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Abstract

We provide an in�nite-horizon model of a production economy with credit-driven stock-
price bubbles, in which �rms meet stochastic investment opportunities and face endogenous
credit constraints. Firms have limited commitment to repay debt. Credit constraints ensure
that default never occurs in equilibrium. We show that bubbles in �rm value can exist to
relax credit constraints and improve investment e¢ ciency. We provide conditions under
which bubbles can coexist with other types of assets. We show that the collapse of bubbles
leads to a recession and a stock market crash. There is a government policy that can
eliminate bubbles and achieve e¢ cient allocation.
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1 Introduction

This paper provides a theory of credit-driven stock market bubbles. Our theory is motivated

by two observations. First, the United States has experienced stock market booms and busts,

which is di¢ cult to be explained entirely by fundamentals. Second, stock market booms are

often accompanied by credit market booms. This suggests that one possible cause of stock

market bubbles is excessive liquidity in the �nancial system, inducing lax or inappropriate

bank lending standards.1 These two observations are illustrated in Figure 1, which plots the

U.S. historical data of the monthly price-earnings ratio and the credit spread. This �gure shows

that the stock market is highly volatile relative to fundamentals. In addition, there is a positive

comovement between the stock market and the credit market, given that the credit spread is a

good indicator of the credit market conditions (Gilchrist, Yankov, and Zakrajsek (2009)).

The above two observations are seen in many other countries, especially in emerging market

countries. For example, overoptimism in the 1990s towards an �East Asian miracle�generated

high economic growth in East Asian countries. Capital account and �nancial market liberaliza-

tion contributed to large capital in�ows and generated a lending boom. The rapid increase in

asset prices including housing prices and stock prices were accompanied by a large expansion

of domestic credit through under-regulated banking systems (Collyns and Senhadji (2002)).

To formalize our theory, we construct a tractable model of a production economy in which

households are in�nitely lived and trade �rm stocks and household bonds (e.g., private IOUs).

There is no aggregate uncertainty. Households are risk neutral so that the rate of return on

any traded asset is equal to the constant subjective discount rate.2 A continuum of �rms

meet idiosyncratic stochastic investment opportunities as in Kiyotaki and Moore (1997, 2005,

2008). In the baseline model, we suppose that �rms can use internal funds and external

borrowing, but not other sources of funding, to �nance investment. Firms face endogenous

credit constraints, which are modeled in a similar way to Bulow and Rogo¤ (1989), Kehoe

and Levine (1993), Kiyotaki and Moore (1997), Alvarez and Jermann (2000), Albuquerque and

1For example, Axel A. Weber, the former president of the Deutsche Bundesbank, has argued that
�The past has shown that an overly generous provision of liquidity in global �nancial markets in
connection with a very low level of interest rates promotes the formation of asset-price bubbles.�
(http://www.bloomberg.com/apps/news?pid=newsarchive&sid=a5S5Boes29lo)

2These two assumptions are adopted for simplicity. Miao and Wang (2011) introduce a concave utility function
to study sectoral bubbles and endogenous growth. Miao, Wang, and Xu (2012b) study stock market bubbles
and business cycles in a DSGE model with risk-averse households and multiple sources of aggregate shocks.
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Figure 1: The credit spread and the price-earnings ratio. Shaded areas represent NBER re-
cession dates. Source: Board of Governors of the Federal Reserve System and Robert Shiller�s
website: http://www.econ.yale.edu/~shiller/data.htm.

Hopenhayn (2004), and Jermann and Quadrini (2012). The key idea is that borrowers (�rms)

have limited commitment and debt repayments may not be fully enforced.

We consider two mechanisms to enforce debt repayments. First, a �rm must pledge its

physical assets (capital) as collateral. If the �rm does not repay its debt, then it loses its

collateralized assets and the right to run the �rm all to the lender.3 Thus, the collateral value

to the lender is equal to the market value of the �rm with the collateralized assets. The lender

and the �rm will renegotiate the debt such that the debt is limited by this collateral value. We

call the resulting credit constraint the collateral constraint. In the baseline model, we focus on

this type of credit constraint.

Unlike Kiyotaki and Moore (1997) who assume that the market value of the collateral is

equal to the liquidation value of the collateralized assets, we assume that it is equal to the

going-concern value of the reorganized �rm with these assets. Because the going-concern value

is priced in the stock market, it may contain a bubble component. If both the lenders and the

credit-constrained borrowers (�rms in our model) optimistically believe that the collateral value

is high possibly because of bubbles, the borrowers will want to borrow more and the lenders

3 In Section 7.2, we study the case where a fraction of �rm value is used as collateral directly. This does not
change our key insights and results.

2



will not mind lending more. Consequently, �rms can �nance more investment and accumulate

more assets for future production, making their assets indeed more valuable.4 This positive

feedback loop mechanism makes the lenders�and the borrowers�beliefs self-ful�lling and allows

bubbles to exist in equilibrium. We refer to this equilibrium as the bubbly equilibrium.

The second mechanism of enforcing debt repayments is for the �rm to be subject to a

penalty if it does not repay its debt. There is no collateral to guarantee the repayment of

debt. In the event of a default, the �rm is excluded from the �nancial market forever. In

a no-default equilibrium, the continuation value of the �rm must be at least as large as the

outside value on default, which is the autarky value when the �rm uses only internal funds to

�nance investment. We show that no bubble can exist for the �rm after it defaults. We call

the resulting credit constraint the self-enforcing constraint. This constraint e¤ectively imposes

an endogenous debt limit. We show that a bubble can also exist through the positive feedback

loop mechanism discussed earlier. Speci�cally, if people believe that the value of a no-default

�rm contains a bubble, then the bubble helps relax the credit constraint because it reduces the

incentive to default. As a result, the �rm can borrow more to �nance more investment. The

increased investment causes �rm value to go up, justifying initial optimistic beliefs. We show

that the bubbly equilibrium with self-enforcing debt constraints is a special case of the bubbly

equilibrium in the baseline model with collateral constraints in which an empty �rm with zero

assets is pledged as collateral or a bubble is e¤ectively pledged as collateral. This result is

reminiscent to the modeling of credit constraints in Martin and Ventura (2011, 2012).

Of course, there is another equilibrium in which no one believes in bubbles and hence

bubbles do not appear. We call this equilibrium the bubbleless equilibrium. We provide explicit

conditions to determine which type of equilibrium can exist. We prove that the economy has

two steady states: a bubbly one and a bubbleless one. Both steady states are ine¢ cient due to

credit constraints and both are local saddle points. Thus, multiple equilibria in our model are

not generated by indeterminacy as in the literature surveyed by Benhabib and Farmer (1999)

and Farmer (1999). We show that the stable manifold is one-dimensional for the bubbly steady

state, but two-dimensional for the bubbleless steady state. On the former stable manifold,

4Using �rm-level data during the asset price bubble in Japan in the late 1980s, Goyal and Yamada (2004) �nd
that investment responds signi�cantly to stock price bubbles. Using a source of exogenous variation in collateral
value provided by the property market collapse in Japan in the early 1990s, Gan (2007) �nds a large impact of
collateral on the corporate investments of a large sample of Japanese manufacturing �rms. She shows that for
every 10 percent drop in collateral value, the investment rate of an average �rm is reduced by 0.8 percentage
point. Chaney, Sraer, and Thesmar (2009) document similar evidence for the US economy during the 1993-2007
period.
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bubbles persist in the steady state. But on the latter stable manifold, bubbles eventually

burst.5

As Tirole (1982) and Santos and Woodford (1997) point out, it is di¢ cult to generate

rational bubbles for economies with in�nitely lived agents. The intuition is as follows. A

necessary condition for bubbles to exist is that the growth rate of bubbles cannot exceed the

growth rate of the economy. Otherwise, investors cannot a¤ord to buy into bubbles. In a

deterministic economy, bubbles on assets with exogenous payo¤s or on intrinsically useless

assets must grow at the interest rate by the no-arbitrage principle. Thus, the interest rate

cannot exceed the growth rate of the economy. This implies that the present value of aggregate

endowments must be in�nity. In an overlapping generations economy, this condition implies

that the bubbleless equilibrium must be dynamically ine¢ cient (see Tirole (1985)).

In our model, the growth rate of the economy is zero and the interest rate on household

bonds is positive. In addition, the bubbleless equilibrium is dynamically e¢ cient. But how do

we reconcile our result with that in Santos and Woodford (1997) or Tirole (1985)? The key

is that the bubbles in our model are attached to productive assets (capital) with endogenous

payo¤s. A distinguishing feature of our model is that bubbles in �rm value have real e¤ects and

a¤ect �rm dividends. Although a no-arbitrage equation for these bubbles still holds in that the

rate of return on bubbles is equal to the interest rate on household bonds, the growth rate of

bubbles is not equal to this rate. Rather, it is equal to the interest rate minus the �collateral

yield.�The collateral yield comes from the fact that bubbles help relax the collateral constraints

and allow �rms to make more investment.

We extend our analysis to include other types of assets such as intertemporal corporate

bonds, assets with rents (e.g., tree), and assets without rents (pure bubble, e.g., tulip). Suppose

that �rms can trade one of these assets to �nance investment. We study the conditions under

which �rm bubbles (i.e., the �rm�s stock price bubbles) can coexist with other types of assets.

If an asset can play the same role as a �rm bubble in helping �rms �nance investment, then this

asset will generate additional dividends to the �rms, which are identical to the collateral yield.

If, in addition, this asset delivers positive rents, then it dominates a bubble and hence they

cannot coexist in equilibrium. But if this asset is a pure bubble, then it is a perfect substitute

5 In Chapter 14 of Tirole�s (2006) textbook, he shows that there may exist multiple equilibria in a simpli�ed
variant of the Kiyotaki and Moore (1997) model. In contrast to ours, these equilibria are characterized by a
one-dimensional nonlinear dynamical system. Some equilibria may exhibit cycles. The steady states of these
equilibria are not saddle points, unlike in our paper. We would like to thank Jean Tirole for a helpful discussion
on this point.
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for the �rm bubble. Only the total size of the bubble can be determined in equilibrium. For

a �rm bubble to coexist with a corporate bond, the equilibrium interest rate on the corporate

bond must be zero in the steady state. In addition, we need to introduce market frictions

such as short-sales constraints (e.g., Kocherlakota (1992, 2009)). Without market frictions, the

economy would achieve the e¢ cient equilibrium and no bubble would exist.

We also show that if there is economic growth, then corporate bonds with a positive interest

rate can coexist with �rm bubbles, and assets with positive dividends can also coexist with

�rm bubbles provided the dividends grow at a rate lower than the rate of economic growth.

So far, we have only considered deterministic bubbles. Following Blanchard and Watson

(1982) and Weil (1987), we construct a third type of equilibrium with stochastic bubbles in

the baseline model. In this equilibrium, households believe that there is a positive probability

that bubbles will burst at each date. When bubbles burst, they cannot reappear. We show

that when all economic agents believe that the probability that a bubble will burst is small

enough, an equilibrium with stochastic bubbles exists. In contrast to Weil (1987), we show

that after a bubble bursts, a recession occurs in that there is a credit crunch and consumption

and output fall eventually. In addition, immediately after the bubble bursts, investment falls

discontinuously and the stock market crashes, i.e., the stock price also falls discontinuously.

Note that the recession and the stock market crash occur without any exogenous shock to the

fundamentals of the economy.

What is an appropriate government policy in the wake of a bubble collapse? The ine¢ ciency

in our model comes from the �rms�credit constraints. The collapse of bubbles tightens these

constraints and impairs investment e¢ ciency. To overcome this ine¢ ciency, the government

may issue public bonds backed by lump-sum taxes. Both households and �rms can trade these

bonds subject to short-sales constraints. Public bonds serve as a store of value to households

and �rms and also as collateral to �rms. Thus, public assets can help relax collateral constraints

and play the same role as bubbles do. They dominate �rm bubbles. The government constantly

retires public bonds at the interest rate to maintain a constant total bond value and pays the

interest payments of these bonds by levying lump-sum taxes. We show that this policy allows

the economy to achieve the e¢ cient equilibrium.

Some papers in the literature (e.g., Scheinkman and Weiss (1986), Kocherlakota (1992,

2008), Santos and Woodford (1997) and Hellwig and Lorenzoni (2009)) also �nd that in�nite-

horizon models with borrowing constraints may generate rational bubbles. Unlike these papers

which study pure exchange economies, our paper analyzes a production economy. As mentioned
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above, our paper di¤ers from these and the papers cited below in that we focus on bubbles in

stock prices whose payo¤s are endogenously determined by investment and a¤ected by bubbles.6

Our paper is closely related to Caballero and Krishnamurthy (2006), Kocherlakota (2009),

Wang and Wen (2012), Farhi and Tirole (2012), and Martin and Ventura (2011, 2012). Like

our paper, these papers contain the idea that bubbles can help relax borrowing constraints and

improve investment e¢ ciency. Building on Kiyotaki and Moore (2008), Kocherlakota (2009)

studies an economy with in�nitely lived entrepreneurs. These entrepreneurs meet stochastic

investment opportunities and are subject to collateral constraints. Land is used as the col-

lateral. Unlike Kiyotaki and Moore (1997) or our paper, Kocherlakota (2009) assumes that

land is intrinsically useless (i.e. it has no rents or dividends) and cannot be used as input for

production. Wang and Wen (2012) provide a model similar to that in Kocherlakota (2009).

They study asset price volatility and bubbles that may grow on assets with exogenous rents.

They assume that these assets cannot be used as input for production. Our model can also

generate bubbles on intrinsically useless assets as long as these assets can be used to �nance

investment and households face short-sales constraints. The latter assumption is standard in

the literature (e.g., Kocherlakota (1992, 2009) and Wang and Wen (2012)). We show that

bubbles on intrinsically useless assets and bubbles in �rm value are perfect substitutes in our

model.

Building on Diamond (1965) and Tirole (1985), Caballero and Krishnamurthy (2006), Farhi

and Tirole (2012), and Martin and Ventura (2011, 2012) study bubbles in overlapping genera-

tions models with credit constraints. Caballero and Krishnamurthy (2006) show that stochastic

bubbles are bene�cial because they provide domestic stores of value, thereby reducing capital

out�ows while increasing investment. But they come at a cost, as they expose the country to

bubble crashes and capital �ow reversals. Farhi and Tirole (2012) assume that entrepreneurs

may use bubbles and outside liquidity to relax the credit constraints. They study the inter-

play between inside and outside liquidity. Martin and Ventura (2011, 2012) use a model with

bubbles to shed light on the recent �nancial crisis.

Our discussion of government policy is related to that in Caballero and Krishnamurthy

(2006) and Kocherlakota (2009). As in these studies, government bonds can serve as collateral

to help relax credit constraints in our model. Unlike their proposed policies, our proposed

6See Scheinkman and Xiong (2003) and Burnside, Eichenbaum and Rebelo (2011) for models of bubbles
based on heterogeneous beliefs. See Shiller (2005) for a theory of bubbles based on irrational exuberance. See
Brunnermeier (2009) for a survey of various theories of bubbles. See Xiong and Yu (2011) and Jovanovic (2013)
for recent empirical evidence of asset price bubbles.
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policy requires that government bonds be backed by lump-sum taxes and can make the economy

achieve the e¢ cient allocation. Unbacked public assets are intrinsically useless and may have

positive value (a bubble) if households face short-sales constraints. Issuing unbacked public

assets can boost the economy after the collapse of stock price bubbles. But the real allocation

is still ine¢ cient and the bubble on unbacked public assets can also burst. After bursting, the

economy enters a recession again.

The rest of the paper is organized as follows. Section 2 presents a baseline model with

collateral constraints. Section 3 derives the equilibrium system. Section 4 analyzes the bubble-

less equilibrium, while Section 5 analyzes the bubbly equilibrium. Section 6 introduces several

types of assets to the baseline model. Section 7 analyzes a model in which �rm value is used as

collateral and another model with self-enforcing debt constraints. Section 8 studies stochastic

bubbles and government policy. Section 9 concludes. Appendix A contains proofs of results in

the main text. Appendix B provides technical details for Section 7.

2 The Baseline Model

We consider an in�nite-horizon production economy. There is no aggregate uncertainty. Time

is denoted by t = 0; dt; 2dt; 3dt; :::: The length of a time period is dt: For analytical convenience,

we shall take the limit of this discrete-time economy as dt goes to zero when characterizing

equilibrium dynamics. The continuous-time limit is more convenient for analyzing local dy-

namics around a steady state. But the discrete-time setup helps us better understand intuition.

We thus start with the model with discrete-time approximations heuristically, and relegate the

continuous-time formulation to the appendices.

2.1 Households

There is a continuum of identical households of unit mass. Each household is risk neutral and

derives utility from a consumption stream fCtg according to the following utility function:X
t2f0;dt;2dt;:::g

e�rtCtdt;

where r is the subjective rate of time preference.7 Households supply labor inelastically. The

labor supply is normalized to one. Households trade �rm stocks and risk-free household bonds

7 Introducing a general concave utility function allows us to endogenize interest rate, but it makes analysis
more complex. It will not change our key insights though (see Miao and Wang (2011) and Miao, Wang and Xu
(2012b)).
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(e.g., private IOUs). The net supply of household bonds is zero and the net supply of any

stock is one. Because there is no aggregate uncertainty, r is equal to the interest rate on the

household bonds and also to the rate of return on each stock. In Section 7.2, we introduce other

types of assets in the economy. No arbitrage implies that the rate of return on any traded asset

must be equal to r: Households may deposit funds in �nancial intermediaries which make loans

to �rms without frictions.

2.2 Firms

There is a continuum of �rms of unit mass. There is no entry or exit. Firms are indexed by

j 2 [0; 1] : Each �rm j combines labor N j
t and capital K

j
t to produce output according to the

following Cobb-Douglas production function:

Y jt = (K
j
t )
�(N j

t )
1��; � 2 (0; 1) :

After solving the static labor choice problem, we obtain the operating pro�ts

RtK
j
t = max

Nj
t

(Kj
t )
�(N j

t )
1�� � wtN j

t ; (1)

where wt is the wage rate and Rt is given by

Rt = �

�
wt
1� �

���1
�

: (2)

We will show later that Rt is equal to the marginal product of capital in equilibrium.

Following Kiyotaki and Moore (1997, 2005, 2008), we assume that each �rm j meets an

opportunity to invest in capital with probability �dt at time t. With probability 1 � �dt; no
investment opportunity arrives. Thus, capital evolves according to

Kj
t+dt =

(
(1� �dt)Kj

t + I
j
t with probability �dt

(1� �dt)Kj
t with probability 1� �dt

; (3)

where � > 0 is the depreciation rate of capital and Ijt is the investment level. This assumption

captures �rm-level investment lumpiness and generates ex post �rm heterogeneity. Assume that

the arrival of an investment opportunity is independent across �rms and over time. In Section

7.2, we introduce idiosyncratic investment e¢ ciency shocks with a continuous distribution. This

modeling does not change our key insights. In a model without idiosyncratic investment shocks,

Miao andWang (2012a) introduce idiosyncratic productivity shocks and show that credit-driven

bubbles can still emerge. These bubbles help raise total factor productivity endogenously.
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Let the ex ante market value of the �rm prior to the realization of an investment opportunity

shock be Vt(K
j
t ); where we suppress aggregate state variables in the argument. It satis�es the

following Bellman equation:

Vt(K
j
t ) = max

Ijt ;L
j
t

�dt
n
Djt � L

j
t + e

�rdtVt+dt((1� �dt)Kj
t + I

j
t )
o

(4)

+ (1� �dt)
n
RtK

j
t dt+ e

�rdtVt+dt((1� �dt)Kj
t )
o
;

subject to the �ow-of-funds constraints

Djt + I
j
t = RtK

j
t dt+ L

j
t ;

and some constraints on investment to be speci�ed shortly. Here, Djt represents dividends (new

equity) if Djt � (<) 0; RtK
j
t dt represents internal funds, and L

j
t represents loans from �nancial

intermediaries.8 As will be shown in Section 3, the optimization problem in (4) is not well

de�ned if there is no constraint on investment given our assumption of a constant-returns-to-

scale technology. Thus, we impose an upper bound and a lower bound on investment. For

the lower bound, we assume that investment is irreversible in that Ijt � 0: It turns out that

this constraint will never bind in our analysis below. For the upper bound, we assume that

investment is �nanced by internal funds and external borrowing. We also assume that external

equity is so costly that no �rms would raise new equity to �nance investment.9 This means that

Djt � 0: Without a constraint on new equity issuance, �rms can overcome �nancial constraints
and a credit-driven bubble cannot exist.

We now write the investment constraint as

0 � Ijt � RtK
j
t dt+ L

j
t : (5)

In the continuous-time limit as dt ! 0; we have 0 � Ijt � Ljt : For simplicity, we consider

intratemporal loans as in Carlstrom and Fuerst (1997) and Jermann and Quadrini (2012).

These loans are taken at the beginning of the period and repaid at the end of the period

8Note that an invesment opportunity arrives at a Poisson rate. Thus, investment, loans, and dividend
payments are lumpy, but earnings RtK

j
t dt arrive continuously as a �ow.

9This assumption re�ects the fact that external equity �nancing is more costly than debt �nancing. Bernanke
et al. (1999), Carsltrom and Fuerst (1997), and Kiyotaki and Moore (1997) make the same assumption. We can
relax this assumption by allowing �rms to raise a limited amount of new equity. For example, we may replace
(5) with

0 � Ijt � RtK
j
t dt+ �K

j
t + L

j
t ;

where �Kj
t represents the upper bound of new equity. In this case, our analysis and insights still hold with small

modi�cations.
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by selling �rm equity. They do not incur interests.10 After making investment, the �rm�s

market value is e�rdtVt+dt((1� �dt)Kj
t + I

j
t ): The loan repayment is �nanced out of this value.

Speci�cally, the �rm can sell a fraction sjt of equity shares to the market at the end of period

t, where sjt = L
j
t=
h
e�rdtVt+dt((1� �dt)Kj

t + I
j
t )
i
. It then uses the proceeds to repay loans.

The key assumption of our model is that loans are subject to credit constraints. In the

baseline model, we consider the following collateral constraint:

Ljt � e�rdtVt+dt(�K
j
t ): (6)

We interpret this constraint as an incentive constraint in an optimal contract between �rm

j and the lender with limited commitment: Given a history of information at date t; in the

time interval [t; t + dt]; the contract speci�es investments Ijt and loans L
j
t at the beginning of

period t; and repayments Ljt at the end of period t+ dt; only when an investment opportunity

arrives with Poisson probability �dt: When no investment opportunity arrives, the �rm does

not invest and hence does not borrow. Firm j may default on debt at the end of period t. If

it defaults, then the �rm and the lender will renegotiate the loan repayment. In addition, the

lender has the right to reorganize the �rm. Because of default costs, the lender can only seize

a fraction � of capital Kj
t : Alternatively, we may interpret � as an e¢ ciency parameter in that

the lender may not be able to e¢ ciently use the �rm�s assets Kj
t : The lender can run the �rm

with these assets at the beginning of period t+ dt and obtain �rm value e�rdtVt+dt(�K
j
t ). Or

it can sell these assets to a third party at the going-concern value e�rdtVt+dt(�K
j
t ) if the third

party can run the �rm using assets �Kj
t at the beginning of period t + dt. This value is the

threat value (or the collateral value) to the lender at the end of period t. Following Jermann

and Quadrini (2012), we assume that the �rm has all the bargaining power in the renegotiation

and the lender obtains only the threat value. The key di¤erence between our modeling and

that of Jermann and Quadrini (2012) is that the threat value to the lender is the going-concern

value in our model, while Jermann and Quadrini (2012) assume that the lender liquidates the

�rm�s assets and obtains the liquidation value in the event of default.11

Enforcement requires that, when an investment opportunity arrives at date t; the continua-

tion value to the �rm of not defaulting be no smaller than the continuation value of defaulting,

10 In Section 6.1, we incorporate intertemporal bonds and allow �rms to save. We show that our key insights
and analysis carry over to this setup.
11U.S. bankruptcy law has recognized the need to preserve the going-concern value when reorganizing busi-

nesses in order to maximize recoveries by creditors and shareholders (see 11 U.S.C. 1101 et seq.). Bankruptcy
laws seek to preserve going concern value whenever possible by promoting the reorganization, as opposed to the
liquidation, of businesses.
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that is,

e�rdtVt+dt((1� �dt)Kj
t + I

j
t )� L

j
t

� e�rdtVt+dt((1� �dt)Kj
t + I

j
t )� e�rdtVt+dt(�K

j
t ): (7)

This incentive constraint is equivalent to the collateral constraint in (6). This constraint ensures

that there is no default in an optimal contract. The �rm repays loans using funds from sales

of its equity and hence its market value is reduced by Ljt :

In the continuous-time limit, the collateral constraint becomes

Ljt � Vt(�K
j
t ): (8)

Note that our modeling of the collateral constraint is di¤erent from that of Kiyotaki and Moore

(1997). We may write the Kiyotaki-Moore-type collateral constraint in our continuous-time

framework as

Ljt � �QtK
j
t ; (9)

where Qt represents the shadow price of capital. The expression �QtK
j
t is the shadow value

of the collateralized assets or the liquidation value.12 In Section 5, we shall argue that this

type of collateral constraint will rule out bubbles. By contrast, according to (6), we allow

the collateralized assets to be valued in the stock market as the going-concern value when the

�rm is reorganized and kept running using the collateralized assets after default. If both the

�rm and the lender believe that the �rm�s assets are overvalued due to stock market bubbles,

then these bubbles will help relax the collateral constraint, providing a positive feedback loop

mechanism.

2.3 Competitive Equilibrium

Let Kt =
R 1
0 K

j
t dj; It; Nt =

R 1
0 N

j
t dj; and Yt =

R 1
0 Y

j
t dj denote the aggregate capital stock,

average investment of �rms with investment opportunities, the aggregate labor demand, and

aggregate output, respectively. Then a competitive equilibrium is de�ned as sequences of

fYtg ; fCtg ; fKtg, fItg ; fNtg ; fwtg ; fRtg ; fVt(Kj
t )g; fI

j
t g; fK

j
t g; fN

j
t g and fL

j
tg such that

12Note that our model di¤ers from the Kiyotaki and Moore model in market arrangements, besides other
speci�c modeling details. Kiyotaki and Moore assume that there is a market for physical capital (corresponding
to land in their model), but there is no stock market for trading �rm shares. In addition, they assume that
households and entrepreneurs own �rms and trade physical capital in the capital market. By contrast, we assume
that households trade �rm shares in the stock market and that �rms own physical capital and make investment.
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households and �rms optimize and markets clear in that:

Nt = 1;

Ct + �It = Yt;

Kt+dt = (1� �dt)Kt + �Itdt:

3 Equilibrium System

We �rst solve an individual �rm�s optimal contract problem (4) subject to (3), (5), and (6)

when the wage rate wt or Rt in (2) is taken as given. This problem does not give a contraction

mapping and hence may admit multiple solutions. We conjecture that the ex ante �rm value

takes the following form:

Vt(K
j
t ) = vtK

j
t + bt; (10)

where vt and bt are to be determined and depend on aggregate states only. Note that bt = 0

is a possible solution. In this case, we may interpret vtK
j
t as the fundamental value of the

�rm. The fundamental value is proportional to the �rm�s assets Kj
t ; which has the same form

as that in Hayashi (1982). Intuitively, the �rm has no fundamental value if it has no assets

(Kj
t = 0): There may be another solution in which bt > 0 is generated from optimistic beliefs.

13

In this case, we interpret bt as a bubble since the �rm is still valued at bt even when there is

no market fundamental, i.e., Kj
t = 0: In Section 7.2, we show that when an intrinsically useless

asset is traded in the market, its price and bt follow the same asset pricing equation (i.e., they

are perfect substitutes), further justifying our interpretation of bt as a bubble. Alternatively,

one can interpret bt as a sunspot or speculative component in �rm value, which depends on

people�s beliefs.14

Let Qt be the Lagrange multiplier associated with constraint (3) if an investment oppor-

tunity arrives. It represents the shadow price of capital or Tobin�s marginal Q. The following

result characterizes �rm j�s optimization problem:
13Firms are subject to idiosyncratic investment e¢ ciency shocks and are ex ante identical. Thus, bt in ex ante

�rm value does not depend on �rm-speci�c characteristics.
14According to the standard de�nition for exchange economies, a bubble is equal to the di¤erence between the

market value of an asset and the present value of the asset�s exogenously given dividends. It is subtle to apply
this de�nition to our model since dividends are endogenously generated through investment and production
in our model. Bubbles can help �rms make more investment and hence generate additional dividends. One
criticism of the standard test for bubbles is that it is hard to separate bubbles from fundamentals in the data
(see Gurkaynak (2008)). If one insists on the traditional de�nition of bubbles, one can call bt the sunspot,
self-ful�lling or speculative component without a¤ecting our results. In a Bayesian DSGE model, Miao, Wang,
and Xu (2012b) show that the �uctuations of this component can help explain the stock market volatility and
the comovement between the stock market and real quantities.
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Proposition 1 Suppose Qt > 1 and let wt be given. Then the optimal investment level when

an investment opportunity arrives is given by

Ijt = RtK
j
t dt+ �QtK

j
t +Bt; (11)

where Rt is given by (2) and

Bt = e�rdtbt+dt; (12)

Qt = e�rdtvt+dt: (13)

In addition,

vt = Rtdt+ (1� �dt)Qt + (Qt � 1) (Rtdt+ �Qt)�dt; (14)

bt = Bt + (Qt � 1)Bt�dt; (15)

and the following transversality conditions hold:

lim
T!1

e�rTdtQTK
j
T+dt = 0, lim

T!1
e�rTdtbT = 0:

The intuition behind this proposition is as follows. When an investment opportunity arrives,

an additional unit of investment costs the �rm one unit of the consumption good, but generates

an additional value of Qt; where Qt satis�es (13). This equation and equation (10) reveal that

Qt = e
�rdt@Vt+dt (Kt+dt)

@Kt+dt
:

Thus, Qt represents the marginal value of the �rm following a unit increase in capital at time

t + dt in time-t dollars, i.e., Tobin�s marginal Q: If Qt > 1; the �rm will make the maximal

possible level of investment. If Qt = 1; the investment level is indeterminate. If Qt < 1; the

�rm will make the minimal possible level of investment. This investment choice is similar to

Tobin�s Q theory (Tobin (1969) and Hayashi (1982)). In what follows, we impose assumptions

to ensure Qt > 1 at least in the neighborhood of the steady state equilibrium. We thus obtain

the investment rule given in (11). Substituting this rule and equation (10) into the Bellman

equation (4) and matching coe¢ cients, we obtain equations (14) and (15).

More speci�cally, we rewrite the �rm�s problem explicitly as:

vtK
j
t + bt = max

Ijt

RtK
j
t dt� �I

j
t dt+ e

�rdtvt+dt| {z }
Qt

�Ijt dt

+e�rdtvt+dt| {z }
Qt

(1� �dt)Kj
t + e

�rdtbt+dt| {z }
Bt

;
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subject to

Ijt � RtK
j
t dt+ e

�rdtVt+dt(�K
j
t ) = RtK

j
t dt+ e

�rdtvt+dt| {z }
Qt

�Kj
t + e

�rdtbt+dt| {z }
Bt

:

The expectation of a higher future �rm value due to a bubble bt+dt > 0 allows the borrowing

constraint to be relaxed. Thus, bubbles are accompanied by a credit boom, leading the �rm to

make more investments by Bt = e�rdtbt+dt. This raises �rm value by � (Qt � 1)Btdt if Qt > 1
and supports the in�ated market value of assets in the sense that bt > 0 must satisfy (15). This

positive feedback loop mechanism generates a stock-price bubble bt > 0 or Bt > 0 for all t.

Although our model features a constant-returns-to-scale technology, marginal Q is not equal

to average Q in the presence of bubbles, because average Q is equal to

e�rdtVt+dt (Kt+dt)

Kt+dt
= Qt +

Bt
Kt+dt

; for Bt 6= 0:

Thus, the existence of stock price bubbles invalidates Hayashi�s (1982) result. In the empir-

ical investment literature, researchers typically use average Q to replace marginal Q under

the constant-returns-to-scale assumption because marginal Q is not observable. Our analysis

demonstrates that the existence of collateral constraints implies that stock prices may contain

a bubble component that makes marginal Q not equal to average Q:

Next, we aggregate individual �rm�s decision rules and impose market-clearing conditions.

We then characterize a competitive equilibrium by a system of nonlinear di¤erence equations:

Proposition 2 Suppose Qt > 1: Then the equilibrium sequences (Bt; Qt;Kt) ; for t = 0; dt;

2dt; :::; satisfy the following system of nonlinear di¤erence equations:

Bt = e
�rdtBt+dt[1 + �(Qt+dt � 1)dt]; (16)

Qt = e
�rdt [Rt+dtdt+ (1� �dt)Qt+dt + (�Qt+dt +Rt+dtdt) (Qt+dt � 1)�dt] ; (17)

Kt+dt = (1� �dt)Kt + � (RtKtdt+ �QtKt +Bt) dt; K0 given, (18)

and the transversality condition:

lim
T!1

e�rTdtQTKT+dt = 0, lim
T!1

e�rTdtBT = 0;

where Rt = �K��1
t :
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When dt = 1, the above system reduces to the usual discrete-time characterization of equi-

librium. However, this system is not convenient for analytically characterizing local dynamics.

We may solve this system numerically by assigning parameter values. Instead of pursuing this

route, we use analytical methods in the continuous-time limit as dt goes to zero. To compute

the limit, we use the heuristic rule dXt = Xt+dt � Xt for any variable Xt: We also use the
notation _Xt = dXt=dt: We obtain the following:

Proposition 3 Suppose Qt > 1: Then in the continuous-time limit as dt! 0; the equilibrium

dynamics (Bt; Qt;Kt) satisfy the following system of di¤erential equations:

_Bt = rBt �Bt�(Qt � 1); (19)

_Qt = (r + �)Qt �Rt � ��Qt(Qt � 1); (20)

_Kt = ��Kt + �(�QtKt +Bt); K0 given, (21)

and the transversality condition:

lim
T!1

e�rTQTKT = 0, lim
T!1

e�rTBT = 0;

where Rt = �K��1
t . In addition, Qt = vt and Bt = bt so that the market value of �rm j is

given by Vt(K
j
t ) = QtK

j
t +Bt:

Equation (19) is an asset pricing equation for the bubble which will be explained in Section

5. Equation (20) is an asset pricing equation for capital. It says that the return on a unit

of capital rQt is equal to the sum of the marginal product of capital Rt, the additional value

generated from new investment �(Rt+ �Qt)(Qt� 1); and capital gains, minus the depreciation
�Qt: Equation (21) gives the law of motion for the aggregate capital stock.

After obtaining the solution for (Bt; Qt;Kt) ; we can derive the equilibrium wage rate wt =

(1� �)K�
t , marginal product of capital Rt = �K��1

t ; aggregate output Yt = K�
t ; aggregate

investment,

�It = � (�QtKt +Bt) ; (22)

and aggregate consumption Ct = Yt � �It: We focus on two types of equilibrium.15 The �rst
type is bubbleless, for which Bt = 0 for all t: In this case, the market value of �rm j is equal

to its fundamental value in that Vt(K
j
t ) = QtK

j
t . The second type is bubbly, for which Bt > 0

15We focus on the case where either all �rms have bubbles in their stock prices or no �rms have bubbles. It is
possible to have another type of equilibrium in which only a fraction of �rms have bubbles in their stock prices.
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for some t: We assume that assets can be freely disposed of so that the bubbles Bt cannot be

negative. In this case, �rm value contains a bubble component in that Vt(K
j
t ) = QtK

j
t + Bt

with Bt > 0: We next study these two types of equilibrium.

4 Bubbleless Equilibrium

In a bubbleless equilibrium, Bt = 0 for all t: Equation (19) becomes an identity. We only need

to focus on (Qt;Kt) determined by the di¤erential equations (20) and (21) in which Bt = 0 for

all t.

We �rst analyze the steady state. In the steady state, all aggregate variables are constant

over time so that _Qt = _Kt = 0. We use X to denote the steady state value of any variable Xt:

By (20) and (21), we obtain the following steady-state equations:

_Q = 0 = (r + �)Q�R� ��Q(Q� 1); (23)

_K = 0 = ��K + �(�QK); (24)

where R = �K��1: We use a variable with an asterisk to denote its value in the bubbleless

equilibrium. Solving equations (23)-(24) yields:

Proposition 4 (i) If

� � �

�
; (25)

then there exists a unique bubbleless steady state equilibrium with Q�t = QE � 1 and K�
t = KE ;

where KE is the e¢ cient capital stock satisfying �(KE)��1 = r + �:

(ii) If

0 < � <
�

�
; (26)

then there exists a unique bubbleless steady-state equilibrium with

Q� =
�

�

1

�
> 1; (27)

� (K�)��1 =
r�

��
+ �: (28)

In addition, K� < KE :

Assumption (25) says that if �rms pledge su¢ cient assets as collateral, then the collateral

constraints will not bind in equilibrium. The competitive equilibrium allocation is the same

as the e¢ cient allocation. The e¢ cient allocation is achieved by solving a social planner�s
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problem in which the social planner maximizes the representative household�s utility subject to

the resource constraint only. Note that we assume that the social planner also faces stochastic

investment opportunities, like �rms in a competitive equilibrium. Thus, one may view our

de�nition of the e¢ cient allocation as the constrained e¢ cient allocation. Unlike �rms in a

competitive equilibrium, the social planner is not subject to collateral constraints.

Assumption (26) says that if �rms do not pledge su¢ cient assets as collateral, then the

collateral constraints will be su¢ ciently tight so that �rms are credit constrained in the neigh-

borhood of the steady-state equilibrium in which Q� > 1. We can then apply Proposition

3 in this neighborhood. Proposition 4 also shows that the steady-state capital stock for the

bubbleless competitive equilibrium is less than the e¢ cient steady-state capital stock. This

re�ects the fact that not enough resources are transferred from savers to investors due to the

collateral constraints.

Note that for (26) to hold, the arrival rate � of the investment opportunity must be su¢ -

ciently small, holding everything else constant. The intuition is that if � is too high, then too

many �rms will have investment opportunities so that the accumulated aggregate capital stock

will be su¢ ciently large, thereby lowering the capital price Q to the e¢ cient level as shown in

part (i) of Proposition 4. In this case, �rms can accumulate su¢ cient internal funds and do not

need external �nancing. Thus, the collateral constraints will not bind and the economy will

reach the �rst best. Condition (26) requires that technological constraints at the �rm level be

su¢ ciently tight.

Now, we study the stability of the bubbleless steady state and the dynamics of the equilib-

rium system. We use the phase diagram in Figure 2 to describe the two-dimensional dynamic

system for (Qt;Kt) : The _Q = 0 locus and the _K = 0 locus intersect once at the bubbleless

steady state by Proposition 4. It is straightforward to show that the _K = 0 locus is vertical

(24). To the right of this locus, _K > 0, and to the left of this locus _K < 0: The intuition is

that to right of the _K = 0 locus, Q is large for a given capital stock. Firms prefer to invest

more so that capital rises.

Turning to the _Q = 0 locus, one can verify that on the _Q = 0 locus, dK=dQjQ!1 < 0 and
dK=dQjQ!1 > 0: But for general values of Q > 1, we cannot determine the sign of dK=dQ:

We can show that, above the _Q = 0 locus, _Q > 0; and below the _Q = 0 locus, _Q < 0: The

intuition is that above the _Q = 0 locus, the capital stock is high for a �xed Q: This implies that

the marginal product of capital is low. To maintain the return on capital in the asset pricing

equation (20), the price of capital Q must rise. In summary, there are two cases depending on
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Figure 2: Phase diagram for the dynamics of the bubbleless equilibrium. The left (right) panel
illustrates the case in which the _Q = 0 locus crosses the _K = 0 from above (below).

whether the _Q = 0 locus crosses the _K = 0 locus from below or from above, as illustrated in

Figure 2. For both cases, there is a unique saddle path such that for any given initial value K0;

when Q0 is on the saddle path, the economy approaches the long-run steady state (Q�;K�).16

5 Bubbly Equilibrium

In this section, we study the bubbly equilibrium in which Bt > 0 for all t:We shall analyze the

dynamic system for (Bt; Qt;Kt) given in (19)-(21). Before we conduct a formal analysis later,

we �rst explain why bubbles can exist in our model. The key lies in understanding equation

(19), rewritten here as
_Bt
Bt
+ �(Qt � 1) = r; for Bt 6= 0: (29)

The �rst term on the left-hand side is the rate of capital gains of bubbles. The second term

represents a �collateral yield,� as we will explain below. Thus, equation (19) or (29) re�ects

a no-arbitrage relation in that the rate of return on bubbles must be equal to the interest

rate. A similar relation also appears in the literature on rational bubbles, e.g., Blanchard

and Watson (1982), Tirole (1985), and Weil (1987). This literature typically studies bubbles

on zero-payo¤ assets or unproductive assets with exogenously given payo¤s. In this case, the

16A formal proof is available upon request.
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second term on the left-hand side of (29) vanishes and bubbles grow at the rate r of interest on

the household bonds. If we adopt collateral constraint (9) as in Kiyotaki and Moore (1997), then

we can also show that bubbles grow at the rate of interest r. In an in�nite-horizon economy,

the transversality condition rules out these bubbles. In an overlapping generations economy,

for bubbles to exist, the interest rate must be less than the growth rate of the economy in

the bubbleless equilibrium. This means that the bubbleless equilibrium must be dynamically

ine¢ cient (see Tirole (1985)).

In line with this literature, equation (16) reveals that the existence of a bubble today

(Bt > 0) in our model depends on people�s expectations that it will be valuable in the future

(i.e., Bt+dt > 0). If the bubble is expected to burst in the future (Bt+dt = 0), then it has no

value today (Bt = 0). Unlike this literature, bubbles in our model are attached to productive

real assets and also in�uence their fundamentals (or dividends). Speci�cally, each unit of a

bubble raises the collateral value by one unit and hence allows the �rm to borrow an additional

unit. The �rm then makes one more unit of investment when an investment opportunity

arrives. This unit of investment raises �rm value by Qt > 1: Subtracting one unit of costs, we

then deduce that the second term on the left-hand side of (29) represents the net increase in

�rm value for each unit of a bubble. This is why we call this term the collateral yield. The

collateral yield causes the growth rate of bubbles to be lower than the interest rate. Thus,

the transversality conditions cannot rule out bubbles in our model. We can also show that the

bubbleless equilibrium is dynamically e¢ cient in our model. Speci�cally, the golden rule capital

stock is given by KGR = (�=�)
1

��1 : One can verify that K� < KGR: Thus, one cannot use the

condition for the overlapping generations economies in Tirole (1985) to ensure the existence of

bubbles. Next, we will give new conditions to ensure the existence of bubbles in our model.

5.1 Steady State

We �rst study the existence of a bubbly steady state in which B > 0: We use a variable with a

subscript b to denote this variable�s bubbly steady state value. By Proposition 3, (B;Qb;Kb)

satis�es equations (23),

0 = rB �B�(Q� 1); and (30)

0 = ��K + [�QK +B]�; (31)

where R = �K��1: Using these equations, we can derive:
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Proposition 5 There exists a bubbly steady state satisfying

B

Kb
=
�

�
� �( r

�
+ 1) > 0; (32)

Qb =
r

�
+ 1 > 1; (33)

� (Kb)
��1 = [(1� �)r + �]( r

�
+ 1); (34)

if and only if the following condition holds:

0 < � <
�

r + �
: (35)

In addition, (i) Qb < Q�; (ii) KGR > KE > Kb > K�, and (iii) the bubble-asset ratio B=Kb

decreases with �:

From equations (23), (30) and (31), we can immediately derive (32)-(34). We can then

immediately see that condition (35) is equivalent to B=Kb > 0. This condition reveals that

bubbles occur when � is su¢ ciently small, ceteris paribus.17 The intuition is as follows. When

the degree of pledgeability is su¢ ciently low, the credit constraint is too tight and a bubble can

help relax this constraint. This allows �rms to borrow more and invest more. If the collateral

constraint is not tight enough, �rms can borrow su¢ cient funds to �nance investment. In this

case, a bubble serves no function.

Note that condition (35) implies condition (26). Thus, if condition (35) holds, then there

exist two steady state equilibria: one bubbleless and the other bubbly. The bubbleless steady

state is analyzed in Proposition 4. Propositions 5 and 4 reveal that the steady-state capital

price is lower in the bubbly equilibrium than in the bubbleless equilibrium, i.e., Qb < Q�. The

intuition is as follows. In a bubbleless or a bubbly steady state, the investment rate must

be equal to the rate of capital depreciation such that the capital stock is constant over time

(see equations (24) and (31)). Bubbles help relax collateral constraints and induce �rms to

make more investment than in the case without bubbles. To maintain the same steady-state

investment rate, the capital price in the bubbly steady state must be lower than that in the

bubbleless steady state.

Do bubbles crowd out capital in the steady state? In Tirole�s (1985) overlapping generations

model, households may use part of their savings to buy bubble assets instead of accumulating

17This result depends on our modeling of idiosyncratic investment opportunity shocks. In Section 7.2, we show
that bubbles in stock prices can exist even for � = 1 when �rms face idiosyncratic investment e¢ ciency shocks
with a continuous distribution.
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capital. Thus, bubbles crowd out capital in the steady state. In our model, bubbles are on

productive assets. If the capital price were the same for both bubbly and bubbleless steady

states, then bubbles would induce �rms to invest more and hence to accumulate more capital

stock. However, there is a general equilibrium price feedback e¤ect as discussed earlier. The

lower capital price in the bubbly steady state discourages �rms to accumulate more capital

stock. The net e¤ect is that bubbles lead to higher capital accumulation, unlike Tirole�s (1985)

result. Note that bubbles do not lead to e¢ cient allocation. The capital stock in the bubbly

steady state is still lower than that in the e¢ cient allocation.

How does the pledgeability parameter � a¤ect the size of bubbles? Proposition 5 shows that

a smaller � leads to a larger bubble relative to capital in the steady state. This is intuitive. If

�rms can only pledge a smaller amount of assets, they will face a tighter collateral constraint

so that a larger bubble is needed to relax this constraint.

5.2 Dynamics

Now, we study the stability of the two steady states and the local dynamics around them.

Since the equilibrium system (19)-(21) is three dimensional, we cannot use the phase diagram

to analyze its stability. We thus consider a linearized system and obtain the following:

Proposition 6 Suppose condition (35) holds. Then both the bubbly steady state (B;Qb;Kb)

and the bubbleless steady state (0; Q�;K�) are local saddle points for the nonlinear system (19)-

(21).

More formally, in Appendix A, we prove that for the nonlinear system (19)-(21), there is a

neighborhood N � R3+ of the bubbly steady state (B;Qb;Kb) and a continuously di¤erentiable
function � : N ! R2 such that given any K0 there exists a unique solution (B0; Q0) to the

equation � (B0; Q0;K0) = 0 with (B0; Q0;K0) 2 N ; and (Bt; Qt;Kt) converges to (B;Qb;Kb)
starting at (B0; Q0;K0) as t approaches in�nity. The set of points (B;Q;K) satisfying the

equation � (B;Q;K) = 0 is a one-dimensional stable manifold of the system. If the initial

value (B0; Q0;K0) is on the stable manifold, then the solution to the nonlinear system (19)-

(21) is also on the stable manifold and converges to (B;Qb;Kb) as t approaches in�nity.

Although the bubbleless steady state (0; Q�;K�) is also a local saddle point, the local

dynamics around this steady state are di¤erent. In Appendix A, we prove that the stable

manifold for the bubbleless steady state is two dimensional. Formally, there is a neighborhood

N � � R3+ of (0; Q�;K�) and a continuously di¤erentiable function �� : N � ! R such that
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given any (B0;K0) there exists a unique solution Q0 to the equation �� (B0; Q0;K0) = 0 with

(B0; Q0;K0) 2 N ; and (Bt; Qt;Kt) converges to (0; Q�;K�) starting at (B0; Q0;K0) as t ap-

proaches in�nity. Intuitively, along the two-dimensional stable manifold, the bubbly equilibrium

is asymptotically bubbleless in that bubbles will burst eventually.

6 Alternative Assets

So far, we have assumed that there are two types of assets for households to trade without

frictions: risk-free household bonds and stocks. But �rms cannot trade household bonds and

can only take intratemporal loans subject to credit constraints. In this section, we introduce

other types of assets and study the conditions under which a bubble can exist in the presence

of di¤erent types of assets. We �rst consider intertemporal corporate bonds in Section 6.1.

We then consider assets with rents and assets with a zero market fundamental in Section 6.2.

The latter assets can be thought of as pieces of paper, or pure bubbles. It is important to

note that no arbitrage implies that all traded assets must earn the same rate of return r in

equilibrium since there is no aggregate uncertainty in the economy. We shall show that both

households and �rms must face market frictions for a bubble to exist in an in�nite-horizon

economy. A similar point is made by Kocherlakota (1992, 2009) and Santos and Woodford

(1997) for pure-exchange economies.

6.1 Intertemporal Borrowing and Savings

Suppose that there is no intratemporal loan. But �rms can borrow or save by selling or buying

intertemporal bonds, respectively. Firms can use these bonds to �nance investments subject to

credit constraints. These bonds are in zero net supply. Households can also trade these bonds,

but are subject to borrowing or short-sales constraints. We may reinterpret the corporate bonds

as a bank account. Both households and �rms can borrow from or save in it. We will show

below that, without household borrowing constraints, no arbitrage implies that the economy

would achieve the e¢ cient equilibrium and no bubble could exist.

We will derive an equilibrium in which �rms with investment opportunities choose to bor-

row, �rms without investment opportunities choose to save, and households are borrowing

constrained. We will also show that the equilibrium interest rate on the corporate bonds is less

than r; because these bonds provide liquidity to the �rms and demand a liquidity premium.

We will still analyze a discrete-time approximation and then study its continuous-time limit.
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Let the interest rate on the corporate bonds between time t and t+dt be rftdt. Let Lht denote

households�bond holdings. The short-sales constraint for the households is given by Lht � 0

for all t: Let Ljt denote �rm j�s debt level. When Ljt < 0; L
j
t means savings. Let Vt

�
Kj
t ; L

j
t

�
denote the ex ante equity value of a typical �rm j when its capital stock and debt at time t

are Kj
t and L

j
t , respectively, prior to the realization of the investment opportunity shock. We

suppress the aggregate state variables in the argument. Then Vt satis�es the following Bellman

equation:

Vt

�
Kj
t ; L

j
t

�
= �dt max

Ljt+dt;I
j
t�0

n
Djt + e

�rdtVt+dt(K
j
t+dt; L

j
t+dt)

o
(36)

+(1� �dt) max
Ljt+dt

n
Djtdt+ e

�rdtVt+dt((1� �dt)Kj
t ; L

j
t+dt)

o
;

where the �rst max operator is subject to the constraints

Djt + I
j
t + L

j
t = RtK

j
t dt+ e

�rftdtLjt+dt; (37)

Kj
t+dt = K

j
t (1� �dt) + I

j
t ; (38)

Vt+dt(K
j
t+dt; L

j
t+dt) � Vt+dt

�
Kj
t+dt; 0

�
� Vt+dt(�Kj

t+dt; 0); (39)

and the second max operator is subject to the constraint18

Djtdt+ L
j
t = RtK

j
t dt+ e

�rftdtLjt+dt: (40)

We also impose the nonnegative dividend constraint Djt � 0:
The interpretation of the Bellman equation (36) is as follows. When an investment oppor-

tunity arrives at time t + dt with probability �dt, �rm j borrows e�rftdtLjt+dt � 0 and makes
investments Ijt : The capital stock becomes K

j
t+dt as in (38). When no investment opportunity

arrives with probability 1 � �dt; the �rm chooses to save e�rftdtLjt+dt � 0: Debt is subject to
the collateral constraint (39). Using other types of credit constraint as in Section 7 will not

change our key insights. The interpretation of (39) is similar to that of (6). Suppose that at

time t, �rm j pledges a fraction � of its capital Kj
t+dt as collateral. It may default on debt L

j
t+dt

at the beginning of period t + dt before the realization of the investment opportunity shock.

If it does not default, it obtains continuation value Vt+dt
�
Kj
t+dt; L

j
t+dt

�
: If it defaults, debt is

renegotiated and the repayment Ljt+dt is relieved. The lender can seize the collateralized assets

�Kj
t+dt and keep the �rm running with these assets by reorganizing the �rm. Thus, the threat

18 In (40) for the case without an investment opportunity, the dividend payment is a �ow.
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value to the lender is Vt+dt(�K
j
t+dt; 0): Assume that �rms have full bargaining power. Then the

expression on the right-hand side of (39) is the value to the �rm if it chooses to default. Thus,

the constraint (39) ensures that �rm j does not have an incentive to default.

Equations (37) and (40) are the �ow-of-funds constraints. Given the nonnegative dividend

constraint, we obtain

0 � Ijt � RtK
j
t dt+ e

�rftdtLjt+dt � L
j
t ; (41)

where we have assumed that investment cannot be negative, as in Section 2. It turns out that

this constraint will not bind in equilibrium.

In Appendix A, we show that equity value in the continuous-time limit takes the following

form:

Vt

�
Kj
t ; L

j
t

�
= QtK

j
t � L

j
t +Bt;

and the credit constraint (39) becomes

Ljt � �Qt
�
Kj
t + I

j
t

�
+Bt;

where Qt is the shadow price price of capital, Bt is the speculative component of equity value,

and Ljt is the amount of loans taken when an investment opportunity arrives.
19 As in the base-

line model, the bubble Bt relaxes the credit constraint. The following proposition characterizes

the equilibrium system:

Proposition 7 Consider the continuous-time limit. Suppose that 1 < Qt < 1=�. Then the

equilibrium system for (Kt; Qt; Bt; rft) is given by

_Kt = ��Kt + �
�QtKt +Bt
1� �Qt

; (42)

_Qt = Qt(r + �)�Rt � �
�Qt (Qt � 1)
1� �Qt

; (43)

rBt = _Bt + �
Qt � 1
1� �Qt

Bt; (44)

rft = r � �
Qt � 1
1� �Qt

< r; (45)

where Rt = �K��1
t ; and the usual transversality conditions hold.

19The credit constraint (39) is equivalent to

e�rdtVt+dt(K
j
t+dt; L

j
t+dt) � (1� �)QtK

j
t+dt:

This constraint admits the following alternative interpretation. After default, the �rm�s capital is liquidated at
the value QtK

j
t+dt. The lender gets a fraction � of the value and the �rm gets the remaining value. The above

inequality ensures that the �rm has no incentive to default.
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Equation (44) is an asset pricing equation for the bubble if it exists (i.e., Bt > 0). As

in Section 2, the rate of return r on the bubble is equal to the capital gains (or the growth

rate of the bubble) plus a collateral yield, � (Qt � 1) = (1� �Qt) : Equation (45) shows that
the rate of return r on the corporate bonds is equal to the interest rate rft plus a liquidity

premium, � (Qt � 1) = (1� �Qt). The liquidity premium exists because the corporate bonds

can provide liquidity to �rms and help them �nance investment. Because both the bubble and

the corporate bonds can help �rms �nance investment to the same extent, the collateral yield

and the liquidity premium are equal. Since we have assumed that �rms cannot trade household

bonds, households bonds do not carry a liquidity premium. Thus, the interest rate r on the

household bonds is higher than the interest rate rft on the corporate bonds. The di¤erence is

the liquidity premium.

Since r > rft; households prefer to borrow by selling corporate bonds until their short-sales

constraints bind. Without a short-sale constraint, households keep selling these bonds until

rft = r: In this case, the liquidity premium is zero so that Qt = 1 and the economy reaches the

e¢ cient equilibrium and no bubble can exist.

Next, we characterize the steady state.

Proposition 8 (i) If

0 < � <
�

� + �
; (46)

then there exists a bubbleless steady state
�
K�; Q�; r�f

�
such that

Q� =
�

� + �

1

�
2 (1; 1=�) ; r�f = r + � + � � �=�;

� (K�)��1 = R� =
�r

� + �

1

�
+ �:

(ii) If

0 < � <
�

� + � + r
; (47)

then there exists a bubbly steady state (Kb; Qb; B; rf ) given by

Qb =
r + �

�r + �
2 (1; 1=�) ; rf = 0;

�K��1
b = Rb = (r (1� �) + �)

r + �

�r + �
;

B

Kb
=
� � � (� + r + �)

�r + �
:
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Conditions (46) and (47) ensure that the assumption in Proposition 7 is satis�ed in a

neighborhood of the steady state. Proposition 8 shows that in a bubbly steady state, the

interest rate on corporate bonds must be equal to zero. This is because both corporate bonds

and bubbles can be used to �nance investment. But the bubble is intrinsically useless. If the

interest rate on corporate bonds is positive, then corporate bonds clearly dominate the bubble

and a bubble cannot exist. This result is related to the rate-of-return-dominance puzzle in

monetary economics. We may reinterpret the corporate bonds as a bank account, and both

households and �rms can borrow from and save in it. Proposition 8 shows that the equilibrium

interest rate on the bank account must be equal to zero for a bubble and the bank account to

coexist. Kocherlakota (2009) derives a similar result.

One may introduce economic growth to generate the coexistence of a bubble and a positive-

interest-rate corporate bond as in Tirole (1985). Formally, let the production function be

Y jt = (K
j
t )
�(AtN

j
t )
1��;

where At = egt (g > 0) represents technical progress. We can then show that aggregate capital

and the �rm bubble grow at the same rate g: Proposition 7 still characterizes the equilibrium

system except that now Rt = � (Kt=At)
��1. It follows from (44) and (45) that the steady-state

interest rate on the corporate bond is equal to g > 0:

6.2 Assets with or without Rents

We now follow Tirole (1985) and introduce an asset that brings a real rent (or dividend) to

the baseline model in Section 2. For simplicity, suppose that the rent is given by a constant

X � 0 each time. If X = 0; then this asset has no market fundamental and is called a pure

bubble (e.g., tulip). If X > 0; we call it a �tree.�Firms can invest in the asset and sell it to

�nance its investment when an investment opportunity arrives. We normalize the total supply

of the asset to unity. We follow Kocherlakota (1992, 2009) and assume that both households

and �rms face short-sales constraints. We will show that households will sell the asset until the

short-sales constraints bind.

Since we have shown that intertemporal borrowing is not essential for the existence of a

bubble, we shall focus on the case of intratemporal loans for simplicity. Let Vt(K
j
t ;M

j
t ) denote

the ex ante market value of a typical �rm j when its capital stock and asset holdings at time

t are Kj
t and M

j
t ; respectively. Let Pt denote the market price of the asset. Then Vt satis�es

26



the following Bellman equation:

Vt

�
Kj
t ;M

j
t

�
= �dt max

Mj
t+dt�0;I

j
t�0

n
Djt � L

j
t + e

�rdtVt+dt(K
j
t+dt;M

j
t+dt)

o
(48)

+(1� �dt) max
Mj
t+dt�0

n
Djtdt+ e

�rdtVt+dt((1� �dt)Kj
t ;M

j
t+dt)

o
;

where the �rst max operator is subject to the constraint (38),

Djt + I
j
t + PtM

j
t+dt = RtK

j
t dt+ (Pt +Xdt)M

j
t + L

j
t ; D

j
t � 0; and

Ljt � e�rdtVt+dt
�
�Kj

t ; 0
�
; (49)

and the second max operator is subject to the constraint

Djtdt+ PtM
j
t+dt = RtK

j
t dt+ (Pt +Xdt)M

j
t ; D

j
t � 0:

The interpretations of the Bellman equation and the constraints are similar to those in

Sections 2 and 6.1. In particular, equation (49) gives the collateral constraints. Since �rm j

can sell the asset directly to �nance investment when an investment opportunity arrives, it uses

�Kj
t as collateral only. Alternatively, the �rm can use the asset as collateral to borrow and

hence the �ow-of-funds constraint and the collateral constraint become

Djt + I
j
t + PtM

j
t+dt = RtK

j
t dt+ L

j
t ; (50)

Ljt � e�rdtVt+dt
�
�Kj

t ;M
j
t

�
+M j

tXtdt: (51)

The right-hand side of (51) gives the threat value or the recovery value to the lender if the �rm

defaults. In Appendix A, we show that the above two ways of �nancing deliver an identical

equilibrium outcome.

In Appendix A, we also show that Vt takes the following form:

Vt

�
Kj
t ;M

j
t

�
= QtK

j
t + PtM

j
t +Bt;

where Qt; Pt; and Bt are characterized in the following proposition:

Proposition 9 Suppose Qt > 1: Then the equilibrium system for (Kt; Qt; Bt; Pt) is given by

_Kt = ��Kt + �(Qt�Kt + Pt +Bt); (52)

_Qt = (r + �)Qt �Rt � �(Qt � 1)Qt�; (53)

_Bt = rBt � �(Qt � 1)Bt; (54)

_Pt = rPt �X � �(Qt � 1)Pt; (55)

where Rt = �K��1
t ; and the usual transversality conditions hold.
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The interpretations of equations (52)-(54) are similar to those in Section 2. As in Section

2, we interpret �(Qt�1) as the collateral yield. Equation (55) is an asset pricing equation. We
rewrite it as

r =
_Pt
Pt
+
X

Pt
+ �(Qt � 1) for Pt > 0;

which implies that the rate of return r on the asset consists of three components: (i) capital

gains, (ii) dividend yield, and (iii) collateral yield �(Qt�1): The asset can generate a collateral
yield when Qt > 1: In this case, the �rm is credit constrained and has to either sell the asset

or use it as collateral to �nance investment.

Since rP > _Pt +X; households have no incentive to hold the asset and want to sell it until

their short-sales constraints bind. If there were no household short-sales constraint, then no

arbitrage would force the collateral yield to vanish so that Qt = 1: In this case, there would

be no investment friction and hence the economy reaches the e¢ cient equilibrium in which no

bubble can exist.

In the special case of X = 0; the asset is intrinsically useless and becomes a pure bubble

with a zero market fundamental. Equation (55) reduces to

_Pt = rPt � �(Qt � 1)Pt:

Comparing this equation with (54) reveals that the bubble value Pt and the component Bt in

�rm value follow the same asset pricing equation. By (52), we can determine the total value

Pt + Bt only, but not Bt or Pt separately. That is, the bubble asset and the component Bt

in �rm value are perfect substitutes if the latter can be traded in the market. This justi�es

our interpretation of Bt as a bubble. In this case, there are multiple equilibria which can be

characterized as in Propositions 4 and 5. The bubbly equilibrium determines the total size of

the bubble, but the decomposition of the total bubble is indeterminate. The equilibrium real

allocation is independent of the decomposition. This result is analogous to that discussed in

Section 5 of Tirole (1985).

In the case of X > 0; a bubbly equilibrium cannot exist because the tree with dividends

dominates the bubble. To see this, suppose that a bubble exists in the steady state. Then (54)

and (55) imply the steady-state relation

0 = r � �(Q� 1) = X=P > 0;

which is a contradiction. The intuition is that the tree with positive dividends plays the same

role as a �rm bubble in that both can be used to �nance investment. The tree dominates the
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bubble since it delivers positive dividends, but the bubble has a zero market fundamental.

For a bubble and a tree to coexist, we may introduce economic growth to the model by

allowing technical progress as in Section 6.1. In this case, Proposition 9 still applies except

that Rt = � (Kt=At)
��1. We then obtain

_bt = (r � g)bt � �(Qt � 1)bt;

_pt = (r � g)pt � �(Qt � 1)pt �X=egt;

where bt = Bt=At and pt = Pt=At: Since the detrended dividend X=egt vanishes in the long run,

the �rm bubble and the tree can coexist in the steady state. More generally, if dividends grow

at a lower rate than the economy does, then dividends normalized by the trend disappears in

the long-run. In this case, the tree can still coexist with the �rm bubble.

7 Alternative Credit Constraints

In this section, we consider some other types of credit constraints in the baseline model of

Section 2 with intratemporal loans. We shall show that our key insight that bubbles can help

relax credit constraints still holds. We shall demonstrate that bubbles can exist for a variety

of endogenous credit constraints with limited commitment.

7.1 Self-Enforcing Constraints

Consider a di¤erent type of credit constraint which is popular in the self-enforcing debt lit-

erature (see, e.g., Bulow and Rogo¤ (1989), Kehoe and Levine (1993), Alvarez and Jermann

(2000), Albuquerque and Hopenhayn (2004), Kocherlakota (2008), and Hellwig and Lorenzoni

(2009)).20 There is no collateral. Suppose that the only penalty on the �rm for defaulting is

that it is excluded from the �nancial market forever. In this case, all the future investment

spending is �nanced by internal funds only. Denote by V at (K
j
t ) the autarky value of �rm j

that cannot access the �nancial market. V at (K
j
t ) solves an approximated discrete-time Bell-

man equation (4), subject to the investment constraint, 0 � Ijt � RtK
j
t dt: This is a standard

dynamic programming problem and a bubble cannot exist after default by the transversality

condition.

Let us now turn to �rm j�s decision problem before it defaults. Firm value Vt(K
j
t ) solves

the Bellman equation (4) subject to the investment constraint (5) and the following credit

20Kocherlakota (2008) and Hellwig and Lorenzoni (2009) show that a bubble can exist with self-enforcing debt
constraints in a pure exchange economy.
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constraint analogous to (7),

�Ljt + e�rdtVt+dt((1� �dt)K
j
t + I

j
t ) � e�rdtV at+dt((1� �dt)K

j
t + I

j
t ): (56)

This credit constraint is an incentive constraint which can be interpreted as follows. When

an investment opportunity arrives, �rm j takes debt Ljt and makes investment I
j
t : If it repays

the debt, its continuation value is given by the expression on the left-hand side of (56). If it

defaults on the debt, it is excluded from the �nancial market forever and its continuation value

is given by the expression on the right-hand side of (56). Inequality (56) ensures that the �rm

has no incentive to default.

We rewrite (56) as

Ljt � e�rdtVt+dt((1� �dt)K
j
t + I

j
t )� e�rdtV at+dt((1� �dt)K

j
t + I

j
t ): (57)

As in the baseline model, if both the lender and the �rm believe that the future �rm value

Vt+dt contains a bubble, then the bubble can relax the credit constraint and allow the �rm to

borrow more. Thus, the �rm can �nance more investment and raise its market value, justifying

the optimistic beliefs about the bubble.

In Appendix B.1, we analyze equilibrium in the continuous-time limit. We show that if

Qt > 1; the endogenous debt limit is equal to Bt; where Bt satis�es the asset pricing equation

(19). This result is similar to Theorem 1 in Hellwig and Lorenzoni (2009), which states that

the endogenous debt limit satis�es an exact roll-over condition in an endowment economy. We

also show that Qt and Kt satisfy di¤erential equations (20) and (21) for � = 0: Note that

condition (35) applies to � = 0: Thus, Proposition 5 is still valid here and both bubbleless and

bubbly equilibria can exist. The bubbleless equilibrium is autarky. The bubbly equilibrium

with self-enforcing debt constraints is a special case of that in the baseline model with collateral

constraints in which an empty �rm with zero assets is pledged as collateral or the bubble is

e¤ectively pledged as collateral. This result is reminiscent to the modeling of credit constraints

in Martin and Ventura (2011, 2012).

7.2 Firm Value as Collateral

In the baseline model, we have assumed that any �rm j can pledge a fraction of its assets �Kj
t

as collateral. The collateral value is equal to the market value Vt
�
�Kj

t

�
of the �rm with these

assets. We now assume that the �rm can pledge a fraction � of its market value as collateral
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directly. In this case, the credit constraint for �rm j in continuous time becomes21

Ljt � �Vt
�
Kj
t

�
: (58)

This collateral constraint and (8) in the baseline model are identical when � = 1:

We also assume that when investment opportunities arrive at date t at Poisson arrival rate

�, �rm j faces an idiosyncratic investment e¢ ciency shock "jt ; which is independently drawn

from a distribution � on ["min; "max] : After observing the investment e¢ ciency shock, �rm j

chooses an investment level Ijt ; which is a function of "
j
t . The law of motion for capital is given

by

Kj
t+dt =

(
(1� �dt)Kj

t + "
j
tI
j
t with probability �dt

(1� �dt)Kj
t with probability 1� �dt

: (59)

In the baseline model, we have shown that whenever an investment opportunity arrives, a

�rm invests at its maximal level (see Proposition 1). In Appendix B.2, we show that facing

idiosyncratic investment e¢ ciency shocks, a �rm invests only when the investment e¢ ciency

shocks exceed a cuto¤ value. The presence of a bubble can change this cuto¤ value. Thus,

bubbles can a¤ect both the size of investment (intensive margin) and the number of investing

�rms (extensive margin).

In Appendix B.2, we show that the equilibrium system is given by

rBt = _Bt +Bt��

Z "max

"�t

(Qt"� 1)d�("); (60)

rQt = ��Qt +Rt + _Qt + ��Qt

Z "max

"�t

(Qt"� 1)d�("); (61)

_Kt = ��Kt + �� (QtKt +Bt)
Z "max

"�t

"d�("); (62)

where Rt = �K��1
t and "�t = 1=Qt is the cuto¤ value for investment. The usual transversality

conditions must also hold.

In a bubbleless equilibrium in which Bt = 0, equation (60) is automatically satis�ed. The

question is whether there exists a bubbly equilibrium in which Bt > 0: As in the baseline model,

the presence of a bubble relaxes credit constraints and allows �rms to make more investment,

thereby generating higher �rm value. As shown in equation (60), a one-dollar bubble can

generate additional pro�ts, ��
R "max
"�t

(Qt" � 1)d�("); for the �rm. Unlike equation (19) in the

21Note that we have abused the notation Vt since �rm value may take a di¤erent functional form in this case
than in the baseline model.
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baseline model, the bubble here has an extensive margin e¤ect on investment in the sense that

�rms invest if and only if their investment e¢ ciency is su¢ ciently large, i.e., "t � "�t :
In Appendix B.2, we give necessary and su¢ cient conditions for the existence of bubbleless

and bubbly steady states. For general distributions, there is no analytical solution for the

steady states. We thus consider a special distribution, � (") = 1 � "�� for " � 1 and � > 1:

Suppose that � > � (� � 1) = (��) : We �nd that both a bubbly equilibrium and a bubbleless

equilibrium exist if � > �r; and only a bubbleless equilibrium exists if � < �r.

8 Stochastic Bubbles and Policy Implications

So far, we have focused on deterministic bubbles. Following Blanchard and Watson (1982)

and Weil (1987), we now introduce stochastic bubbles to the baseline model in Section 2 with

intratemporal loans. Suppose a bubble exists initially, i.e., B0 > 0. In each time interval

between t and t+dt, there is a probability �dt that the bubble will burst, i.e., Bt+dt = 0. Once

it bursts, it will never be valued again so that B� = 0 for all � � t+ dt.22 With the remaining
probability 1 � �dt; the bubble persists so that Bt+dt > 0. Later, we will take the continuous
time limits as dt! 0:

8.1 Equilibrium with Stochastic Bubbles

First, we consider the case in which the bubble has collapsed. This corresponds to the bubbleless

equilibrium studied in Section 4. We use a variable with an asterisk (except for Kt) to denote

its value in the bubbleless equilibrium. In particular, V �t (K
j
t ) denotes �rm j�s value function. In

the continuous-time limit, (Q�t ;Kt) satis�es the equilibrium system (20) and (21) with Bt = 0.

We may express the solution for Q�t in a feedback form in that Q�t = g (Kt) for some function

g:

Next, we consider the case in which the bubble has not collapsed. We assume that the debt

contract is not contingent on extraneous beliefs or sunspots described earlier. Firms borrow

only when an investment opportunity arrives. The threat value to the lender or the stock

market value of the collateralized assets is equal to the ex ante value before the realization of

a sunspot, e�rdtVt+dt(�K
j
t ) (1� �dt) + e�rdtV �t+dt(�K

j
t )�dt: Thus, the credit constraint is given

22 If a bubble reemerged in the future, it would have value today by the no-arbitrage asset-pricing equation.
To generate recurrent bubbles and crashes, Miao and Wang (2011b) introduce �rm entry and exit in their model.
See Martin and Ventura (2010a) and Wang and Wen (2011) for other approaches.
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by

Ljt � e�rdtVt+dt(�K
j
t ) (1� �dt) + e�rdtV �t+dt(�K

j
t )�dt: (63)

We write �rm j�s dynamic programming problem as follows:

Vt(K
j
t ) = max

Ijt

RtK
j
t dt� �I

j
t dt (64)

+e�rdt (1� �dt)Vt+dt((1� �dt)Kj
t + I

j
t )�dt

+e�rdt (1� �dt)Vt+dt((1� �dt)Kj
t ) (1� �dt)

+e�rdt�dt V �t+dt((1� �dt)K
j
t + I

j
t )�dt

+e�rdt�dt V �t+dt((1� �dt)K
j
t ) (1� �dt) ;

subject to (5) and (63).

We conjecture that the value function takes the form, Vt(K
j
t ) = vtK

j
t + bt; where vt and

bt are to be determined and are independent of K
j
t : As we have shown in Section 4, when the

bubble bursts, the value function is given by V �t (K
j
t ) = v�tK

j
t : After substituting these two

value functions into (64) and simplifying, the �rm�s dynamic programming problem becomes

vtK
j
t + bt = max

Ijt

RtK
j
t dt� �I

j
t dt+Qt(1� �dt)K

j
t +Qt�I

j
t dt+Bt; (65)

subject to

0 � Ijt � RtK
j
t dt+Qt�K

j
t +Bt; (66)

where we de�ne Q�t = e
�rdtv�t+dt;

Qt = e
�rdt �(1� �dt)vt+dt + �v�t+dtdt� ; (67)

Bt = e
�rdt(1� �dt)bt+dt: (68)

Suppose Qt > 1: Then the optimal investment level achieves the upper bound in (66). Sub-

stituting this investment level into equation (65) and matching coe¢ cients on the two sides of

this equation, we obtain

vt = Rtdt+Qt(1� �dt) + �(Qt � 1)(Rtdt+Qt�)dt; (69)

bt = Bt + �(Qt � 1)Btdt: (70)

As in Section 3, we conduct aggregation to obtain the discrete-time equilibrium system. We

then take the continuous-time limits as dt! 0 to obtain the following:
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Proposition 10 Suppose Qt > 1: Before the bubble bursts, the equilibrium with stochastic

bubbles (Bt; Qt;Kt) satis�es the following system of di¤erential equations:

_Bt = (r + �)Bt � �(Qt � 1)Bt; (71)

_Qt = (r + � + �)Qt � �Q�t �Rt � �(Qt � 1)�Qt; (72)

and (21), where Rt = �K��1
t and Q�t = g (Kt) is the capital price after the bubble bursts.

Equation (71) reveals that the expected rate of return on bubbles is equal to the interest

rate r. In general, it is di¢ cult to characterize the equilibrium with stochastic bubbles. In

order to transparently illustrate the adverse impact of bubble bursting on the economy, we

shall consider a simple type of equilibrium. Following Weil (1987) and Kocherlakota (2009), we

study a stationary equilibrium with stochastic bubbles that has the following properties: The

capital stock is constant at the value Ks over time before the bubble collapses. It continuously

moves to the bubbleless steady-state value K� after the bubble collapses. The bubble is also

constant at the value Bs > 0 before it collapses. It jumps to zero and then stays at this value

after collapsing. The capital price is constant at the value Qs before the bubble collapses.

It jumps to the value g (K) after the bubble collapses and then converges to the bubbleless

steady-state value Q� given in equation (27).

Our objective is to show the existence of (Bs; Qs;Ks) : By (71), we can show that

Qs =
r + �

�
+ 1: (73)

Since Qs > 1, we can apply Proposition 10 in some neighborhood of Qs: Equation (72) implies

that

0 = (r + � + �)Qs � �g (K)�R� �(Qs � 1)�Qs; (74)

where R = �K��1: The solution to this equation gives Ks: Once we have obtained Ks and Qs;

we use equation (31) to determine Bs:

The di¢ cult part is to solve for Ks since g (K) is not an explicit function. To show the

existence of Ks, we de�ne �� as

r + ��

�
+ 1 =

�

��
= Q�:

That is, �� is the bursting probability such that the capital price in the stationary equilibrium

with stochastic bubbles is the same as that in the bubbleless equilibrium.
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Figure 3: This �gure plots the dynamics of the stationary equilibrium with stochastic bubbles.
Assume that the bubble bursts at time t = 20: The parameter values are set as follows: r = 0:02;
� = 0:4; � = 0:025; � = 0:05; � = 0:01; and � = 0:2:

Proposition 11 Let condition (35) hold. If 0 < � < ��, then there exists a stationary equilib-

rium (Bs; Qs;Ks) with stochastic bubbles such that Ks > K�. In addition, if � is su¢ ciently

small, then consumption falls eventually after the bubble bursts.

As in Weil (1987), a stationary equilibrium with stochastic bubbles exists if the probability

that the bubble will burst is su¢ ciently small. In Weil�s (1987) overlapping generations model,

the capital stock and output eventually rise after the bubble collapses. In contrast to his result,

in our model the economy enters a recession after the bubble bursts in that consumption,

capital and output all fall eventually. The intuition is that the collapse of the bubble tightens

the collateral constraint and impairs investment e¢ ciency.

Proposition 11 compares the economy before the bubble collapses with the economy after

the bubble collapses only in the steady state. It would be interesting to see what happens

along the transition path. Since analytical results are not available, we solve the transition

path numerically and present the results in Figure 3.23 In this numerical example, we assume

that the bubble collapses at time t = 20: Immediately after the bubble collapses, investment

falls discontinuously and then gradually decreases to its bubbleless steady-state level. But

23The parameter values for Figure 3 are not calibrated to match the data since the model is stylized. Miao and
Wang (2011b) develop a quantitative DSGE model to study how asset bubbles can explain US business cycles.
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output and capital decrease continuously to their bubbleless steady-state levels since capital

is predetermined and labor is exogenous. Consumption rises initially because of the fall in

investment. But it quickly falls and then decreases to its bubbleless steady-state level. Impor-

tantly, the stock market crashes immediately after the bubble collapses in that the stock price

drops discontinuously. One way to generate the fall in consumption and output on impact is

to introduce endogenous capacity utilization.24 Following the collapse of bubbles, the capacity

utilization rate falls because the price of installed capital rises. As a result, both output and

consumption fall on impact.

8.2 Policy Implications

We have shown that the collapse of bubbles generates a recession. Is there a government

policy that can restore economic e¢ ciency? The ine¢ ciency in our model comes from the

credit constraints. Bubbles help relax these constraints, while the collapse of bubbles tightens

them. Suppose that the government can supply liquidity to �rms by issuing public bonds

in the baseline model of Section 2. These bonds are backed by lump-sum taxes.25 Firms

can use public bonds as collateral to relax their credit constraints. They can also buy and

sell these bonds to �nance investment. Assume that �rms and households face short-sales

constraints (Kocherlakota (1992, 2009)). Without any trading frictions, bubbles are dominated

by bonds which can also be used as collateral. As a result, a bubble cannot exist. Imposing

market frictions, we shall show whether a government policy can eliminate a bubble and achieve

e¢ ciency.

Let the total issued quantity of government bonds be Mt and the bond price be Pt: We

start with the discrete-time environment described in Section 2. The value of the government

assets satis�es

MtPt = Ttdt+Mt+dtPt;

where Tt denotes lump-sum taxes. Taking the continuous-time limit yields _MtPt = �Tt: De�n-
ing the government debt as Dt = PtMt; we can use the fact that _Dt = _PtMt + _MtPt to derive

_Dt � _PtMt = _Dt �
_Pt
Pt
Dt = �Tt if Pt > 0: (75)

By a similar analysis to that in Section 6.2, we can derive that the price of the government

24Such an analysis is available upon request.
25As an idealized benchmark, we ignore the issues of moral hazard and distortional taxes.
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bond satis�es the asset pricing equation:

rPt = _Pt + � (Qt � 1)Pt:

If the government bond is not backed by taxes (i.e., Tt = 0), then it is a pure bubble and it can

coexist with �rm bubbles in equilibrium. As long as the government bond is backed by taxes

(i.e., Tt > 0), then equation (75) implies that _Dt = 0 and _Pt > 0 in the steady state. Hence,

it dominates �rm bubbles since _Bt = 0 in the steady state. The government can then choose

the amount of debt by adjusting the size of lump-sum taxes so that �rms can overcome credit

constraints.

Proposition 12 Suppose assumption (35) holds. Let the government issue a constant value

D of government debt given by

Dt = D � KE
� � ��
�

> 0: (76)

which is backed by lump-sum taxes Tt = T � rD for all t: Firms use government bonds as

collateral. Then this credit policy will eliminate the bubble in �rm value and enable the economy

to achieve e¢ cient allocation.

This proposition indicates that the government can design a policy that eliminates bubbles

and achieves e¢ cient allocation. The key intuition is that the government may provide su¢ cient

liquidity to �rms so that �rms do not need to rely on bubbles to relax credit constraints. The

government plays the role of �nancial intermediaries by transferring funds from households to

�rms directly so that �rms can overcome credit constraints. The government bond is a store of

value and can also generate dividends for �rms. The collateral yield comes from the net bene�t

from new investment. Households prefer to sell bonds to �rms as much as possible, but they

face short-sales constraints. Under the government policy in the proposition, the government

can make the growth rate of the bond price or the rate of capital gains exactly equal to the

interest rate r. As a result, the dividend yield generated by the government bond is equal to

zero, causing Tobin�s marginal Q to equal 1.

To implement the above policy, the government constantly retires the public bonds at the

interest rate in order to keep the total bond value constant.26 To back the government bonds,

the government levies constant lump-sum taxes equal to the interest payments of bonds.

26This policy is analogous to the Friedman rule in monetary economics.
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9 Conclusion

In this paper, we provide an in�nite-horizon model of a production economy with bubbles, in

which �rms meet stochastic investment opportunities and face endogenous credit constraints.

Firms have limited commitment to repay debt. Credit constraints ensure that default never

occurs in equilibrium. We show that bubbles can exist in �rm value and help relax credit

constraints and improve investment e¢ ciency. This result holds for several types of endogenous

credit constraints with limited commitment. We also introduce several types of assets and

study the conditions under which �rm bubbles can coexist with these types of assets. We

show that �rm bubbles and pure bubbles on intrinsically useless assets are perfect substitutes.

The collapse of bubbles leads to a recession, even though there is no exogenous shock to the

fundamentals of the economy. Immediately after the collapse, investment falls discontinuously

and the stock market crashes in that the stock price falls discontinuously. In the long run,

output, investment, consumption, and capital all fall to their bubbleless steady-state values.

We show that there is a government policy that can eliminate the bubble in �rm value and

achieve e¢ cient allocation.

We focus on �rms�credit constraints and consider a deterministic economy in which �rms

are publicly traded in a stock market. Our analysis provides a theory of the creation and

collapse of stock price bubbles driven by the credit market conditions. Our analysis di¤ers

from most studies in the literature that analyze bubbles on intrinsically useless assets or on

assets with exogenously given rents or dividends in a pure exchange economy framework or an

overlapping generations framework. Our model can incorporate this type of bubbles and thus

provides a uni�ed framework to study asset bubbles with �rm heterogeneity and borrowing

constraints. In future research, it would be interesting to consider households� endogenous

borrowing constraints or incomplete markets economies and then study the role of bubbles

in this kind of environment. It would also be interesting to study how bubbles contribute to

business cycles in a quantitative dynamic stochastic general equilibrium model (see Miao, Wang

and Xu (2012b)). Finally, there is no endogenous economic growth in the present paper. Miao

and Wang (2011) extend the present paper to study endogenous growth.27

27See Grossman and Yanagawa (1993), Olivier (2000), Caballero, Farhi and Hammour (2006), Hirano and
Yanagawa (2010) and Martin and Venture (2012) for models of asset bubbles and economic growth.
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Appendices

A Proofs

Proof of Proposition 1: Substituting the conjecture (10) into (4) and (6) yields:

vtK
j
t + bt = max RtK

j
t dt� �I

j
t dt+ e

�rdtvt+dt
�
(1� �dt)Kj

t + I
j
t

�
�dt (A.1)

+e�rdtvt+dt (1� �dt)Kj
t (1� �dt) +Bt;

Ljt � �e�rdtvt+dtK
j
t +Bt; (A.2)

where Bt is de�ned in (12). We combine (5) and (A.2) to obtain

0 � Ijt � RtK
j
t dt+ �e

�rdtvt+dtK
j
t +Bt: (A.3)

Let Qt be the Lagrange multiplier associated with (3) for the case with the arrival of the

investment opportunity. The �rst-order condition with respect to Kj
t+dt delivers equation (13).

When Qt > 1; we obtain the optimal investment rule in (11). Plugging (11) and (3) into the

Bellman equation (A.1) and matching coe¢ cients of Kj
t and the terms unrelated to K

j
t ; we

obtain (14) and (15). Q.E.D.

Proof of Proposition 2: Using the optimal investment rule in (11) and aggregating equation

(3), we obtain the aggregate capital accumulation equation (18) and the aggregate investment

equation (22) by a law of large numbers. Substituting (15) into (12) yields (16). Substituting

(14) into (13) yields (17). The �rst-order condition for the static labor choice problem (1)

gives wt = (1� �) (Kj
t =N

j
t )
�. We then obtain (2) and Kj

t = N j
t (wt= (1� �))

1=� : Thus, the

capital-labor ratio is identical for each �rm. Aggregating yields Kt = Nt (wt= (1� �))1=� :
Using this equation to substitute out wt in (2) yields Rt = �K��1

t N1��
t = �K��1

t since Nt = 1

in equilibrium. Aggregate output satis�es

Yt =

Z
(Kj

t )
�(N j

t )
1��dj =

Z
(Kj

t =N
j
t )
�N j

t dj = (K
j
t =N

j
t )
�

Z
N j
t dj = K

�
t N

1��
t :

This completes the proof. Q.E.D.

Proof of Proposition 3: In the proof below, we drop all terms of order higher than dt. By

equation (18),
Kt+dt �Kt

dt
= ��Kt + [�QtKt +Bt]�:
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Taking the limit as dt ! 0 yields equation (21). Using the approximation erdt = 1 + rdt in

equation (16) yields:

Bt(1 + rdt) = Bt+dt [1 + �(Qt+dt � 1)dt] :

Simplifying yields:
Bt �Bt+dt

dt
+ rBt = Bt+dt�(Qt+dt � 1):

Taking the limits as dt! 0 yields equation (19). Finally, we approximate equation (17) by

Qt(1 + rdt) = Rt+dtdt+ (1� �dt)Qt+dt + �Qt+dt (Qt+dt � 1)�dt:

Simplifying yields:

Qt �Qt+dt
dt

+ rQt = Rt+dt � �Qt+dt + �Qt+dt (Qt+dt � 1)�:

Taking the limit as dt! 0 yields equation (20).

We may start with a continuous-time formulation directly. Let V
�
Kj
t ; Qt; Bt

�
denote the

value function. The Bellman equation in continuous time is given by

rV
�
Kj
t ; Qt; Bt

�
= max

Ijt

RtK
j
t + �

h
V
�
Kj
t + I

j
t ; Qt; Bt

�
� V

�
Kj
t ; Qt; Bt

�
� Ijt

i
��Kj

t VK

�
Kj
t ; Qt; Bt

�
+ VQ

�
Kj
t ; Qt; Bt

�
_Qt + VB

�
Kj
t ; Qt; Bt

�
_Bt;

subject to Ijt � V
�
�Kj

t ; Qt; Bt

�
; where VK ; VQ; and VB represent partial derivatives. We may

derive this Bellman equation by taking the limit in (4) as dt! 0: Conjecture V
�
Kj
t ; Qt; Bt

�
=

QtK
j
t + Bt: We can then solve the above Bellman equation. After aggregation, we can derive

the system of di¤erential equations in the proposition. Q.E.D.

Proof of Proposition 4: (i) The social planner solves the following problem:

max
It

Z 1

0
e�rt (K�

t � �It) dt;

subject to

_Kt = ��Kt + �It; K0 given,

where Kt is the aggregate capital stock and It is the investment level for a �rm with an

investment opportunity. From this problem, we can derive the e¢ cient capital stock KE ;

which satis�es � (KE)
��1 = r+ �: The e¢ cient output, investment and consumption levels are

given by YE = (KE)
� ; IE = �=�KE ; and CE = (KE)

� � �KE ; respectively.
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Suppose assumption (25) holds. We conjecture that Q� = Qt = 1 in the steady state.

In this case, �rm value is given by V
�
Kj
t

�
= Kj

t : The optimal investment rule for each

�rm satis�es Rt = r + � = �K���1
t : Thus, K�

t = KE : Given this constant capital stock

for all �rms, we must have �K�
t = �I�t for all t: Let each �rm�s optimal investment level

satisfy Ijt = �K
j
t =�: Then, when assumption (25) holds, the investment and credit constraints,

Ijt = �K
j
t =� � �K

j
t = V

�
�Kj

t

�
; are satis�ed for all t . We conclude that, under assumption

(25), the solutions Qt = 1, K�
t = KE ; and I

�
t =K

�
t = �=� give the bubbleless equilibrium, which

also delivers the e¢ cient allocation.

(ii) Suppose (26) holds. Conjecture Qt > 1 in some neighborhood of the bubbleless steady

state. We can then apply Proposition 3 and derive the steady-state equations (23) and (24).

From these equations, we obtain the steady-state solutions Q� and K� in (27) and (28), re-

spectively. Assumption (26) implies that Q� > 1: By continuity, Qt > 1 in some neighborhood

of (Q�;K�) : This veri�es our conjecture. Q.E.D.

Proof of Proposition 5: Solving equations (23), (30), and (31) yields equations (32)-(34).

By (32), B > 0 if and only if (35) holds. From (27) and (33), we deduce that Qb < Q�: Using

condition (35), it is straightforward to check that KGR > KE > Kb > K�. From (32), it is also

straightforward to verify that the bubble-asset ratio B=Kb decreases with �: Q.E.D.

Proof of Proposition 6: First, we consider the log-linearized system around the bubbly

steady state (B;Qb;Kb) : We use X̂t to denote the percentage deviation from the steady state

value for any variable Xt, i.e., X̂t = lnXt � lnX: We can show that the log-linearized system
is given by 24 dB̂t=dt

dQ̂t=dt

dK̂t=dt

35 = A
24 B̂t
Q̂t
K̂t

35 ;
where

A =

24 0 �(r + �) 0
0 � + r � �(2r + �) [(1� �)r + �](1� �)

�B=Kb �(r + �) ��B=Kb

35 : (A.4)

We denote this matrix by

A =

24 0 a 0
0 b c
d e f

35 ;
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where we deduce from (A.4) that a < 0, c > 0, d > 0; e > 0; and f < 0: Since � < �
r+� , we

have b = (1� �)r + � � �(r + �) > 0. The characteristic equation for the matrix A is

F (x) � x3 � (b+ f)x2 + (bf � ce)x� acd = 0: (A.5)

We observe that F (0) = �acd > 0 and F (�1) = �1. Thus, there exists a negative root to
the above equation, denoted by �1 < 0. Let the other two roots be �2 and �3:We rewrite F (x)

as

F (x) = (x� �1)(x� �2)(x� �3)

= x3 � (�1 + �2 + �3)x2 + (�1�2 + �1�3 + �2�3)x� �1�2�3: (A.6)

Matching terms in equations (A.5) and (A.6) yields �1�2�3 = acd < 0 and

�1�2 + �1�3 + �2�3 = bf � cd < 0: (A.7)

We consider two cases. (i) If �2 and �3 are two real roots, then it follows from �1 < 0 that

�2 and �3 must have the same sign. Suppose �2 < 0 and �3 < 0. We then have �1�2 > 0 and

�1�3 > 0. This implies that �1�2 + �1�3 + �2�3 > 0, which contradicts equation (A.7). Thus,

we must have �2 > 0 and �3 > 0.

(ii) If either �2 or �3 is complex, then the other must also be complex. Let

�2 = g + hi and �3 = g � hi;

where g and h are some real numbers. We can show that

�1�2 + �1�3 + �2�3 = 2g�1 + g
2 + h2:

Since �1 < 0, the above equation and equation (A.7) imply that g > 0.

From the above analysis, we conclude that the matrix A has one negative eigenvalue and

the other two eigenvalues are either positive real numbers or complex numbers with a positive

real part. As a result, the bubbly steady state is a local saddle point and the stable manifold

is one dimensional.

Next, we consider the local dynamics around the bubbleless steady state (0; Q�;K�). We

linearize Bt around zero and log-linearize Qt andKt and obtain the following linearized system:24 dBt=dt

dQ̂t=dt

dK̂t=dt

35 = J
24 Bt
Q̂t
K̂t

35 ;
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where

J =

24 r � �(Q� � 1) 0 0
0 a b
�
K� c d

35 ;
where

a =
R�

Q�
� ��Q�;

b =
R�

Q�
(1� �) > 0;

c = ��Q� > 0;

d = 0:

Using a similar method for the bubbly steady state, we analyze the three eigenvalues of the

matrix J . One eigenvalue, denoted by �1; is equal to r � �(Q� � 1) < 0 and the other two,

denoted by �2 and �3; satisfy

�2�3 = ad� bc = 0� bc < 0: (A.8)

It follows from (A.8) that �2 and �3 must be two real numbers with opposite signs. We

conclude that the bubbleless steady state is a local saddle point and the stable manifold is two

dimensional. Q.E.D.

Proof of Proposition 7: We work with the continuous-time limit. Let V
�
Kj
t ; L

j
t ; Bt; Qt

�
denote the value function. The continuous-time limit of the Bellman equation (36) is given by

rV
�
Kj
t ; L

j
t ; Bt; Qt

�
= max

Dj
t�0

n
Djt +

_LjtVL

�
Kj
t ; L

j
t ; Bt; Qt

�o
� �Kj

t VK

�
Kj
t ; L

j
t ; Bt; Qt

�
+�max

Lj1;I
j

n
V
�
Kj
t + I

j
t ; L

j
1t; Bt; Qt

�
+ Lj1t � I

j
t � L

j
t � V

�
Kj
t ; L

j
t ; Bt; Qt

�o
+ _BtVB

�
Kj
t ; L

j
t ; Bt; Qt

�
+ _QtVQ

�
Kj
t ; L

j
t ; Bt; Qt

�
;

where the �rst max operator is subject to the constraint

_Ljt = rftL
j
t +D

j
t �RtKt;

and the second max operator is subject to the constraints

Ijt � L
j
1t � L

j
t ; (A.9)
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V
�
Kj
t + I

j
t ; L

j
1t; Bt; Qt

�
� V

�
Kj
t + I

j
t ; 0; Bt; Qt

�
� V

�
�
�
Kj
t + I

j
t

�
; 0; Bt; Qt

�
: (A.10)

Note that when an investment opportunity arrives at a Poisson rate, the capital stock and �rm

debt jump.

Conjecture that

V
�
Kj
t ; L

j
t ; Bt; Qt

�
= QtK

j
t � L

j
t +Bt:

Then, the credit constraint (A.10) becomes

Qt

�
Kj
t + I

j
t

�
� Lj1t +Bt � Qt

�
Kj
t + I

j
t

�
+Bt � �Qt

�
Kj
t + I

j
t

�
�Bt;

or

Lj1t � �Qt
�
Kj
t + I

j
t

�
+Bt: (A.11)

Substituting the conjectured value function into the Bellman equation yields:

rQtK
j
t � rL

j
t + rBt

= max
Dj
t�0

n
Djt �

�
rftL

j
t +D

j
t �RtK

j
t

�o
�Qt�Kj

t

+� max
Lj1t;I

j
t

(Qt � 1) Ijt + _Bt +K
j
t
_Qt:

It follows from (A.9) and (A.11) that

Ijt � �Qt
�
Kj
t + I

j
t

�
+Bt � Ljt :

By assumption Qt < 1=�;

Ijt �
�QtK

j
t +Bt � L

j
t

1� �Qt
:

By assumption Qt > 1; the optimal investment level must reach the above upper bound

Ijt =
�QtK

j
t +Bt � L

j
t

1� �Qt
:

Substituting this solution into the Bellman equation and matching coe¢ cients of Kj ; Lj and

other terms, we obtain equations (43), (44), and (45).

Since rft < r; households want to sell corporate bonds until their short-sales constraints

bind, i.e., Lht = 0. Thus, the market-clearing condition for the corporate bonds becomesR
Ljtdj = 0: By a law of large numbers, we can derive the law of motion for aggregate capital:

_Kt = ��Kt + �
Z
Ijt dj

= ��Kt + �
�QtKt +Bt �

R
Ljtdj

1� �Qt
:

44



Using the market clearing condition,
R
Ljtdj = 0; we obtain (42). In equilibrium, �rms with

investment opportunities choose to borrow and invest. For the bond market to clear, �rms

without investment opportunities must save and lend. Q.E.D.

Proof of Proposition 8: The proof is a straightforward application of Proposition 7. So we

omit it here. Q.E.D.

Proof of Proposition 9: We work with the continuous-time limit. Let V
�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
denote the value function. The continuous-time limit of the Bellman equation (36) is given by

rV
�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
= max

Dj
t�0

n
Djt +

_M j
t VM

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�o
� �Kj

t VK

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
+� max

Ijt ;M
j
1t�0

n
V
�
Kj
t + I

j
t ;M

j
1t; Bt; Qt; Pt

�
+ PtM

j
t � I

j
t � PtM

j
1t � V

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�o
+ _BtVB

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
+ _QtVQ

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
+ _PtVP

�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
;

where the �rst max operator is subject to the constraint

Djt + Pt
_Mt = RtKt +XMt;

and the second max operator is subject to the constraints

Ijt + PtM
j
1t = L

j
t + PtM

j
t ; (A.12)

Ljt � V
�
�Kj

t ; 0; Bt; Qt

�
: (A.13)

Note that when an investment opportunity arrives at a Poisson rate, the capital stock and asset

holdings jump.

Conjecture that

V
�
Kj
t ;M

j
t ; Bt; Qt; Pt

�
= QtK

j
t + PtM

j
t +Bt:

Then, the credit constraint (A.13) becomes

Ljt � �QtK
j
t +Bt:

It follows from (A.12) that

Ijt � �QtK
j
t + PtM

j
t +Bt � PtM

j
1t: (A.14)
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Notice that this constraint is the same as the continuous-time limit of (50) and (51).

Substituting the conjectured value function into the Bellman equation yields:

r
�
QtK

j
t + PtM

j
t +Bt

�
(A.15)

= RtKt +XMt � �QtKt + � (Qt � 1) Ijt + _QtKt + _Bt + _PtM
j
t :

Under the assumption Qt > 1; we must have M
j
1t = 0 and

Ijt = �QtK
j
t + PtM

j
t +Bt:

Substituting this solution into (A.15) and matching coe¢ cients, we obtain equations (53), (54),

and (55).

It follows from (55) that rPt > _Pt +X: Thus, households will not hold the asset and their

short-sales constraint binds, i.e., Mh
t = 0: This means that the market-clearing condition for

the asset is given by
R
M j
t dj = 1:

By a law of large numbers, aggregate capital satis�es

_Kt = �Kt + �

�
�QtKt + Pt

Z
M j
t dj +Bt

�
:

By the market-clearing condition,
R
M jdj = 1; we obtain (52). Q.E.D.

Proof of Proposition 10: As discussed in the main text, we may derive equations (69) and

(70). Substituting equation (69) into (67) and using the de�nition Q�t = e�rdtv�t+dt; we can

derive that

Qt = �Q�tdt+ e
�rdt(1� �dt)[Rt+dtdt+Qt+dt(1� �dt)

+�(Qt+dt � 1)(Rt+dtdt+Qt+dt�)dt]: (A.16)

Using the approximation e�rdt = 1� rdt and removing all terms that have orders at least dt2;
we approximate the above equation by

Qt �Qt+dt = �Q�tdt+Rt+dtdt� �Qt+dtdt+ �(Qt+dt � 1)�Qt+dtdt

� (r + �)Qt+dtdt: (A.17)

Dividing by dt on the two sides and taking the limit as dt! 0; we obtain

� _Qt = Rt � (r + � + �)Qt + �Q�t + �(Qt � 1)�Qt; (A.18)
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which gives equation (72). Similarly, substituting equation (70) into (68) and taking the limit,

we can derive equation (71).

We can also write down the continuous-time Bellman equation as follows:

rV
�
Kj
t ; Qt; Bt

�
= RtK

j
t + �max

Ijt

h
V
�
Kj
t + I

j
t ; Qt; Bt

�
� Ijt � V

�
Kj
t ; Qt; Bt

�i
+�
h
V
�
Kj
t ; Qt; Bt

�
� V �

�
Kj
t ; Q

�
t

�i
��Kj

t V
�
Kj
t ; Qt; Bt

�
+ _QtVQ

�
Kj
t ; Qt; Bt

�
+ _BtVB

�
Kj
t ; Qt; Bt

�
;

which can be derived as the continuous-time limit of (64). Conjecture V
�
Kj
t ; Qt; Bt

�
= QtK

j
t +

Bt and V �
�
Kj
t ; Q

�
t

�
= Q�tK

j
t . We can derive Proposition 10. Q.E.D.

Proof of Proposition 11: Let Q (�) be the expression on the right-hand side of equation

(73). We then use this equation to rewrite equation (74) as

�K��1 � (r + � + �)Q(�) + �g(K) + (r + �)�Q(�) = 0:

De�ne the function F (K; �) as the expression on the left-hand side of the above equation.

Notice Q(��) = Q� = g(K�) by de�nition and Q(0) = Qb where Qb is given in (33). The

condition (35) ensures the existence of the bubbly steady-state value Qb and the bubbleless

steady-state values Q� and K�.

De�ne

Kmax = max
0�����

�
(r + � + � � (r + �)�)Q(�)� �Q�

�

� 1
��1

:

By (34), we can show that

Kb =

�
(r + � � r�)Q(0)

�

� 1
��1

:

Thus, we have Kmax � Kb and hence Kmax > K�. We want to prove that

F (K�; �) > 0; F (Kmax; �) < 0;

for � 2 (0; ��) : If this is true, then it follows from the intermediate value theorem that there

exists a solution Ks to F (K; �) = 0 such that Ks 2 (K�;Kmax) :

First, notice that

F (K�; 0) = �K���1 � r(1� �)Qb � �Qb

> �K��1
b � r(1� �)Qb � �Qb = 0;
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and

F (K�; ��) = 0:

We can verify that F (K; �) is concave in � for any �xed K: Thus, for all 0 < � < ��;

F (K�; �) = F

�
K�; (1� �

��
)0 +

�

��
��
�

> (1� �

��
)F (K�; 0) +

�

��
F (K�; ��) > 0:

Next, for K 2 (K�;Kmax), we derive the following:

F (Kmax; �) = �K��1
max � (r + � + �)Q(�) + �g(Kmax) + (r + �)�Q(�)

< �K��1
max � (r + � + �)Q(�) + �g(K�) + (r + �)�Q(�) < 0;

where the �rst inequality follows from the fact that the saddle path for the bubbleless equilib-

rium is downward sloping as illustrated in Figure 3 so that g (Kmax) < g (K�) ; and the second

inequality follows from the de�nition of Kmax and the fact that g (K�) = Q�:

Finally, note that Q (�) < Q� for 0 < � < ��:We use equation (31) and Ks > K� to deduce

that
Bs
Ks

=
�

�
� �Q (�) > �

�
� �Q� = 0:

This completes the proof of the existence of a stationary equilibrium with stochastic bubbles

(Bs; Qs;Ks) :

When � = 0; the bubble never bursts and hence Ks = Kb: When � is su¢ ciently small,

Ks is close to Kb by continuity. Since Kb is smaller than the golden rule capital stock KGR;

Ks < KGR when � is su¢ ciently small. SinceK���K is increasing for allK < KGR; we deduce

thatK�
s ��Ks > K����K�: This implies that the consumption level before the bubble collapses

is higher than the consumption level in the steady state after the bubble collapses. Q.E.D.

Proof of Proposition 12: The equilibrium with government debt can be characterized

similarly to that in Proposition 9. In particular, (Kt; Qt; Bt; Pt) satis�es

_Kt = ��Kt + �(Qt�Kt + PtMt +Bt); (A.19)

_Qt = (r + �)Qt �Rt � �(Qt � 1)Qt�; (A.20)

_Bt = rBt � �(Qt � 1)Bt; (A.21)

_Pt = rPt � �(Qt � 1)Pt; (A.22)
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and the usual transversality condition. The di¤erence from Proposition 9 is that (i) the total

supply of the government bond is Mt instead of 1, and (ii) X = 0:

Under the policy in the proposition, equation (75) implies that _Pt = rPt: It follows from

(A.22) that Qt = 1: Substituting it into equation (A.20) reveals that Rt = r+ �: This equation

gives the e¢ cient capital stock KE for all time t after the collapse of the bubble. Let Kt = KE

and PtMt = D in (A.19), where D is given by (76). We can show that Bt = 0 for all t: Q.E.D.

B Alternative Credit Constraints

In this appendix, we study equilibrium in continuous time with two alternative credit con-

straints introduced in Section 7.

B. 1 Self-Enforcing Constraints

We study the continuous time case. First, consider the problem after default. It is a standard

control problem and one can easily verify that the autarky value is given by V at
�
Kj
t

�
= QatK

j
t ;

where Qat satis�es the di¤erential equation,

rQat = ��Qat +Rt + _Qat : (B.1)

There is no bubble in the autarky value after a default by the transversality condition.

Next, consider the problem before default. Let V
�
Kj
t ; Qt; Bt

�
denote the value function.

Then it satis�es the continuous-time Bellman equation:

rV
�
Kj
t ; Qt; Bt

�
= max

Ij
RtK

j
t � �I

j
t + �

h
V
�
Kj
t + I

j
t ; Qt; Bt

�
� V

�
Kj
t ; Qt; Bt

�i
��Kj

t VK

�
Kj
t ; Qt; Bt

�
+ VQ

�
Kj
t ; Qt; Bt

�
_Qt + VB

�
Kj
t ; Qt; Bt

�
_Bt;

subject to the continuous-time limits of (5) and (57),

Ljt � V
�
Kj
t + I

j
t ; Qt; Bt

�
� V at

�
Kj
t + I

j
t

�
:

Conjecture that

V
�
Kj
t ; Qt; Bt

�
= QtK

j
t +Bt:

Substituting this conjecture and V at
�
Kj
t + I

j
t

�
= Qat

�
Kj
t + I

j
t

�
into the above control problem,

we obtain

r
�
QtK

j
t +Bt

�
= max

Ijt

RtK
j
t + � (Qt � 1) I

j
t � �K

j
tQt +K

j
t
_Qt + _Bt;

49



subject to

0 � Ijt � L
j
t ; (B.2)

Ljt � (Qt �Qat )
�
Kj
t + I

j
t

�
+Bt: (B.3)

If Qt > 1 and Qt �Qat < 1, then the credit constraint binds and the optimal investment level
is given by

Ijt =
(Qt �Qat )K

j
t +Bt

1� (Qt �Qat )
: (B.4)

Substituting this equation back into the Bellman equation and matching coe¢ cients, we can

derive

rBt = _Bt +
� (Qt � 1)Bt
1� (Qt �Qat )

;

rQt = Rt + � (Qt � 1)
(Qt �Qat )

1� (Qt �Qat )
� �Qt + _Qt: (B.5)

Comparing equations (B.1) and (B.5), we can see that if Qat is a solution to (B.1), then Qt = Q
a
t

is also a solution to (B.5). This solution makes economic sense since the marginal value of

capital should not change immediately after default by no arbitrage. Setting Qt = Qat ; the

above two equations become

rBt = _Bt + � (Qt � 1)Bt;

rQt = Rt � �Qt + _Qt:

The credit constraint becomes Ljt = Bt: Using (3) and (B.4) and setting Qt = Q
a
t , we obtain

the law of motion for aggregate capital:

_Kt = ��Kt + �Bt; K0 given.

The above three di¤erential equations are identical to (19), (20), and (21) for � = 0: Thus, the

analysis in Sections 4 and 5 for � = 0 applies here. Both bubbleless and bubbly equilibria exist

and each type is unique. Q.E.D.

B. 2 Firm Value as Collateral

As in the proof of Proposition 3, we write the continuous-time Bellman equation as

rV
�
Kj
t ; Qt; Bt

�
= max

Ijt

RtK
j
t + �

�Z h
V
�
Kj
t + I

j
t ";Qt; Bt

�
� Ijt

i
d� (")� V

�
Kj
t ; Qt; Bt

��
��Kj

t VK

�
Kj
t ; Qt; Bt

�
+ VQ

�
Kj
t ; Qt; Bt

�
_Qt + VB

�
Kj
t ; Qt; Bt

�
_Bt;
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subject to (5), (58), and (59). Conjecture that

V
�
Kj
t ; Qt; Bt

�
= QtK

j
t +Bt:

Substituting this conjecture into the Bellman equation yields:

r
�
QtK

j
t +Bt

�
= max

Ijt (")
RtK

j
t + �

�
QtK

j
t +Bt +

Z
(Qt"� 1) Ijt (") d� (")�

�
QtK

j
t +Bt

��
��Kj

tQt +
_QtK

j
t +

_Bt;

where we make it explicit that investment Ijt is a function of ": The credit constraint (58)

becomes

Ljt � �
�
QtK

j
t +Bt

�
:

Clearly, when "Qt � 1 > 0; �rm j chooses to invest at the the maximal level such that the

credit constraint binds. Thus, the optimal investment rule is given by

Ijt (") =

�
�QtK

j
t + �Bt if " � "�
0 otherwise

�
; (B.6)

where "� = 1=Qt: Substituting this investment rule back into the Bellman equation and match-

ing coe¢ cients, we obtain equations (60) and (61). Using equation (59) and the above invest-

ment rule, we can derive the law of motion for aggregate capital stock in equation (62).

We �rst consider the bubbleless equilibrium in which Bt = 0: The bubbleless steady state

(Q;K) is characterized by the following two equations:

rQ = ��Q+R+ ��Q
Z "max

1
Q

(Q"� 1)d�("); (B.7)

0 = ��K + ��QK

Z "max

1
Q

"d�("): (B.8)

Simplifying yields one equation for one unknown "� = 1=Q :

�

Z "max

"�
"�(")d" =

�

�
"�: (B.9)

One can check that the expression on the left-hand side of the above equation is a decreasing

function of "� and the expression on the right-hand side is an increasing function of "�. Thus,

given 0 < � � 1 and the assumption that

�

Z "max

"min

"�(")d" >
�

�
"min; (B.10)
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there exists a unique interior solution "�f 2 ("min; "max) to equation (B.9) by the intermediate
value theorem. The above condition is also necessary.

Now let us turn to the bubbly equilibrium in which Bt > 0 for all t: The bubbly steady

state is characterized by three equations for three unknowns (B;Q;K) :

��

Z
1
Q

(Q"� 1)d�(") = r; (B.11)

(r + �)Q = R+ ��Q

Z
1
Q

(Q"� 1)d�("); (B.12)

�K = �(�QK + �B)

Z
1
Q

"d�("); (B.13)

where R = �K��1:

We claim that there exists a bubbly steady state if and only if

��

Z "max

"�f

(
"

"�f
� 1)d�(") > r: (B.14)

To prove this claim, we de�ne a function

G (x) = ��

Z "max

x
(
"

x
� 1)d�("):

It can be easily veri�ed that G is a decreasing function of x: Since G
�
"�f

�
> r by assumption

(B.14) and G ("max) = 0 < r; there exists a unique solution "�b 2
�
"�f ; "max

�
to the equation

G ("�b) = r by the intermediate value theorem. Let Q = 1="
�
b : This means that condition (B.14)

is a su¢ cient condition for the existence of Q in equation (B.11).

Once the bubbly steady state Q is determined, we turn to B=K: Using (B.12) and (B.13)

and Q = 1="�b ; we can solve for B=K :

B

K
=

�

��

1R
"�b
"d�(")

� 1

"�b
(B.15)

=
�"�b � ��

R
"�b
"d�(")

��"�b
R
"�b
"d�(")

:

We need B=K > 0; or equivalently,

H ("�b) � �"�b � ��
Z
"�b

"d�("):

We can check that H is an increasing function of "�b : In addition, H
�
"�f

�
= 0 by equation

(B.9). Since "�b > "
�
f ; we deduce H ("

�
b) > 0:
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To prove the necessity of condition (B.14) for the existence of a bubbly steady state, we

suppose that a bubbly steady state "�b = 1=Q satisfying (B.11) exists. Then G ("�b) = r: Since

B=K > 0; we have H ("�b) > 0: But H
�
"�f

�
= 0 by (B.9) and H is an increasing function. We

deduce that "�b > "
�
f : Since G is a decreasing function, we conclude that G

�
"�f

�
> r; which is

condition (B.14).

Given the distribution � (") = 1 � "�� for " � 1 and � > 1; we can easily verify that

conditions (B.10) and (B.14) are equivalent to

�

� � 1 >
�

�

1

�
; (B.16)

� <
�

r
: (B.17)

We can compute that the bubble is given by

B =

�
�

�

� 1
��1

[r(� � 1)]
1

�(��1)�
��1
� (��)

�
�(1��) (� � r�) > 0:

Q.E.D.
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