
∣
∣

where B = 1
γ+γy

(∣
∣Ḡµ

∣
∣+
∣
∣Ḡγ

∣
∣ γθ
)
is a constant similar to the one we used in proposition 2. We

now establish recursively that for m ≥ 2:

∣
∣
∣
∣
∣

(

G
N

σ
f
2

n+1
,σ

f
1

m −G
N

σ
f
1

n+1
,σ

f
1

m

)

(µ, γ, f)

∣
∣
∣
∣
∣
≤ βBγx

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)

(µ, γ)

∣
∣
∣
∣
+ β2 1− βm−1

1− β
Bγx

(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

where constants C and D are those coming from lemma 4 below. Assuming the relationship is true
until m ≥ 2, we have:

∣
∣
∣
∣
∣
∣



G
N

σ
f
2

n+1
,σ

f
1

m+1 −G
N

σ
f
1

n+1
,σ

f
1

m+1



 (µ, γ, f)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

E



G
N

σ
f
2

n+1
,σ

f
1

m −G
N

σ
f
1

n+1
,σ

f
1

m



 (µ, γ, f)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

ˆ



G
N

σ
f
2

n+1
,σ

f
1

m

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G
N

σ
f
1

1
,σ

f
1

m

(

µ + s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
∣

ˆ



G
N

σ
f
2

n+1
,σ

f
1

m

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G
N

σ
f
1

n+1
,σ

f
1

m

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

+β

∣
∣
∣
∣
∣
∣

ˆ



G
N

σ
f
1

n+1
,σ

f
1

m

(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

−G
N

σ
f
1

n+1
,σ

f
1

m

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)


 dΦ (ε) dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

≤ β

ˆ

∣
∣
∣
∣
∣
∣



G
N

σ
f
2

n+1
,σ

f
1

m −G
N

σ
f
1

n+1
,σ

f
1

m





(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)

dΦ (ε)dFσ
f
1

(
f ′
)

∣
∣
∣
∣
∣
∣

+β

ˆ

∣
∣
∣
∣
∣
∣
∣
∣

∂s

∂N
ε
∂G

N
σ
f
1

1
,σ

f
1

1

∂µ
+

∂Γ

∂N

∂G
N

σ
f
1

1
,σ

f
1

1

∂γ

∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣

(

N
σ
f
2

1 −N
σ
f
1

1

)

(µ, γ)

∣
∣
∣
∣ dΦ (ε) dFσ

f
1

(
f ′
)

≤ β

(

βBγx

ˆ

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)(

µ + s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

))∣
∣
∣
∣
dΦ (ε) + β2 1− βm−1

1− β
Bγx

(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

+βBγx

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)

(µ, γ)

∣
∣
∣
∣
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Using lemma 4, we can control the term:

ˆ

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)(

µ+ s

(

N
σ
f
2

n+1, γ

)

ε, γ
′

(

N
σ
f
2

n+1, γ

))∣
∣
∣
∣
dΦ(ε) ≤

(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Therefore:
∣
∣
∣
∣
∣

(

G
N

σ
f
2

n+1
,σ

f
1

m+1 −G
N

σ
f
1

n+1
,σ

f
1

m+1

)

(µ, γ, f)

∣
∣
∣
∣
∣
≤ βB

∣
∣
∣
∣

(

N
σ
f
2

m+1 −N
σ
f
1

m+1

)

(µ, γ)

∣
∣
∣
∣
+ β2 1− βm

1− β
B
(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

which establishes the recursion. Taking the limit as m → ∞:

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
1 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤ βB

∣
∣
∣
∣

(

N
σ
f
2

n+1 −N
σ
f
1

n+1

)

(µ, γ)

∣
∣
∣
∣
+

β2

1− β
B
(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ . (17)

We see that G may not converge pointwise. However, the expectation of G will, which is what we
need for our final result. Going back to equation (16):

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
2 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
2 −GN

σ
f
2

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

(

GN
σ
f
2

n+1
,σ

f
1 −GN

σ
f
1

n+1
,σ

f
1

)

(µ, γ, f)

∣
∣
∣
∣
∣

≤
β

1− β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+ βBγx

∣
∣
∣
∣

(

N
σ
f
2

1 −N
σ
f
1

1

)

(µ, γ)

∣
∣
∣
∣
+

β2

1− β
Bγx

(

AnC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

where I have used equations (14) and (17). Let us turn to the cutoff value:

∣
∣
∣
∣
∣
∣

f
N

σ
f
2

n+1
,σ

f
2

c (µ, γ) − f
N

σ
f
1

n+1
,σ

f
1

c (µ, γ)

∣
∣
∣
∣
∣
∣

= β

∣
∣
∣
∣
∣
E

σ
f
2

[

G
N

σ
f
2

n+1
,σ

f
2

(

µ + s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)]

−E
σ
f
1

[

G
N

σ
f
1

n+1
,σ

f
1

(

µ + s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]∣∣
∣
∣
∣

≤ β

∣
∣
∣
∣
∣
E

σ
f
2

[

G
N

σ
f
2

n+1
,σ

f
2

(

µ + s

(

N
σ
f
2

n+1, γ

)

ε,Γ

(

N
σ
f
2

n+1, γ

)

, f ′

)]

−E
σ
f
2

[

G
N

σ
f
1

n+1
,σ

f
1

(

µ + s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]∣∣
∣
∣
∣

+β

∣
∣
∣
∣
∣
E

σ
f
2

[

G
N

σ
f
1

n+1
,σ

f
1

(

µ+ s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]

−E
σ
f
1

[

G
N

σ
f
1

n+1
,σ

f
1

(

µ + s

(

N
σ
f
1

n+1, γ

)

ε,Γ

(

N
σ
f
1

n+1, γ

)

, f ′

)]∣∣
∣
∣
∣

≤ β

(
β

1− β
+ βBγx

(

AnC +Dσf
1σ

f
2

)

+
β2

1− β
Bγx

(

AnC +Dσf
1σ

f
2

)) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣+ β

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤ β

(
1

1− β
+

β

1− β
Bγx

(

AnC +Dσf
1σ

f
2

)) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

≤

[
β

1− β

(

1 + βγxBDσf
1 σ

f
2

)

+
β2

1− β
γxBCAn

]

︸ ︷︷ ︸

≡An+1

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

This expression defines a recursive relationship:

An+1 =
β

1− β

(

1 + βγxBDσf
1σ

f
2

)

+
β2

1− β
γxBCAn
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which converges to a unique limit Ā as long as β2

1−βγxBC < 1 which is true if γx is chosen sufficiently

small. Taking the limit as n → ∞, we have:

∣
∣
∣
∣
∣
f
Nσ

f
2 ,σf

2
c (µ, γ)− f

Nσ
f
1 ,σf

1
c (µ, γ)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

f
lim
n→∞

N
σ
f
2

n ,σf
2

c (µ, γ)− f
lim
n→∞

N
σ
f
1

n ,σf
1

c (µ, γ)

∣
∣
∣
∣
∣
∣

≤ Ā
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

This tells us that as σf → 0, the equilibrium cutoff converges uniformly to some limit:

∀ (µ, γ) , fNσf
,σf

c (µ, γ) → f0
c (µ, γ) .

Turning to the equilibrium entry schedule, N converges pointwise towards the limit:

∀ (µ, γ) , Nσf
n (µ, γ) = N̄ · F σf

n

(

fNσ
f
n ,σf

n
c (µ, γ)

)

→ N0 (µ, γ) = N̄ · 1I
(
f̄ ≤ f0

c (µ, γ)
)
.

Lemma 4. Suppose two functions f1 and f2 are such that sup |f2 (µ, γ)− f1 (µ, γ)| ≤ A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

for some strictly positive constant A. Assume also that both fi’s are continuous, differentiable and

that ∂fi
∂µ > f

µ
. Then, for N i = N̄F σf

i (fi), there exists two strictly positive constants C and D such

that for i = 1, 2:

ˆ

∣
∣
(
N2 −N1

) (
µ+ s

(
N i, γ

)
ε,Γ

(
N i, γ

))∣
∣ dΦ (ε) ≤

(

AC +Dσf
1σ

f
2

) ∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Proof. Abusing notation slightly with the convention s ≡ s

(

N
σf
i

1 , γ

)

and γ
′

≡ Γ

(

N
σf
i

1 , γ

)

:

ˆ ∣
∣
∣
(
N2 −N1)

(

µ+ s
(

N i, γ
)

ε,Γ
(

N i, γ
))∣
∣
∣ dΦ(ε)

= N̄

ˆ ∣
∣
∣F

σ
f
2

(

f2
(

µ+ sε, γ
′
))

− F σ
f
1

(

f1
(

µ+ sε, γ
′
))∣
∣
∣ dΦ(ε)

≤ N̄

ˆ ∣
∣
∣F

σ
f
2

(

f2
(

µ+ sε, γ
′
))

− F σ
f
2

(

f1
(

µ+ sε, γ
′
))∣
∣
∣ dΦ(ε)

︸ ︷︷ ︸

≡A1

+N̄

ˆ ∣
∣
∣F

σ
f
2

(

f1
(

µ+ sε, γ
′
))

− F σ
f
1

(

f1
(

µ+ sε, γ
′
))∣
∣
∣ dΦ(ε)

︸ ︷︷ ︸

≡A2

Let us take care of the first term:

A1 = N̄

ˆ ∣
∣
∣F

σ
f
2

(

f2
(

µ+ sε, γ
′
))

− F σ
f
2

(

f1
(

µ+ sε, γ
′
))∣
∣
∣ dΦ(ε)

≤ N̄

ˆ [

F σ
f
2

(

f2
(

µ+ sε, γ
′
)

+ A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

− F σ
f
2

(

f2
(

µ+ sε, γ
′
)

− A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)]

dΦ(ε)

using equation (15). f2 is a nicely continuous, differentiable, strictly increasing function of µ, so
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we can proceed to the change of variable x = f2

(

µ+ sε, γ
′
)

:

A1 ≤ N̄

ˆ [

F σ
f
2

(

x+ A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

− F σ
f
2

(

x− A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)] Φ
′ (

(f2)
−1 (x)

)
dx

s · (f2)
′ (
(f2)

−1 (x)
)

︸ ︷︷ ︸

≡dϕ(x)

≤ N̄

ˆ ∞

x=−∞

ˆ x+A
∣

∣

∣σ
f
2
−σ

f
1

∣

∣

∣

f=x−A
∣

∣

∣
σ
f
2
−σ

f
1

∣

∣

∣

dF σ
f
2 dϕ (x) ≤

ˆ ∞

f=−∞

ˆ f+A
∣

∣

∣σ
f
2
−σ

f
1

∣

∣

∣

x=f−A
∣

∣

∣
σ
f
2
−σ

f
1

∣

∣

∣

dF σ
f
2 dϕ (x)

≤ N̄

ˆ ∞

f=−∞

[

ϕ
(

f +A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)

− ϕ
(

f −A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

)]

dF σ
f
2

≤ N̄

ˆ ∞

f=−∞

[

ϕ′
(

f̃
)

2A
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

]

dF σ
f
2 (mean value theorem)

≤ 2AN̄
∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

ˆ ∞

f=−∞

∣
∣
∣ϕ

′
(

f̃
)∣
∣
∣ dF

σ
f
2

≤ A · 2N̄
sup |Φ′|

inf
∣
∣s · (f2)

′
∣
∣

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ ≡ AC

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣

where I have used the fact the cdf of a unit normal Φ is bounded, s ≡ s

(

N
σf
i

1 , γ

)

is uniformly

bounded from below and away from 0, and the derivative of f2 is strictly positive, uniformly

bounded away from 0 for γx small enough. Notice that the upper bound we derived is uniform: it

does not depend on µ, γ, γx, etc. Let us control the second term A2:

A2 = N̄

ˆ ∣
∣
∣F

σ
f
2

(

f1
(

µ+ sε, γ
′
))

− F σ
f
1

(

f1
(

µ+ sε, γ
′
))∣
∣
∣ dΦ(ε)

≤ N̄

ˆ ∣
∣
∣F

σ
f
2 (x)− F σ

f
1 (x)

∣
∣
∣ dϕ (x) (change of variable x = f1

(

µ+ sε, γ
′

)

)

≤ N̄

ˆ

∣
∣
∣
∣
∣
Φ

(

x− f̄

σf
2

)

− Φ

(

x− f̄

σf
1

)∣
∣
∣
∣
∣
dϕ (x) (change of variable x = σf

1σ
f
2 x̃+ f̄)

≤ N̄

ˆ ∣
∣
∣Φ
(

σf
1 x̃
)

− Φ
(

σf
2 x̃
)∣
∣
∣ σ

f
1σ

f
2 dϕ

(

σf
1σ

f
2 x̃+ f̄

)

≤

[

N̄

ˆ ∣
∣
∣Φ

′

(x̂) x̃
∣
∣
∣ dϕ

(

σf
1σ

f
2 x̃+ f̄

)]

σf
1σ

f
2

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ ≡ Dσf

1σ
f
2

∣
∣
∣σ

f
2 − σf

1

∣
∣
∣ .

Proposition 4. The following results hold:

1. The decentralized competitive equilibrium is inefficient. The symmetric, socially efficient al-

location can be implemented with positive investment subsidies τ (µ, γ);

2. When γx and σf are small, the efficient allocation is still subject to uncertainty traps.

Proof. 1. In the limit case where the number of firms is large enough that the approximation

N/N̄ = F (fc) is valid, we can write the planner’s decision as a choice over the optimal cutoff f eff
c
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under which firms should invest:

W (µ, γ) = max
feff
c

N̄

ˆ feff
c

−∞

(

E [u (x)]− f̃
)

dF
(

f̃
)

+ βE
[
W
(
µ′, γ′

)]

s.t µ′ =
γµ+ γyY +NγxX

γ + γy +Nγx

γ′ =

(
1

γ + γy +Nγx
+

1

γθ

)−1

N = N̄F
(

f eff
c

)

The first order condition with respect to the cutoff is

N̄F ′
(

f eff
c

)(

E [u (x)]− f eff
c + β

d

dN
E [W (µ+ s (N, γ) ,Γ (N, γ))]

)

= 0,

so that we can derive an expression for the efficient cutoff:

f eff
c (µ, γ) = E [u (x)] + β

d

dN
E [W (µ+ s (N, γ) ,Γ (N, γ))] .

We show that this optimal cutoff is implementable using investment subsidies τ (µ, γ). Let us

write the problem of firms facing these subsidies:

V τ (µ, γ, f) = max
{
E [u (x)]− f + τ (µ, γ) , βE

[
V τ
(
µ′, γ′, f ′

)]}

which yields the individual cutoff rule fc:

f τ
c (µ, γ) = E [u (x)] + τ (µ, γ)− βE

[
V τ
(
µ′, γ′, f ′

)]
.

To implement the efficient allocation, we must identify the two cutoffs

f τ
c (µ, γ) = f eff

c (µ, γ)

⇔ τ (µ, γ) = β
d

dN
E [W (µ+ s (N, γ) ,Γ (N, γ))]

︸ ︷︷ ︸

information externality

+ βE
[
V τ
(
µ′, γ′, f ′

)]
.

︸ ︷︷ ︸

option value of waiting

(18)

Expression (18) is a functional equation in τ because of the dependence of V τ in τ . We now prove

that this functional equation defines a contraction and therefore that it has a solution, which is

unique. Indeed, this mapping satisfies the Blackwell conditions:

1. Monotonicity: Pick τ1 ≤ τ2, then it is easy to show that the contraction mapping that defines
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V τi preserves the ordering, V τ1 ≤ V τ2 . Thus,

β
d

dN
E [W (µ+ s (N, γ) ε,Γ (N, γ))] + βEV τ1 (µ+ s (N, γ) ε,Γ (N, γ))

≤ β
d

dN
E [W (µ+ s (N, γ) ε,Γ (N, γ))] + βEV τ2 (µ+ s (N, γ) ε,Γ (N, γ)) .

2. Discounting: it is easy to show that V τ+a ≤ V τ + a, then

β
d

dN
E [W (µ+ s (N, γ) ε,Γ (N, γ))] + βEV τ+a (µ+ s (N, γ) ε,Γ (N, γ))

≤ β
d

dN
E [W (µ+ s (N, γ) ε,Γ (N, γ))] + βEV τ (µ+ s (N, γ) ε,Γ (N, γ)) + βa.

Therefore, we can conclude that equation (18) defines a unique set of transfers. By construction,

these transfers implement the efficient allocation. To complete the proof, we are now going to show

that these transfers are positive and non-zero in non-trivial cases. To be more precise, rewrite the

mapping satisfied by these transfers:

τ (µ, γ) = β
d

dN
E
[
W
(
µ′, γ′

)]

︸ ︷︷ ︸

≡A(µ,γ)

+ βE
[
V τ
(
µ′, γ′, f ′

)]

︸ ︷︷ ︸

≡B(µ,γ)

.

Term B is non-negative. In fact, as long as the efficient allocation is not trivial, i.e. that there

exists some (µ, γ, f) at which firms invest (which is guaranteed since f has an unbounded support),

term B (µ, γ) is strictly positive for some (µ, γ).

We now prove that A is non-negative. We want to understand the purely informational impact

on welfare of an exogenous arrival of information. It is useful for our purpose to rewrite the

planner’s problem in a sequential way. A strategy for the planner is a collection of cutoff functions

{f0, f1, . . . , ft, . . .} such that for each date t, ft maps the set of all past histories of signals up to

time t, {Ys,Xs}
t
s=0, to the real line. Pick some date t0. We are going to show that the exogenous

arrival of a signal S of precision γS at date t0 allows the planner to do at least as well as without it,

because of the simple reason that it can simply ignore it. Denote Ft the information set {Ys,Xs}
t
s=0

of the planner at each date without the exogenous signal, and FS
t the information set

{
Ys,X

S
s

}t

s=0

of the planner when the arrival of the exogenous signal is known and anticipated. Let {fc,t} any

strategy considered by the planner without the exogenous signal. Construct the following strategy

for the case with exogenous arrival of information:

∀t < t0, fS
c,t

(
{Ys,Xs}

t
s=0

)
= fc,t

(
{Ys,Xs}

t
s=0

)

∀t ≥ t0, fS
c,t

(
{Ys,Xs}

t
s=0 , S

)
= fc,t

(
{Ys,Xs}

t
s=0

)

so that the two strategies and the information sets Ft and FS
t coincide up to time t0 − 1. After

date t0, strategy fS
c deliberately ignores the new information. Therefore, by the law of iterated

expectations, the two strategies have the same ex-ante payoffs. Welfare can only be increased with
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the arrival of new information, hence term A (µ, γ) is non-negative.

We can now safely conclude that the symmetric, efficient allocation can be implemented with

positive transfers. In non-trivial cases, these transfers are strictly positive, which implies that the

decentralized economy without transfers is in general inefficient.

2. The proof that the efficient allocation is subject to uncertainty traps follows closely that of

the decentralized case. Thus, we only state the major steps of the proof:

• The optimal cutoff for the planner is defined by:

f eff
c (µ, γ) = E [u (x)] + β

d

dN
E [W (µ+ s (N, γ) ,Γ (N, γ))] .

The first step of the proof is to show that d
dNE [W (µ+ s (N, γ) ,Γ (N, γ))] is a O (γx), so that

for γx low enough f eff
c is strictly increasing in µ and γ with derivatives that can be bounded

away from 0;

• In a second step, show that when σf → 0, then f eff,σf

c converges uniformly to some limit

f eff,0
c that is bi-Lipschitz continuous, strictly increasing in µ and γ with derivatives bounded

away from 0. Thus, we have the pointwise limit:

∀ (µ, γ) , N eff,σf

(µ, γ) → N eff,0 (µ, γ) = N̄ · 1I
(

f̄ ≤ f eff,0
c (µ, γ)

)

;

• Conclude identically to proposition 3 that for σf sufficiently small there are at least two

locally stable steady-states in the dynamics of γ.
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