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1 Introduction

Until the last few years, most central banks (CBs) around the world conducted monetary policy

by setting targets for short-term interest rates. Maneuvering interest rates as a way to achieve

low and stable inflation is now regarded as a success story, and it is widely expected that it will

return to be the dominant tool of monetary policy as soon as the economy and inflation recover

enough to warrant moving away from the zero lower bound on nominal interest rates.

The aftermath of quantitative easing implies subtle differences for interest-rate management

that have however potentially dramatic implications for the control of the price level. Taking

the Federal Reserve System as an example, before 2008, day-to-day implementation of a given

interest-rate target was entrusted to open-market operations undertaken by the trading desk of

the Federal Reserve Bank of New York; the trading desk retained full control of the quantity of

monetary base available for transactions. In the aftermath of quantitative easing, the monetary

base is much larger than what is demanded purely for transaction reasons, and, during the period

of exit, control of interest rates is expected to be achieved by setting a price, the interest paid on

bank reserves. By setting an appropriate interest on reserves, it is expected that banks will not

attempt to lend out their funds on deposit at the CB, which could unleash inflation if all private

agents tried to convert their (large) money holdings into consumption at once. This strategy

acknowledges that the Federal Reserve System does not have direct control over the quantity

of excess reserves that will be converted into cash. In this paper, we argue that purely setting

interest on reserves is an insufficient tool to achieve price stability; we show that this policy is

subject to “runs.” A CB that persisted using simply interest on reserves as its policy tool in

the face of a run would face hyperinflation. Other, more likely exit scenarios in such adverse

circumstances involve freezing excess reserves or fiscal-policy intervention; these scenarios deserve

thus further attention.

We conduct our analysis in a simple environment that features flexible prices and a standard

cash-in-advance constraint, where the intuition for our results is simple and transparent; however,

our results would extend to models with frictions. In this setup, we introduce a CB that sets the

one-period interest rate; this interest rate need not be fixed, but rather may depend in arbitrary
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ways on all the information that the CB has at the moment it makes its decision. The private

sector is free to choose quantities traded with the CB, up to a limit. In the case of interest on

reserves, this limit is zero: banks cannot hold negative reserves. More generally, the CB could

(and does) allow borrowing, but this is limited, typically by collateral requirements. We show

that setting a policy rate in this way leads to multiple equilibria. Some of the equilibria are

familiar and common to the environments where limits to money growth are not considered.1

However, new equilibria emerge, where money growth and inflation are higher. These equilibria

involve a run on the CB’s interest target: the private sector borrows as much as possible from

the central bank, money in circulation grows fast, and the shadow interest rate in the private

market is different from the policy rate.

In our environment, the severity of a run is affected by the size of the trades that the private

sector can undertake against the CB. In the case of quantitative easing and interest on reserves,

this is determined by the size of the CB’s balance sheet. More generally, if government bonds

are an important source of collateral to borrow from the CB, fiscal policy plays a prominent

role in defining the characteristics of equilibria that feature runs.2 This is a new channel by

which excessive deficits affect price stability, and it is independent of the familiar unpleasant

monetarist arithmetic of Sargent and Wallace [16] and of the fiscal theory of the price level

(Leeper [12], Sims [17], Woodford [19]). In fact, we deliberately rule out these alternative channels

of monetary-fiscal interaction by postulating fiscal rules that ensure long-term budget balance

independently of the path of inflation.

In an extension of our model, we consider what happens if the central bank sets interest rates

in a (possibly narrow) sliver of the market, rather than standing ready to buy and sell a large

swathe of securities at a set price. When no run occurs, we show that the equilibrium remains the

same independently of the size of the market in which the central bank operates. But, if a run

1Examples of these equilibria are those identified by Benhabib, Schmitt-Grohé and Uribe [5, 6] and those

discussed in Cochrane [8]. In those equilibria, the Fisher equation linking interest rates and expected inflation

remains valid, while the speculative runs that we identify involve high inflation and severe monetary distortions

coexisting with low (official) nominal interest rates.
2Arguably, the size of a CB’s balance sheet is a measure of “in-house” fiscal policy run by the monetary

authorities, since it involves managing the magnitude of the CB’s interest-bearing liabilities.
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occurs, the consequences are more limited the more circumscribed this market is. This suggests

a rationale for why central banks may find it attractive to set targets only for very short-term

interest rates, but refrain from doing the same for a broad spectrum of the yield curve.

Our model sheds light on two historical episodes. In the more extreme case, the policy of

the Reichsbank during the German hyperinflation fits well within our model. As mentioned by

Sargent [14], the German Reichsbank discounted Treasury and commercial bills at fixed nominal

interest rates in 1923; these rates were far too low to equilibrate loan markets given expected

inflation, and a run of precisely the type that we describe occurred: the policy added fuel to the

hyperinflation by causing the Reichsbank to greatly increase the money supply and transferring

this money to the government and to those private entities lucky enough to borrow from the

Reichsbank at the official discount rate.

In a more relevant example for the current situation, the Federal Reserve System successfully

managed an “exit strategy” from quantitative easing once before. During the Great Depression,

commercial banks accumulated sizeable excess reserves deposited with the Federal Reserve, that

lasted through the early 1950s. In the 1940s, up to the Treasury accord of 1951, the Fed managed

monetary policy by pegging interest rates. However, at various points this led to inflationary

tensions. As discussed by Eichengreen and Garber [10], the Fed did not rely purely on interest

rates to subdue them, but it rather adjusted required reserves, an instrument that offered direct

control over the quantity of funds that would be available to start a full-blown speculative attack.

In this light, our analysis suggests a new role for the “twin-pillar” doctrine of paying attention to

monetary aggregates (both broad and narrow) as well as interest rates in designing appropriate

monetary policy rules.3

2 The basic cash-in-advance model

Consider a version of the cash-in-advance model. There are a continuum of households of unit

mass and a government/monetary authority. Time is discrete with dates t ∈ {0, 1, 2, . . .}. In

each period, the timing is as follows: First, the government sets nominal taxes, Tt, possibly as a

3For a discussion of the twin-pillar doctrine, see Lucas [13].
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function of everything that has happened up to that point in time. Then, asset markets open. In

these asset markets, the central bank sets a nominal interest rate, Rt, at which is stands ready

to trade money for one-period government bonds; this rate can also depend on the entire past

history. The government and central bank can print and destroy money, borrow and lend. In the

asset markets, households can buy (or sell) government bonds, acquire money, as well as trade

zero-net supply securities with other households.

The description above assumes that the CB sets its interest rate as the discount factor on

government bonds, as was the case for the German Reichsbank. The same equations apply in

the case of modern central banks in the aftermath of quantitative easing, simply by relabeling

variables appropriately. Specifically, in this case −Tt represent seigniorage payments from the

central bank to Treasury (that are in turn rebated to households), and Rt is the interest on excess

reserves; in this case, “money” represents cash or required reserves that banks must hold if they

expand their deposits, and “bonds” are excess reserves that do not provide liquidity services and

are held only if they offer the same return as competing private assets.4 In what follows, we will

continue to use the “Reichsbank labels,” except when deriving remarks that specifically apply

to interest on reserves.

After the asset markets, a goods market opens. In the goods market, households produce

the consumption good using their own labor for the use of other households (but, as usual, not

their own household) and the government. Each household has one unit of time and a constant-

returns-to-scale technology that converts units of time into units of the consumption good one

for one. Households use money to purchase units of the consumption good produced by other

households. The government uses either money or bonds (it is immaterial which) to purchase

Gt = G ≥ 0 units of the consumption good.

Figure 1 summarizes the events within each period.5

4When we follow this interpretation, we still separately assume that Treasury taxes and debt are set so that

the fiscal theory of the price level does not apply.
5Our results are robust to a variety of different timing assumptions. However, it is important that households

know the interest rate at which they trade with the central bank: we do not allow the central bank to unilaterally

set its terms of trade ex post, after households have committed to their bond purchase decisions.
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Household

enters period t

with nominal

wealth wt−1

Gov’t pays bonds

with cash,

levies Tt

(nominal)

CB sets Rt Asset mkts open,

household

chooses money,

bond holdings

Goods mkt

opens, household

chooses labor,

consumption;

gov’t purchases Gt

Figure 1: Timeline of events within period t.

Let Mt denote the amount of money in circulation at the end of the asset market in period

t, after taxes are paid. Let Bt−1 be the nominal amount of government bonds payable at date

t. (If Bt−1 < 0 then it represents a debt that households owe the government at date t.) The

households start with initial nominal claims W−1 against the government.6

Consider a price sequence {Pt, Rt, R̂t}∞t=0, where Pt is the nominal price of a unit of the

consumption good at date t, Rt is the nominal risk-free rate between period t and t+ 1 at which

the government trades with private agents, and R̂t is the rate at which households trade with

each other. A government policy {Tt,Mt, Bt}∞t=0 is said to be feasible given {Pt, Rt, R̂t}∞t=0 if for

all t > 0

Bt = (1 +Rt)
[
Pt−1G− Tt −Mt +Mt−1 +Bt−1

]
, (1)

with the initial condition

B0 = (1 +R0)[W−1 −M0 − T0]. (2)

In what follows, we use lower-case letters to indicate individual household choices and upper-

case variables to indicate aggregates: as an example, mt are individual money holdings, and Mt

are aggregate money holdings. In equilibrium, lower and upper-case variables will coincide, since

we consider a representative household.

Households are subject to a cash-in-advance constraint: their consumption must be purchased

with money. A household’s path is given by {ct, yt, b̂t, bt,mt}∞t=0, where b̂t are holdings of privately-

6These claims represent money and maturing bonds, before paying period 0 taxes.
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issued bonds maturing in period t + 1.7 In addition, households are potentially constrained in

their holdings of government securities to a set Bt. We will first explore the case in which Bt
is the entire real line, and we will then explore the implications of setting a limit to private

indebtedness against the government.

A household path is feasible if for all t > 0

b̂t

1 + R̂t

+
bt

1 +Rt

= Pt−1(yt−1 − ct−1)− Tt −mt +mt−1 + b̂t−1 + bt−1, (3)

mt ≥ Ptct, (4)

together with the initial condition

b̂0

1 + R̂0

+
b0

1 +R0

= W−1 −m0 − T0 (5)

and the no-Ponzi condition

b̂t + bt ≥ At+1 := −Pt −mt + Tt+1+

∞∑
j=1

{( j∏
v=1

1

1 + R̂t+v

)[
Tt+j+1 − Pt+j −max

b̂∈Bt
[b̂

(
1

1 + R̂t+j

− 1

1 +Rt+j

)
]

]}
.

(6)

Equation (6) imposes that households cannot borrow more than the present value of working 1

unit of time while consuming nothing, holding no money in every period after t, and maximally

exploiting any price discrepancy between government-issued and private securities. This present

value is evaluated at the sequence of intertemporal prices {R̂s}∞t=0.

When Bt = R, a no-arbitrage condition will ensure R̂t+j = Rt+j, making the corresponding

term disappear from (6). When limits to household indebtedness against the government are

present, we will study equilibria where government securities have a different price than equivalent

privately-issued securities, in which case household can profit from the mispricing (at the expense

of the government), and the corresponding profits are part of their budget resources.8 Facing

7In equilibrium, b̂t ≡ 0.
8Of course, in equilibrium the aggregate profits of the households from this activity are matched by lump-sum

taxes that the government has to impose, so that in the aggregate this limited arbitrage opportunity is a zero-sum

game.
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prices {Pt, Rt, R̂t}∞t=0, tax policy {Tt}∞t=0, and given initial nominal wealth, a household’s problem

is to choose {ct, yt, b̂t, bt,mt}∞t=0 to solve

max
∞∑
t=0

βtu(ct, yt) (7)

subject to (3), (4), (5), (6), and bt ∈ Bt. We assume that u is continuously differentiable, that

both consumption and leisure are normal goods, and that the following conditions hold:

lim
c→0

uc(c, y) =∞ ∀ y > 0, lim
y→1

uy(c, y) = −∞ ∀ c > 0, (8)

and

∀ y > 0 ∃ uy(y) > 0 : |uy(c, y)| > uy(y) ∀ c ≥ 0. (9)

Equation (8) is a standard Inada condition; it will ensure an interior solution to our problem.

Equation (9) imposes that the marginal disutility of labor is bounded away from zero in equilibria

in which production is also bounded away from zero.

3 An interest rate policy

In this section, we construct equilibria for an economy in which the government/monetary au-

thority sets an interest rate rule, without imposing limits to household trades with the central

bank (i.e., Bt = R) . In particular, suppose the central bank offers to buy or sell any amount of

promises to pay $1 at date t + 1 for 1/(1 + Rt) < 1 dollars at date t. We assume that nominal

interest rates remain strictly positive (Rt > 0); this is purely to save notation. In the equilibria

featuring runs that are the object of study in this paper, the cash-in-advance constraint will

always be binding, even if the policy target is Rt = 0.

Using Svensson and Woodford’s [18] language, the interest-rate rule is here used as a reaction

function: the central bank adopts the interest rate as its instrument, and sets it as a function of

everything that is observable up to that point in time. We allow for arbitrary history dependence,

so in particular this assumption encompasses Taylor rules that depend on past inflation. In

section 4.2 we discuss the role of this assumption in the broader context of alternatives, and we
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also explain why it may be particularly appropriate in the wake of the policy of quantitative

easing pursued by many central banks across the developed world in recent years.

We suppose that the government sets a “Ricardian” fiscal rule, i.e., a rule that ensures that

the present-value budget constraint of the government (and hence the transversality condition of

the agents) holds whenever all other competitive equilibrium conditions are met, independent of

the price level. We choose such a fiscal policy because we are interested in the set of equilibria

that can arise when money is not directly backed by tax revenues, as it happens instead when

the fiscal theory of the price level holds. We will specify below a class of fiscal rules that satisfies

sufficient conditions for this requirement.

An equilibrium is a sequence {Pt, R̂t, Rt, Tt, Ct, Yt, B̂t, Bt,Mt}∞t=0 such that {Ct, Yt, B̂t, Bt,Mt}∞t=0

solves the household’s problem taking {Pt, R̂t, Rt, Tt}∞t=0 as given, and such that markets clear

for all t ≥ 0:

Ct = Yt −G (10)

and

B̂t = 0. (11)

In order for the household problem to have a finite solution, it is necessary that the prices of

government and private assets be the same:

R̂t = Rt. (12)

When (12) fails, households can exploit the difference in price to make infinite profits. In addition

to (6) and (12), necessary and sufficient conditions from the household optimization problem yield

the following conditions for all t ≥ 0:

−uy(Ct, Yt)
uc(Ct, Yt)

=
1

1 + R̂t

, (13)

uy(Ct+1, Yt+1)

uy(Ct, Yt)
=

1

β(1 + R̂t+1)

Pt+1

Pt
, (14)

Mt/Pt = Ct, (15)

8



and the transversality condition

lim
t→∞

(
t∏

j=0

1

1 + R̂j

)
(B̂t +Bt − At+1) = 0. (16)

Substituting (10) and (12) into (13), we obtain

−uy(Ct, Ct +G)

uc(Ct, Ct +G)
=

1

1 +Rt

. (17)

We now turn to constructing equilibria. The initial price level, P0, is not determined. For

each initial price P0, one can use the interest rate rule Rt and equations (1), (2), (10), (14), (15),

and (17) to sequentially solve for a unique candidate equilibrium allocation and price system.9

That is, first the fiscal policy rule determines T0. Given T0, the interest-rate rule determines

R0, equation (17) solves for C0, equation (10) then implies Y0, and equation (15) implies M0.

Finally, equation (2) determines B0. With all time-0 variables now determined, the fiscal policy

rule determines T1, the monetary policy rule determines R1, which by no arbitrage is equal to

R̂1 when B = R. As in period 0, equation (17) solves then for C1 and equation (10) for Y1.

Knowing C1 and Y1, equation (14) can be solved for P1, and equation (15) for M1. Equation (1)

then yields B1, and from there the process continues to period 2 and on.

To verify whether the candidate equilibrium allocation and price system we derived above is

an equilibrium, we need only to check that the household transversality and no-Ponzi conditions

(6) and (16) hold. To this end, we will restrict fiscal policy to a (broad) class which ensures

the policy is Ricardian (Assumption A2); but a necessary step to do so is to ensure that the

present-value of seigniorage remains finite. For now, we achieve this by imposing an upper bound

on nominal interest rates:

Assumption 1 ∃ R : Rt ≤ R.

The appendix studies alternative ways of ensuring that the present value of seigniorage remains

finite even when Assumption 1 is violated.10

9The Inada condition and the assumptions of normal goods ensure that an interior solution can be found

and that (17) is strictly monotone in Ct. In our analysis, we do not rule out explosive paths, for the reasons

highlighted in Cochrane [8].
10In the cases considered in the appendix, it may not be possible to find equilibria with a perfectly anticipated
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As a specific class of Ricardian fiscal policies, we assume Tt satisfies

Assumption 2 There exist finite B > 0 and T such that

• if Bt−1 ∈ [−BPt−1, BPt−1], Tt is unrestricted except |Tt|Pt−1 ≤ T ,

• if Bt−1 > BPt−1, Tt ∈ [αBt−1, Bt−1], and

• if Bt−1 < −BPt−1, Tt ∈ [−Bt−1,−αBt−1].

Essentially, we require that if real debt is neither too high nor too low, taxes may be any

function of past information subject only to a uniform bound in real terms. But when real debt

exceeds a threshold (in absolute value), taxes cover at least a fraction α of debt, putting the

brakes to a debt spiral. As an example, one simple rule that belongs to this general class is

Tt = αBt−1, with α ∈ (0, 1).

We relegate the proof that (6) and (16) hold (and thus the candidate equilibrium is an

equilibrium) to the appendix.

The construction above establishes results that are well known from Sargent and Wallace [15],

Woodford [20], and reemphasized by Cochrane [8]. Under an interest rule, the initial price level

P0 is indeterminate, but, once a value of P0 is specified, there exists a unique deterministic

equilibrium allocation and price system. Moreover, in the deterministic equilibrium, in any

period in which the nominal rate set by the central bank is low, so is inflation. As an example,

if Rt = 1
β
− 1 for all t ≥ 0, then inflation is exactly zero in all periods. When uncertainty is

present, sunspot equilibria arise; we discuss such equilibria in the appendix. But, even in that

case, a low official interest rate translates into a limit on expected inflation. To see this, note

that the intratemporal optimization condition (13) and the market clearing condition (10) still

hold in a world with sunspots, so equation (17) still holds. Thus consumption and labor in each

period are pinned down by the interest rate policy. If Rt is constant then consumption and labor

are constant. If Rt = 1
β
− 1, the stochastic version of the consumption Euler equation becomes

Et
Pt
Pt+1

= 1. (18)

run on the central bank’s interest rate peg, such as the one we will study in section 4, but there will instead be

equilibria where runs occur with positive probability.

10



The expected real value of a dollar remains constant into the future. Furthermore, if we assume

a bound ε on how fast the price level can drop (i.e., we impose Pt/Pt+1 < 1/ε almost surely ∀t),

then the law of large numbers will apply, and average inverse inflation over long horizons will be

0:

lim
T→∞

1

T

T∑
s=1

Ps
Ps+1

= 1 almost surely. (19)

In the next section, we show that a very different type of equilibrium emerges when households

are not allowed to borrow unlimited funds from the central bank. In this equilibrium, a low

interest rate set by the central bank is accompanied by high expected inflation from the outset,

and private-market interest rates diverge from the policy rate.

4 Limits to Central Bank Lending

Suppose now we impose the additional constraint on the households that Bt ≥ 0, t ≥ 0: house-

holds are not allowed to borrow from the government/central bank (or, equivalently, they are

allowed to borrow from the central bank only by posting government bonds as collateral). That

the borrowing limit is precisely zero is not central to our analysis, but simplifies exposition some-

what. In this section, we construct additional deterministic equilibria which do not exist when

Bt = R.

With the no-borrowing limit we just imposed, the official rate Rt only becomes a lower bound

for the private-sector rate R̂t. When households are at the borrowing limit with the central

bank, private nominal interest rates may exceed the official rate. The no-arbitrage condition

(12) becomes

R̂t ≥ Rt, Bt > 0 =⇒ R̂t = Rt. (20)

All other equilibrium conditions remain the same, except that the private rate R̂t replaces the

government rate Rt in equation (17):

−uy(Ct, Ct +G)

uc(Ct, Ct +G)
=

1

1 + R̂t

. (21)

The allocation of section 3 remains part of an equilibrium even when the central bank limits

its lending, provided that households have nonnegative bond holdings in all periods. For a
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given sequence of prices, interest rates, consumption and work levels, household holdings of

government debt in this equilibrium depend on the sequence of taxes. Government debt will be

strictly positive in each period t > 0 if and only if the following condition is satisfied:

Tt
Pt−1

< G+
Bt−1

Pt−1
+
Mt−1

Pt−1
− βĉ(Rt)(1 +Rt)ûy(Rt)

ûy(Rt−1)
, (22)

where ĉ(R) is the consumption implied by equation (21) when R̂t = R and ûy(R) := uy(ĉ(R), G+

ĉ(R)). It is straightforward to see that there are fiscal rules that satisfy (22) and Assumption 2.11

We assume that fiscal policy is run by one such rule.

In period 0, government debt will be nonnegative if

T0 ≤ W−1 − ĉ(R0)P0. (23)

An interior equilibrium will only exist if

T0 < W−1, (24)

which we will assume. While P0 can take any positive value in section 3, now equation (23)

imposes a ceiling.

4.1 Additional Equilibria: A Single Run

The simplest equilibrium that may arise when a limit to private indebtedness is introduced is a

deterministic run, where Bs = 0 for a single date s > 0. In the case of the German Reichsbank,

this is an equilibrium in which all of the government debt is monetized in period s. Under the

QE interpretation, this is an equilibrium in which households demand enough cash (and, in a

richer model, banks expand their deposits so much) that all of the excess reserves are converted

into cash (and required reserves).

The conditions under which such a simple equilibrium exists are stringent. This is not

surprising: it is true in all models of runs. To use a fixed exchange-rate regime as an example,

11As an example, choose Tt = (1 − α)(Bt−1/Pt−1) + T̂t, with T̂t < Pt−1G + Mt−1 − Pt−1βĉ(0)(1+R)ûy(R)
ûy(0)

and

α ∈ (0, 1).
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equilibria in which a fixed exchange rate collapses at a perfectly anticipated time exist only in

very specific circumstances. In the appendix, we accordingly extend the analysis to probabilistic

runs, where the date at which inflationary expectations take off and a run occurs is not perfectly

known ahead of time. Such equilibria exist under much more general conditions.

Assumption 3 Define

uy := max
R∈[0,R]

ĉ(R)(1 +R)|ûy(R)|.

We assume that fiscal policy satisfies the following stronger version of (22):

Tt
Pt−1

< G+
Bt−1

Pt−1
+
Mt−1

Pt−1
− βuy

uy(G)
, (25)

where uy(Ḡ) is defined in (9).

Equation (22) guaranteed that in each period there are positive bonds/excess reserves that can

be converted into money and initiate a speculative run. The stronger condition (25) ensures

that, after a period in which a run occurred and thus previous government debt was monetized,

there are enough new bonds (or the monetary base is sufficiently large) that the economy can

return to a path where households hold positive amounts of government debt and equation (14)

holds. This assumption is required for the run to last a single period.

Proposition 1 Let {Pt, R̂t, Rt, Tt, Ct, Yt, B̂t, Bt,Mt}s−1t=0 be determined as in the equilibrium of

section 3, with P0 satisfying (23), and let fiscal policy satisfy Assumption 2. A necessary and

sufficient condition for the existence of a different (deterministic) equilibrium in which Bs = 0

is that the following equation admits a solution for R̂s > Rs:

βûy(R̂s)(1 + R̂s)ĉ(R̂s)

(
Ps−1

Ms−1 +Bs−1 + Ps−1G− Ts

)
= ûy(Rs−1). (26)

A sufficient condition (based on preferences alone) for (26) to have a solution with R̂s > Rs is

lim
R→∞

|ûy(R)|(1 +R)ĉ(R)→∞. (27)

P
¯

roof: The proof works by construction. Starting from an arbitrary price level P0 that satisfies

(23), the equilibrium allocation, price system, and government policy are solved as in section 3
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up to period s − 1. Specifically, we use the interest rate rule Rt and the fiscal policy rule with

equations (10), (14), (15), and (17) to sequentially solve for the unique candidate equilibrium

allocation and price system.

In period s, in order for R̂s > Rs to be an equilibrium, the constraint Bs ≥ 0 must be binding,

which implies
Ms−1 +Bs−1

Ps−1
+G =

Ts
Ps−1

+ ĉ(R̂s)
Ps
Ps−1

. (28)

Furthermore, equations (14) and (21) require

β(1 + R̂s)ûy(R̂s)
Ps−1
Ps

= ûy(Rs−1). (29)

Substituting (28) into (29), we obtain (26), which is a single equation to be solved for R̂s. If

this equation does not admit a solution for R̂s > Rs, then it is impossible to satisfy all of the

necessary conditions for an equilibrium with Bs = 0. If a solution exists, then we can retrieve

consumption in period s as Cs = ĉ(R̂s) (the unique solution that satisfies equation (21)), and

hence (by market clearing) Ys = Cs + G. We can then solve equation (28) for the candidate

equilibrium level of Ps. Equation (22) ensures that the solution for Ps is strictly positive.

From period s+1 onwards, the allocation and price system is once again uniquely determined

(sequentially) by the interest rate rule Rt, the fiscal policy rule, and equations (10), (14), (15),

and (17). Equation (25) ensures that the resulting sequence for government debt is strictly

positive. Once again, the proof that (6) and (16) hold is relegated to the general proof in the

appendix.

Finally, to verify the sufficient condition (27), set R̂s = Rs. Equations (14) and (22) imply

β|ûy(Rs)|(1 +Rs)ĉ(Rs)

(
Ps−1

Ms−1 +Bs−1 + Ps−1G− Ts

)
< |ûy(Rs−1)|. (30)

Since |ûy(R)|(1 +R)ĉ(R) is a continuous function of R, when equation (27) holds, equation (30)

ensures the existence of a solution of (26) with R̂s > Rs. QED.

To be concrete, we consider a numerical example. In the example, the monetary authority sets

the interest rate at an unconditional constant: Rt = 1
β
− 1, where β = 1/1.01. We set u(ct, yt) =
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c1−σ

1−σ −y
ψ, with σ = 3 and ψ = 1.1, and let G = .1.12 We assume Tt = .5(Bt−1+Mt−1)−1.12Pt−1,

13

and set P0 = 1 and W−1 = 2.57.

Given these assumptions, one equilibrium of this economy is a steady state: In each period

t ≥ 0, Pt = 1, Ct = Mt = .96, Yt = 1.06 and Bt = 1.5.14
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Figure 2: Private-market interest rate (left panel) and consumption (right panel) in an equilib-

rium featuring a run in period 2 only

Next suppose households face a restriction that Bt ≥ 0 for all t ≥ 0. Then, Figures 2–4

describe the unfolding of the run. The basic intuition behind a run is simple: when the run

occurs, all government debt is converted into money; this largely increases the money supply.

When all other households are expected not to roll over their debt, each household expects thus

a high money supply and high resulting inflation; in response to this expectation, the optimal

strategy is not to roll over nominal debt, validating the run.

To go beyond this basic intuition and understand why a perfectly anticipated run requires

specific assumptions about preferences, we inspect the evolution of the run in greater detail.

12With these parameters, equation (25) becomes

Tt < Bt−1 +Mt−1 − 1.12Pt−1. (31)

13This satisfies (31) whenever Bt−1 +Mt−1 > 0, which holds throughout the example.
14There are other deterministic equilibria, indexed by the initial price level P0, but all of them share the same

level of consumption, output, and real money balances.
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First, notice that, if a run occurs, the private-sector interest rate R̂t must be greater than the

interest rate set by the central bank, which is constant at 1/β − 1; in our example, this occurs

in period 2, as shown in the left panel of Figure 2. The intratemporal optimality condition (21)

implies that consumption decreases in period 2, when the run occurs (right panel of Figure 2).
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Figure 3: Prices (left panel) and money used for transactions (right panel) in an equilibrium

featuring a run in period 2 only

With consumption down and the money supply up, the price level must jump up so that the

(binding) cash-in-advance constraint holds, as shown by the left panel of Figure 3. Whether such

a candidate allocation can be supported as an equilibrium depends on whether these changes

can be made consistent with the household Euler equations for leisure and consumption, which

are respectively (14) and
uc(Ct+1, Yt+1)

uc(Ct, Yt)
=

1

β(1 + R̂t)

Pt+1

Pt
. (32)

Specifically, in order to have a perfectly anticipated run in period 2, and not before, it must be

the case that households are willing to lend to the government in period 1 (or, to keep excess

reserves deposited at the central bank, depending on the interpretation) even though the nominal

interest rate by the central bank is constant and expected inflation between period 1 and period

2 is high. Since households expect a consumption drop between periods 1 and 2, this can be the

case, but only if either the drop in consumption (and, by market clearing, in the labor supply)

is very steep or the intertemporal elasticity of substitution of consumption is sufficiently low.

Equation (21) implies that the consumption drop is steeper, the less curvature there is in the
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marginal disutility of labor and in the marginal utility of consumption. So, less curvature in

uy(c, c+G) unambiguously helps in satisfying equation (32). Less curvature in uc(c, c+G) has

an ambiguous effect, since (for given R̂s) it creates a bigger drop in consumption, but it also

implies a greater intertemporal elasticity of substitution. The second effect turns out to be the

relevant one, so that a perfectly anticipated run can happen when the curvature is low and hence

the function ĉ is not very responsive to R. From these observations, we can thus understand

the role of assumption A2. We can also understand why a run can happen under much weaker

assumptions if it occurs with probability smaller than one, as described in the appendix: in

this case, the potentially negative effect of a run on the households’ willingness to save between

periods 1 and 2 is tempered by the lower probability of the occurrence. In the limit, as the

probability of a run goes to 0, households are content to save at the rate 1/β−1 between periods

1 and 2 when the no-run allocation remains at the steady state throughout.

Next, we consider the other intertemporal choice that households face in their decision to save

between periods 1 and 2, i.e., their labor supply. Because of the cash-in-advance timing, this

decision is related to the household labor supply in periods 0 and 1, as shown by equation (14).

Since the allocation and inflation are at the no-run steady state values in these two periods, the

relevant Euler equation for leisure is automatically satisfied. For this reason, the intertemporal

elasticity of substitution of leisure does not play the same role as the one of consumption in

determining whether a perfectly anticipated run can occur.

Having discussed the economic forces that lead households to save between periods 0 and 1,

we next consider the elements that pertain to the private-market interest rate between periods

1 and 2, in the period of the run. This time, it is simpler to start from the Euler equation for

labor, equation (14). The relevant margin of choice for households is their labor supply in period

1 (paid in period 2) vs. period 2. Here, it is straightforward to see why households optimally

choose not to invest in government bonds in period 2 at the nominal rate 1/β − 1. First, the

nominal wage (which is equal to the price level) increases from period 1 to period 2, which yields

an incentive to postpone labor when the nominal interest rate does not adjust correspondingly.

Second, the equilibrium features actually a lower labor supply (which tracks consumption) in
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period 2 than in period 1, providing a further incentive not to save in period 1 and to postpone

work. Both of these channels imply that the interest rate offered by the government within the

equilibrium allocation is too low for households to be willing to lend to the government, and

that the private-market interest rate that justifies the labor decision is instead higher. Similarly,

on the consumption side (where the relevant margin is once again shifted one period forward),

households look forward to an increase in consumption between periods 2 and 3, and hence they

require a higher real interest rate to be willing to save than the one offered by the government.

This is particularly true because further inflation occurs between periods 2 and 3, as we establish

next, in our discussion of how the run ends.
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Figure 4: Government debt in an equilibrium featuring a run in period 2 only: nominal (left

panel) and real (right panel)

After the run ends, households resume lending to the government at the rate R3 = 1/β − 1

in period 3. With a fixed nominal interest rate, inflation between period 2 and 3 must adjust

so that households find it optimal to increase their labor supply between the crisis period 2 and

the return to normalcy in period 3. By equation (14), this requires further inflation between

periods 2 and 3. The increase in both prices and production (and consumption) between periods

2 and 3 implies that money supply must also grow. Since the crisis wiped out government debt,

households cannot acquire this additional money by selling government debt. If the run is to

last a single period, fiscal policy must generate enough new nominal liabilities at the beginning

of period 3, as implies by Assumption 3; this is achieved through a tax cut. From that point
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onward, output and consumption return to their pre-run steady state, while government debt

(in real terms) converges back to the steady state gradually.

4.2 Other Equilibria, and Alternative Government Strategies

By repeating the steps outlined in section 4.1, it is easy to construct equilibria in which runs

occur repeatedly, and it is also possible to construct equilibria in which runs last for more than

one period. The conditions under which such equilibria exist are similar to those for a single

run (in particular, Assumptions 1, 2, and 3 are sufficient conditions). In more general cases,

the appendix considers stochastic equilibria, where runs can emerge with probability less than

1. In these stochastic run equilibria, even when the official interest Rt is constant, the levels

of consumption and labor are not constant because the effective interest rate in the household

optimization conditions, R̂t, is not constant. Further, when Rt = 1
β
− 1, it is no longer the case

that on average, Pt/Pt+1 = 1. Setting a low nominal rate no longer guarantees low average real

depreciation of the currency.

In the simple example above, we assumed that the central bank sets an unconditional interest

rate peg. However, our results hold even when interest rates exhibit arbitrary dependence on

the past; in particular, Taylor rules that depend on past inflation fit our framework well.15

Our results would of course change if the interest rate is not simply set by the central bank,

by standing ready to trade at the given rate, but is instead simply a target to be attained

through different, potentially more complicated (and unspecified) rules. Following Svensson and

Woodford [18], central banks in the past may have adopted interest-rate rules as “targeting rules,”

but may have then implemented those rules in different ways.16 Indeed, until 2008, most central

15In the case of “active” Taylor rules, Assumption 1 (that nominal interest rates are bounded) is violated, which

implies that a deterministic run would not exist. However, stochastic runs would continue to exist if preferences

are such that the present value of seigniorage revenues remains finite, as discussed in the appendix.
16As an example, Atkeson et al. [3], following the methods in Bassetto [4], devise more sophisticated strategies

to achieve unique implementation by reverting to money supply rules when the inflation rate deviates from its

target. But, as is well known (see e.g. Woodford [19]), money supply rules may also be subject to multiple

equilibria. Alternatively, uniqueness can be attained by strategies where currency is explicitly backed by fiscal

revenues, as in the fiscal theory of the price level.

19



banks did not set a fixed rate at which they were willing to trade with the private sector, but

rather they relied on controlling the monetary base day to day through open-market operations

to achieve their target; this might be the reason we have not observed any of the runs described

here in the recent past.

If the interest-rate rules adopted by central banks in the past were mere targeting rules, and

not true reaction functions, our analysis still provides several new insights:

• A more complete specification of the low-level reaction function is essential to understand

how central banks successfully kept inflation in check and prevented runs. Most likely, this

did not involve passively supplying the money required to achieve the interest rate target,

which would be equivalent to the strategies described below, but would instead be closer

to the “twin-pillar doctrine,” as discussed in Lucas [13].

• The advent of quantitative easing may have created a danger of runs that was not previously

present. Since 2008, the large amount of excess reserves held by commercial banks has

implied that the chief instrument to attain the interest-rate target is the rate paid by the

central bank on excess reserves. Paying interest on reserves is also an essential element of

the planned exit strategy, while central banks gradually reduce the size of their balance

sheet (see e.g. Bernanke [7]). The strategy of paying interest on reserves is well captured by

our section 4.1 if we simply reinterpret Bt as the central bank’s own interest-bearing debt

(excess reserves), rather than the entire stock of government debt. By relying on interest-

on-reserves as its primary tool to achieve the interest-rate target, a central bank stands

ready to exchange cash for reserves at the given interest rate (which can be a function of

anything that the central bank has observed in the past): this is precisely the strategy that

creates the possibility of a run of the type that we discussed.

• The Federal Reserve System faced exit from a situation of large excess reserves held by

the banking sector once before, in the 1940s. Eichengreen and Garber [10] argue that the

Fed controlled liquidity during those years by changing reserve requirements, which then

allowed it to stabilize inflation expectations and therefore support stable interest rates.
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To the best of our knowledge, changes in reserve requirements have not been cited as one

of the tools that will be adopted during the exit from quantitative easing. Our analysis

suggests instead that they would be an essential tool in preventing runs on the interest

rate set for excess reserves and the associated inflationary consequences.

4.3 Debt and the Severity of Runs

In characterizing the equilibria of Section 3, where bounds to open-market operations are disre-

garded, the depth of the bond market targeted by the central bank plays no role. This changes

when bounds are introduced. We explore here two ways in which this may be relevant for the

conduct of monetary policy.

The presence of runs generates a new channel of interaction between monetary and fiscal

policy. When we restrict discussion to Ricardian fiscal policies and equilibria without borrowing

limits, fiscal policy is irrelevant in determining equilibrium consumption and labor levels. (In fact,

this is the entire point of Ricardian equivalence.) When limits are present and the equilibrium

features runs, the consequences of a run will be more severe, the greater the pool of bonds that

is available to be monetized. As an example, consider the run equilibrium of the section 4.1,

but with a different tax policy. In particular, instead of Tt = .5(Bt−1 + Mt−1) − 1.12Pt−1, let

Tt = .6(Bt−1 +Mt−1)− 1.12Pt−1. This leaves consumption and output unchanged in the no-run

equilibrium, but decreases the steady state level of debt from 1.5 to 1.09. Now, at date s (when

the run occurs), Bs = 0 (as before), but since Bs−1 is now lower, there is less debt to convert

into money, and thus the money rises less from period s − 1 to period s. In this new example,

Ps rises from 1 to 3.08 (instead of rising to 4.08), Ms rises from .96 to 2.04 (instead of rising to

2.46), Cs falls from .96 to .66 (instead of falling to Cs = .6), and R̂s rises to 2.22 instead of rising

to 3.28. Overall, that the increase in the money supply is smaller due to the smaller date s− 1

debt causes smaller real effects (on consumption and output) from the run.

Rather than relying on the fiscal authorities to restrict the pool of available bonds, an alter-

native strategy for the central bank to mitigate the consequences of a run is to peg rates on only

a subset of the bonds. In practice, this is a relevant scenario for at least two reasons:
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1. In the real world, there is long-term debt, whose price is not directly targeted by the central

bank;

2. It is unlikely that the central bank would be willing to monetize the entire amount of

government debt; rather, the bound after which a CB would stop accommodating a run is

likely to be tighter.

Here, we consider the case in which there are two types of bonds, “red” bonds and “blue”

bonds, both with one-period maturity, whose only difference stems from their treatment by the

central bank.17 We assume that, when asset markets open, the central bank sets the interest rate

on red bonds, being willing to purchase or sell them at a rate Rt (which may depend on past

history, as before). In contrast, blue bonds are auctioned. From the fiscal perspective, red bonds

and blue bonds are identical: both constitute a promise to deliver a dollar to the holder at the

beginning of the subsequent period. We assume that taxes are set according to a fiscal policy

rule that satisfies Assumptions 2 and 3, where Bt refers to the total amount of bonds (red and

blue). In addition, we need to specify a rule that describes the supply of blue bonds at auction,

as a function of past history. Letting BB
t be the amount of blue bonds being auctioned in period

t and maturing in period t+ 1, we assume that this rule satisfies the following assumption:18

Assumption 4

0 ≤ BB
t < Pt−1G+Bt−1 +Mt−1 −

βPt−1uy

uy(G)
− Tt. (33)

It is straightforward to prove that Assumption 4 is sufficient for the existence of an interior

equilibrium, in which private agents hold a strictly positive amount of red bonds. The allocation

and price system in this equilibrium coincides with the one computed in Section 3. In this

equilibrium, blue bonds, red bonds, and privately-issued bonds are perfect substitutes from the

household perspective, and trade at the same interest rate. That the central bank targets a

narrower segment of the bond market is thus immaterial for its ability to control inflation and

real activity.

17This is helpful in keeping notation simple, but our analysis would apply equally well to debt of different

maturities, where the central bank sets the interest rate on some maturities and not others.
18Assumption 3 ensures that the interval for BBt is nonempty after all histories.
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In the event of a run, the presence of blue bonds makes a difference. Households again

perceive blue bonds, red bonds, and privately-issued bonds as perfect substitutes. But if a run

occurs in period t, the interest rate Rt sanctioned by the central bank for red bonds is lower

than the private-sector rate R̂t, and consequently households do not buy any red bonds. At the

same time, if a positive amount of blue bonds is offered at auction, households will bid for them,

at the interest rate R̂t. The evolution of money supply in period t will thus be governed by the

following equation:19

Mt = Pt−1G+Mt−1 +Bt−1 −
BB
t

1 + R̂t

. (34)

Ceteris paribus, the sale of blue bonds reduces the monetization of maturing government debt,

alleviating the consequences of the run. We can illustrate this point using our numerical example

once again. Let all the parameter values, the initial conditions, and the rules for Tt and Rt be

those of Section 4, but assume that, in each period, blue bonds are supplied according to the

following rule: BB
t = .4(Bt−1 +Mt−1), so that, in steady state, blue bonds represent roughly 2/3

of government debt. In this case, if a run occurs in period s, government debt Bs does not drop

from 1.51 to 0, but to 0.99. Because of this, the increase in money supply is more contained:

money supply rises from .96 to 2.18 (rather than 2.46). This in turn alleviates the effect on

consumption, that falls from .96 to .64 (rather than .6), on the nominal interest rate (rising to

2.56 rather than 3.28), and prices (rising on impact to 3.52 rather than 4.08).20

The blue bond-red bond model suggests that a central bank would be well advised to peg

the interest rate in a narrow segment of the market, rather than across the entire spectrum of

available bonds. When no run occurs, the two strategies implement the same set of equilibria.

But, when the risk of runs is present, the consequences of a broad peg are more acute than those

of a policy that sets the price in a narrower market. This conclusion provides a rationale for

the widespread practice among central banks to set interest rate targets only for very short-term

19This equation is derived from (1), by assuming that in the event of a run red bonds are 0 and thus Bt = BBt .
20At first blush, the effect of blue bonds on the allocation and prices may seem surprisingly small, considering

that they represent 2/3 of government debt in steady state. This happens because, according to the rule that we

specified, the government auctions a fixed nominal future repayment. Given the very high nominal interest rates

that prevail in a run, the real revenues raised by the auction in the event of a run are comparatively modest.
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rates, rather than trying to impose an entire yield curve on the market. Even in recent times,

when several central banks have tried to affect the yield curve by policies of “quantitative easing,”

it is noteworthy that they chose to do so by setting an interest rate target for the short end, and

a quantity target for their purchases of longer-term securities.21 (It is also noteworthy that the

Fed’s attempt to peg the entire yield curve in the 1940’s ultimately led the Fed to be the sole

purchaser of short-term Treasury debt.)

5 Discussion

In this paper, we have shown that considering bounds on open market operations may be crucial

in determining the size of the set of monetary equilibria under interest rate rules. Policies which

have unique equilibria in environments with no bounds may instead have many new equilibria

when bounds are introduced. The nature of these new equilibria depends on the specific bounds

that the central bank sets: inflation will be much higher if the central bank stands ready to

monetize the entire government debt at a given rate than in the more plausible scenario where

the interest-rate peg is abandoned at a tighter bound.

We should also emphasize that recent large excess reserves by banks have the potential of

making mitigating such runs more difficult. Put simply, it is one thing for the central bank to

stop buying the debt of the fiscal authority to stop a run. It is altogether a different thing for a

central bank to refuse to honor its own debts. Suddenly increasing the reserve requirements of

banks to fight a run may be seen as the central bank refusing to honor its commitment to deliver

currency on demand to the holder of the reserve.

Can such runs actually happen? In the simple setup that we described, in the event of a run,

households force the central bank to its bound in a single period. In practice, the unfolding of a

run would be slowed by a number of frictions that may prevent all households from running at

once with all of their nominal wealth; these frictions may take the form of limited participation

in bond markets (see e.g. Grossman and Weiss [11], Alvarez and Atkeson [1], and Alvarez,

21In our simple model, of course, quantitative easing would have no effect on the equilibrium allocation and

prices. But our results would apply equally well to richer environments where a preferred habitat is present.
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Atkeson, and Edmond [2]), noisy information about other households’ behavior, or the presence

of long-term bonds whose price is not pegged by the central bank. We leave the modeling of

more slowly evolving runs to future research.
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APPENDIX

A Analysis of the General Stochastic Case

A.1 The Environment with Sunspots

We modify the environment described in section 2 by introducing a sunspot variable st in each

period. Without loss of generality, st is i.i.d. with a uniform distribution on [0, 1]. Its realization

at time t is observed before any action takes place. All variables with a time-t subscript are

allowed to be conditional on the history of sunspot realizations {sj}tj=1.

We assume that the government only trades in one-period risk-free debt, but we allow the

households to trade state-contingent assets, and we denote by at+1 the amount of nominal claims

that a household purchases in period t maturing in period t + 1 (conditional on the sunspot

realization st+1). Without uncertainty, at+1 ≡ b̂t. Equation (3) is thus replaced by

Et[at+1Qt+1] +
bt

1 +Rt

= Pt−1(yt−1 − ct−1)− Tt −mt +mt−1 + at + bt−1, (35)

where Qt+1 is the stochastic discount factor of the economy. For the later analysis, it is convenient

to define R̂t := 1/EtQt+1− 1. This definition is consistent with the notation that we used in the

main text for the deterministic case: R̂t is the one-period nominal risk-free rate in the market

for private credit.

In period 0, the household budget constraint becomes

E0[a1Q1] +
b0

1 +R0

= W−1 −m0 − T0. (36)

The no-Ponzi condition (6) generalizes to

at+1 + bt ≥ At+1 := −Pt −mt + Tt+1+

Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)[
Tt+j+1 − Pt+j −max

b̂∈Bt
[b̂

(
Et+jQt+j+1 −

1

1 +Rt+j

)
]

]}
.

(37)

With these changes, an equilibrium is defined as in section 3; the market-clearing condition

(11) becomes

At+1 = 0. (38)
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The conditions characterizing an equilibrium are given by (10), (15), (21), (38), the stochastic

Euler equation
uy(Ct+1, Yt+1)

uy(Ct, Yt)
=
Qt+1(1 + R̂t)

β(1 + R̂t+1)

Pt+1

Pt
, (39)

the transversality condition, which in the stochastic case becomes22

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
(At+1 +Bt − At+1)

]
= 0, (40)

and finally the no-arbitrage condition for interest rates. This last condition states R̂t = Rt when

B = R and (20) when Bt ≥ 0 is imposed.

In the main text, we adopted Assumption 1 to ensure that seigniorage revenues remain

bounded and hence that the present-value budget constraint of the households is well defined.

When Assumption 1 is violated, such as in the case of Taylor rules that have no upper bound

on the interest rate, an alternative (sufficient) condition that we can adopt is given by

Assumption 5

lim
R→∞

ĉ(R)(1 +R) = 0. (41)

Notice that Assumption 5 is incompatible with the sufficient condition (27) in Proposition 1.

When Assumption 5 is adopted, often perfectly anticipated runs will fail to exist (but probabilistic

runs will continue to occur).

A.2 Verification of the Transversality and no-Ponzi conditions

Proposition 2 Let a sequence {Pt, Qt+1, Tt, Rt, Ct, Yt, At+1, Bt,Mt}∞t=0 satisfy equations (10),

(11), (15), (21), (35), (36),and (39), and let fiscal policy satisfy Assumption 2. Assume also

that either Assumption 1 or Assumption 5 holds. Then equations (37) and (40) hold.

We prove this proposition in 3 steps. First, we prove that At+1, as defined in (37), is well

defined. Second, we prove that (40) holds, and finally that (37) holds.

22See Coşar and Green [9].
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A.2.1 At+1 is well defined.

We work backwards on the individual components of the sum defining At+1 in equation (37).

From (20) we obtain23

max
b̂∈Bt

[b̂

(
Et+jQt+j+1 −

1

1 +Rt+j

)
] = 0. (42)

Next, use (39) to get

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ûy(0)Et+1

{( j∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)

}
=

ûy(0)Et+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)
Et+jQt+j+1

}
=

ûy(0)Et+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)(1 + R̂t+j)

}
=

βûy(0)Et+1

{(j−2∏
v=1

Qt+v+1

) Pt+j−1

ûy(R̂t+j−1)(1 + R̂t+j−1)

}
=

βj−1
ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)

(43)

Equation (43) implies24

Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
, (44)

which proves that the second piece of the infinite sum defining At+1 is well defined. From

Assumption 2, we have |Tt+j+1| ≤ TPt+j + |Bt+j|, and so∣∣∣∣∣Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Tt+j+1

}∣∣∣∣∣ ≤
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)[
Pt+jT + |Bt+j|

]}
. (45)

We analyze equation (45) in pieces. Using (44), we have

T
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ T ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
. (46)

23If the borrowing limit is not 0, the expression in (42) would not be 0, but it can be proven that At+1 is

nonetheless well defined.
24We can interchange the order of the sum and the expectations since all elements of the sum have the same

sign.
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To work on the sum of debt, notice first that equation (1) continues to hold even if we replace

Rt by R̂t. This is because Bt = 0 in the periods and states of nature in which R̂t > Rt. If

Assumption 1 is retained, define S := maxR∈[0,R][ĉ(R)(1 + R)]; alternatively, if Assumption 5 is

adopted instead, define S := maxR∈[0,∞][ĉ(R)(1 +R)]. Finally, notice that Assumption 2 implies

|Tt+j −Bt+j−1| ≤ Pt+j−1(T +B) + (1− α)|Bt+j−1|. (47)

We can then use (1), (15), (39), and (47) to get

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
= Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G−
Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1 − ĉ(R̂t+j)Pt+j

]∣∣∣∣} =

Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G− Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1−

βPt+j−1ĉ(R̂t+j)(1 + R̂t+j)ûy(R̂t+j)

ûy(R̂t+j−1)

]∣∣∣∣} ≤
Et+1

{(j−1∏
v=1

Qt+v+1

)[(
G+ T +B +

βûy(0)S

ûy(R̂t+j−1)
+ ĉ(0)

)
Pt+j−1+

(1− α) |Bt+j−1|
]}
.

(48)

Using (43) and (48), we obtain (for j > 1)

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤ Et+1

{ j∑
s=2

(1− α)j−s
[(s−1∏

v=1

Qt+v+1

)
·

[(
G+ T +B +

βûy(0)S

uy(R̂t+s−1)
+ ĉ(0)

)
Pt+s−1

]}
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

≤

ûy(0)Pt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)

j∑
s=2

[
βs−2(1− α)j−s

]
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

=

ûy(0)Pt+1 [(1− α)j−1 − βj−1]
(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)(1− α− β)

+ (1− α)j−1
|Bt+1|

1 + R̂t+1

.

(49)
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Using (49) we get

∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤

ûy(0)Pt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)α(1− β)

+
|Bt+1|

α(1 + R̂t+1)

(50)

Collecting all terms, equations (44), (46), and (50) imply

|At+1| ≤
ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+

|Bt+1|
α(1 + R̂t+1)

+ Pt
[
1 + ĉ(0) + T

]
+ |Bt|.

(51)

A.2.2 Equation (40) holds.

Use (49) to obtain

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
≤

ûy(0)P0

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂0)(1 + R̂0)(1− α− β)

lim
t→∞

[
(1− α)t − βt

]
+

|B0|
1 + R̂0

lim
t→∞

(1− α)t = 0.

(52)

We then use (39), (51), and (52) to prove

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|At+1|

]
≤ ûy(0)

1− β

[
1 + T+

(
1

α

)(
G+ T +B + βS + ĉ(0)

)]
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
Pt+1

ûy(R̂t+1)

]
+

1

α
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
|Bt+1|

]
+ ûy(0)

[
1 + ĉ(0) + T

]
lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
Pt

ûy(R̂t)

]
+

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
=

ûy(0)P0

(1 + R̂0)ûy(R̂0)

{
β

1− β

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+ 1 + ĉ(0) + T

}
lim
t→∞

βt = 0.

(53)
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Equations (11), (52), and (53) imply (16).

A.2.3 Equation (37) holds.

The same steps used to prove (52) can also be used to prove

lim
j→∞

Et

{(j+1∏
v=1

Qt+v

)
|Bt+j|

}
= 0. (54)

As previously noted, equation (1) continues to hold even if we replace Rt with R̂t, since the two

values only differ when Bt = 0. We can then iterate (1) forward, taking expectations conditional

on time-t+ 1 information, and use (54) to obtain

Bt = Mt+1 −Mt − Tt+1 − PtG+ Et+1

{ ∞∑
s=1

[( s∏
v=1

Qt+v+1

)
·

(
Mt+s+1 −Mt+s + Tt+s+1 − Pt+sG

)]}
> At+1,

(55)

which completes the proof. Equation (55) relies on G < 1 (government spending must be less

than the maximum producible output) and on

Et+s [Mt+s(1−Qt+s+1)] =
R̂t+sMt+s

1 + R̂t+s

≥ 0.

This completes the proof of proposition 2.

B Other Equilibria of the Stochastic Economy

The perfectly anticipated run described in section 4.1 relies on strong assumptions about pref-

erences. As an example, if we assume that preferences are given by u(ct, yt) = c1−σ

1−σ − y
ψ, such

an equilibrium will always fail to exist for σ ≤ 1, since a solution to (26) cannot be found (with

R̂ > R). Nonetheless, even for these preferences other equilibria that feature runs exist, provided

that the occurrence of a run is sufficiently small. Moreover, these equilibria exist even when the

central bank sets no upper bound to its interest rate (provided, of course, that preferences are

such that the present value of seigniorage remains finite).
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As is known since Sargent and Wallace [15], even without considering runs, setting monetary

policy as an interest rate rule leaves open the possibility of sunspot equilibria. But equilibria with

runs are qualitatively very different from these sunspot equilibria. In a standard environment

where B = R and no runs can occur, the nominal interest rate is closely related to expected

(inverse) inflation, so that setting the nominal interest rate still allows the central bank a con-

siderable degree of control, at least over long periods of time. This relationship between nominal

interest rates and expected inflation is lost in equilibria that feature runs, and the dangers from

relying purely on the nominal interest rate as a policy instrument are correspondingly more

acute.

B.1 Sunspot Equilibria with no Runs

We can construct sunspot equilibria recursively as follows. For any arbitrary initial price P0, the

variables R0, T0, C0, Y0, M0, and B0 are determined as in section 3. The time-0 variables and

the policy rules determine R1 and T1, also as in section 3, which then pin down C1 and Y1; this

implies that C1 and Y1 are known as of period 0.25 But now the deterministic Euler equation

(14) is replaced by its stochastic counterpart, (39). In an equilibrium with no runs, we know

that R̂1 = R1. Substituting this into (39), rearranging and taking expected values we obtain

E0
P0

P1

=
uy(C0, Y0)

βuy(C1, Y1)(1 +R1)
. (56)

We can then pick P1 as an arbitrary function of the sunspot s1, subject to the single restriction

(56) on its expected value. Given the realization of s1 and thus P1, equation (15) determines

M1, equation (1) yields B1, and the process can be repeated for period 2.

Provided that either Assumption 1 or 5 hold, Proposition 2 ensures that the transversality

and no-Ponzi conditions are satisfied for the sequences that we constructed: as discussed in

Cochrane [8], in this model only fiscal policy can provide a boundary condition to rule out some

of these arbitrary paths.26

25We assume that the monetary and fiscal authorities follow deterministic rules; this is immaterial to our results.
26Notice that uniqueness results based on the failure of both Assumptions 1 and 5 relate to fiscal policy: some

sunspot paths can be ruled out because seigniorage revenues become infinite, making it impossible for fiscal policy
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While sunspot equilibria imply that inflation is indeterminate, equilibria that feature no runs

still display remarkable similarities across each other. As an example, suppose that monetary

policy sets Rt ≡ 1/β−1 unconditionally. It is straightforward to verify that equation (17) implies

a constant allocation, and that (39) implies (18): the expected real value of a dollar remains

constant. Equation (18) and the assumption of a uniform bound on Pt/Pt+1 in turn imply (19).

B.2 A Probabilistic Run in Period s > 0.

We now construct an equilibrium where a run occurs in period s with probability φ ∈ (0, 1).

As was the case in section 4.1, fiscal policy plays an important role in ensuring that households

have enough nominal wealth to acquire their desired money balanced, and we assume that (25)

holds. Starting from an arbitrary initial price level P0, we construct recursively a deterministic

allocation and price system up to period s− 1 as we did in section 4.1. For period s, we consider

an equilibrium with just two realizations of the allocation and price level: with probability φ,

the price level is PH
s and a run occurs (R̂H

s > Rs), and with probability 1 − φ the price level is

PL
s and the private nominal interest rate coincides with the public one: R̂L

s = Rs. In order for

R̂H
s > Rs to be an equilibrium, the constraint Bs ≥ 0 must be binding, which implies

Ms−1 +Bs−1

Ps−1
+G =

Ts
Ps−1

+ ĉ(R̂H
s )

PH
s

Ps−1
. (57)

Given any arbitrary value R̂H
s > Rs, and given the predetermined time-s − 1 variables and the

fiscal policy rule for Ts, equation (57) can be solved for PH
s /Ps−1, the level of inflation that will

occur if a run on the interest rate peg materializes in period s. As was the case in section 4.1, since

ĉ is a decreasing function and taxes satisfy (22), inflation in the event of a run will necessarily

be strictly greater than inflation in the equilibrium in which no run can take place.

To determine PL
s /Ps−1, we rely on the household Euler equation (39). Rearranging terms

and taking the expected value as of period s− 1, we obtain

β

[
φûy(R̂

H
s )(1 + R̂H

s )
Ps−1
PH
s

+ (1− φ)ûy(Rs)(1 +Rs)
Ps−1
PL
s

]
= ûy(Rs−1). (58)

to be Ricardian.
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Generically, this equation can be solved for PL
s /Ps−1. However, we need to ensure that the

solution is nonnegative, and that it entails nonnegative bond holdings, i.e., that

Ms−1 +Bs−1 + Ps−1G ≥
Ts
Ps−1

+ ĉ(Rs)
PL
s

Ps−1
(59)

A sufficient condition for both is that φ be sufficiently small.27

If ûy does not decline too fast with R, then equation (58) will imply that PL
s /Ps−1 is lower

than in the deterministic equilibrium with no runs. Because of this, the possibility of a run may

cause the central bank to undershoot inflation while the run is not occurring, further undermining

inflation stability.

From period s onwards, the characterization of the equilibrium proceeds again deterministi-

cally and recursively, separately for the branch that follows PH
s and PL

s ; this follows the same

steps as in section 4.1. The construction of the equilibrium is completed by Proposition 2 that

ensures that the transversality and no-Ponzi conditions are satisfied for the sequences that we

constructed.

The nature of the equilibrium that we constructed is quite different from those of section B.1.

To see this more in detail, consider again the case in which the central bank sets Rt ≡ 1/β − 1

in every period. It is now no longer true that consumption is then fixed. If a run occurs, the

relevant shadow cost of consumption in equation (21) is RH
s , and consumption drops. This also

implies that consumption is not predetermined, but it depends on the realization of the sunspot.

Moreover, using (21) and (39), we obtain

uc(Cs−1, Cs−1 + Ḡ) = β2(1 +Rs−1)Es−1

[
(1 + R̂s)

Ps−1
Ps+1

uc(Cs+1, Cs+1 + Ḡ)

]
.

With the constant interest rate above, and taking into account that the run occurs in period s

only, consumption is the same in periods s− 1 and s+ 1 and we thus find

1 = βEs−1

[
(1 + R̂s)

Ps−1
Ps+1

]
. (60)

27Note that, as φ→ 0, PLs /Ps−1 converges to the inflation in the deterministic equilibrium with no runs, where

(22) guarantees that (59) holds.
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We know that β(1 + R̂s) ≥ β(1 + Rs) = 1, and the inequality is strict with probability φ. This

implies

1 > Es−1
Ps−1
Ps+1

.

When runs can occur, setting the nominal interest rate is not sufficient to even control the

expected real value of a dollar.

B.3 Recurrent Runs

We can generalize the example of subsection B.2 to construct equilibria in which runs can occur

in any number of periods. As an example, there are equilibria in which runs occur with i.i.d.

probability φ in each period. Once again, we construct the allocation and price system recursively,

as we did in section B.2. In each period t, the history of runs up to period t−1 is taken as given,

and (57) and (58) are used to solve for PH
t /Pt−1 and PL

t /Pt−1.

To contrast these equilibria with the usual sunspot equilibria where no runs occur, consider

again the interest rule Rt ≡ 1/β − 1, and assume that preferences are linear in leisure, i.e.,

u(c, l) = v(c)− l. In this case, equation (39) becomes

1 = βEs

[
(1 + R̂s+1)

Ps
Ps+1

]
=⇒ 1 > Es

Ps
Ps+1

.

We then get

lim
T→∞

1

T

T∑
s=1

Ps
Ps+1

< 1 almost surely:

if runs are a recurrent event, average inverse inflation is necessarily less than 1 over long horizons.
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