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counterfactuals under alternative policy rules. If the researcher is willing to pos-

tulate a loss function, our results furthermore allow her to recover an optimal

policy rule for that loss. Under our assumptions, the derived counterfactuals and

optimal policies are fully robust to the Lucas critique. We then discuss strate-

gies for applying these insights when only a limited amount of empirical causal

evidence on policy shock transmission is available.
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1 Introduction

An important function of macroeconomics is to predict the consequences of changes in policy.

In this paper we revisit the role that evidence on policy shocks—that is, surprise deviations

from a prevailing rule—can play in helping macroeconomists learn about policy rule counter-

factuals. Existing work mainly uses such policy shocks in two ways. First, in what Christiano

et al. (1999) call the “Lucas program”, researchers first estimate the causal effects of a policy

shock in the data, and then construct a structural macro model that matches these effects.

This model is then trusted as a laboratory for predicting the effects of changes in policy

rules. An alternative approach, proposed by Sims & Zha (2006), instead relies only on the

estimated policy shock: the economy is subjected to a new policy shock at each date t, with

the shocks chosen so that, t-by-t, the counterfactual rule holds.1 Appealingly, this strategy

does not require the researcher to commit to a model; on the other hand, it is subject to the

Lucas critique: the private sector is surprised by the new policy shock at each t, rather than

knowing at the initial date 0 that the policy rule has changed forever.

The contribution of this paper is to propose a method that constructs policy counterfac-

tuals using empirical evidence on multiple distinct identified policy shocks, rather than just

a single one. Like Sims & Zha (2006), the method does not rely on a particular parametric

model structure; at the same time, for a family of models that nests many of those popular

in the Lucas program, it yields counterfactuals that are robust to the Lucas critique. At the

heart of our methodology lies an identification result. We prove that, for a relatively general

family of macro models, the causal effects of contemporaneous as well as news shocks to a

given policy rule are sufficient to construct Lucas critique-robust counterfactuals for alterna-

tive policy rules. The core intuition is that, by subjecting the economy to multiple distinct

policy shocks at date 0 (rather than a new value of a single shock at each t ≥ 0), we are able

to enforce the contemplated counterfactual policy rule not just ex post along the equilibrium

path (as done in Sims & Zha), but also ex ante in private-sector expectations. Under our

assumptions, this suffices to sidestep the Lucas critique. While our exact identification result

requires knowledge of the causal effects of a very large number of policy shocks, our proposed

empirical method can be applied in the empirically relevant case of a researcher with access

to only a couple of distinct shocks. We demonstrate the usefulness of the proposed approach

with several applications to monetary policy rule counterfactuals.

1See Bernanke et al. (1997), Leeper & Zha (2003), Hamilton & Herrera (2004), Eberly et al. (2020), and
Brunnermeier et al. (2021) for important extensions and recent applications of this method.
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Identification result. The first part of the paper establishes the identification result.

Our analysis builds on a general linear data-generating process, with one key added restric-

tion: policy is allowed to affect private-sector behavior only through the current and future

expected path of the policy instrument.2 For example, for monetary policy, the private sector

only cares about the expected future path of the nominal rate, and not whether this path is

the result of the systematic component of policy—i.e., the policy rule—or due to shocks to

a given rule. We consider an econometrician that lives in this economy and observes data

generated under some baseline policy rule, where that baseline rule is subject to shocks. The

econometrician then wishes to predict the effects of a switch to some alternative policy rule.

Using standard time-series methods, she can estimate the causal effects of shocks to the

prevailing policy rule (e.g. Ramey, 2016; Stock & Watson, 2018). Our identification result

states that, if the econometrician has successfully estimated the effects of contemporaneous

shocks to the policy rule as well as the effects of news about deviations from the rule at

all future horizons, then those estimates contain all the information she needs to construct

the counterfactual. Key to the proof is our assumption on how policy rules are allowed to

shape private-sector behavior. Since only the expected future path of the policy instrument

matters, any given rule—characterized by the instrument path that it implies—can equiva-

lently be synthesized by adding well-chosen shocks to the baseline rule—all that is required

is that those date-0 policy shocks imply the same instrument path from date-0 onwards

as the counterfactual rule. Finally we show that, if additionally given a loss function, our

econometrician can leverage the same logic to also characterize optimal policy.3

How general is the setting of this identification result? Our two key model restrictions

are (i) linearity and (ii) the way that the policy instrument is allowed to shape private-sector

behavior. We show that the key property (ii) is a feature shared by many standard linearized

business-cycle models, including those with many frictions (Christiano et al., 2005), shocks

(Smets & Wouters, 2007), and even rich micro heterogeneity (Kaplan et al., 2018; Ottonello

& Winberry, 2020). Perhaps the most popular class of models violating our restriction is

those with an asymmetry of information between policymaker and private sector, as in Lucas

2More precisely, the policy rule is allowed to matter only through (a) the expected path of the instrument
and (b) equilibrium selection. Our assumptions on equilibrium existence and uniqueness for the different
rules that we consider address equilibrium selection.

3To be clear, our identification results are entirely silent on the mapping from equilibrium outcomes to
welfare, and so on the shape of loss functions. In particular, fully specified structural models are one way to
arrive at such objective functions. However, given that objective functions in practice are often derived from
a legislated mandate rather than economic theory, we believe it is useful to have a method of calculating
optimal policy for an objective function that is taken as given.
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(1972). In such models, private-sector agents solve a filtering problem, and the policy rule

affects both the dynamics of the policy instrument as well as the information contained in

that policy choice. In addition to this restriction (ii) on models, our linearity assumption (i)

also limits the set of policy rule counterfactuals to which our method can be applied: our

approach can be used to compare different cyclical stabilization policies (e.g., monetary or

fiscal feedback rules), but is less well-suited to study policies that alter the steady state (e.g.,

changes in the inflation target or in the long-run fiscal system).

Counterfactuals with finitely many shocks. The main challenge to operational-

izing our identification result is that empirical evidence on the effects of policy shocks is

limited. Our theory says that we need to select a linear combination of time-0 policy shocks

that perturbs the current and expected future path of the policy instrument exactly like the

contemplated counterfactual rule. This is a daunting informational requirement: in general,

to synthesize the effects of any possible policy instrument sequence of some length T , we

would need access to T distinct identified policy shocks. While existing empirical evidence

falls short of this ideal, recent research has however made progress on identifying the effects

of at least some distinct policy shocks with rather different implications for future expected

policy paths.4 How much can be done with this available evidence?

The idea of our empirical method is to use the available evidence on policy shock trans-

mission to provide a best Lucas critique-robust approximation to the desired policy coun-

terfactual. Given estimates of the causal effects of some finite number ns of distinct policy

shocks, we face the challenge that our population identification result cannot be applied

immediately: the counterfactual policy rule needs to hold in ex post equilibrium and ex ante

expectation for a large number T of periods, but we only have access to ns � T shocks—

more equations than unknowns. Our proposal is simply to choose the linear combination

of date-0 shocks that enforces the desired counterfactual rule as well as possible, in a stan-

dard least-squares sense. Crucially, since this approach involves no ex post surprises dated

t = 1, 2, . . . , it is—under our assumptions—fully robust to Lucas critique concerns. Whether

or not this best approximation is then in fact a sufficiently accurate representation of the

desired counterfactual rule is invariably an application-dependent question.

4For monetary policy, different canonical shocks (e.g. Romer & Romer, 2004; Gertler & Karadi, 2015)
lead to rather different responses of short-term rates. Other identification strategies explicitly aim to identify
shocks at different parts of the yield curve (e.g. Gürkaynak et al., 2005; Inoue & Rossi, 2021). For fiscal policy,
Ramey (2011) and Ramey & Zubairy (2018) estimate the effects of short-lived as well as more persistent
shocks. Mertens & Ravn (2010) and Leeper et al. (2013) are similarly focussed on spending dynamics.
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We demonstrate the uses and limitations of our method through several examples. Our

object of interest is the propagation of a contractionary investment technology shock under

different monetary rules. As the inputs to our method, we take the causal effects associated

with two popular monetary policy shock series: those of Romer & Romer (2004) and Gertler

& Karadi (2015). Armed with these causal effects, we apply our method to construct coun-

terfactuals for alternative policy rules that: target the output gap; enforce a conventional

Taylor-type rule; peg the nominal rate of interest; target nominal GDP; and minimize a sim-

ple dual-mandate loss function.5 We find that, with the exception of the nominal rate peg,

the counterfactual rules can be enforced to a quite high degree of accuracy. Our conclusion

is that, at least for our particular investment shock, several rather different monetary policy

rule counterfactuals can already be characterized quite sharply simply by combining existing

pieces of empirical evidence on monetary policy shock transmission.

Finally, we note that our use of multiple distinct policy shocks also suggests a refinement

of the original Sims & Zha procedure. In their approach, a researcher sets the value of a single

policy shock at each t to enforce the counterfactual rule ex post, along the equilibrium path.

Access to multiple shocks increases her degrees of freedom, allowing the rule to be enforced

more with date-0 and less with date-t > 0 shocks, thus at least somewhat reducing the bite

of expectations-related Lucas critique concerns. We use our monetary policy applications to

also illustrate this hybrid of our method and the original proposal of Sims & Zha.

Counterfactuals with (partial) model structure. In some applications, it will

not be possible to closely approximate the contemplated counterfactual rule through existing

policy shock evidence. In that case a natural solution is to use a structural model to match

the existing shock evidence, and then use the model to extrapolate to the effects of all other

policy (news) shocks—standard impulse response matching as in e.g. Christiano et al. (2005),

just now re-interpreted through the lens of our identification result. Our final contribution

is to shed some light on how this extrapolation is achieved in “typical” models. We provide

theoretical and quantitative results revealing that, in models that are popular in business-

cycle analysis, the causal effects of contemporaneous and news policy shocks are often tightly

linked. Our starkest example here is to show that—for a particular but important class of

monetary policy counterfactuals—the required extrapolation of policy shock causal effects

depends only on one model block: the Phillips curve. Researchers can use identified policy

5The fixed-rate counterfactual may also be interpreted as controlling for the endogenous response of
monetary policy—a very popular counterfactual in Sims & Zha-type analyses.
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shocks to estimate a parametric Phillips curve relationship, use the restrictions embedded in

this Phillips curve to extrapolate from the identified shock to the effects of all other policy

(news) shocks, and then construct rule counterfactuals using our identification results. We

illustrate this observation with a return to some of our monetary policy rule applications.

Literature. Our identification result provides a bridge between the “Lucas program” as

discussed in Christiano et al. (1999) and the empirical strategy of Sims & Zha (2006). By

using multiple policy shocks at date 0 (rather than a single one at each t ≥ 0) we are able

to construct Lucas critique-robust counterfactuals without explicit model structure. Policy

shock causal effects are thus model-robust “sufficient statistics” in the sense of Chetty (2009)

and Nakamura & Steinsson (2018). Our results on causal effect extrapolation in “typical”

macro models furthermore imply that individual policy shocks—while not sufficient statistics

for all possible rule counterfactuals—can nevertheless serve as powerful “identified moments”

(Nakamura & Steinsson, 2018) for model-based analysis of policy counterfactuals.

Our work also relates to other more recent contributions to counterfactual policy analysis.

Beraja (2020) similarly forms policy counterfactuals without relying on particular parametric

models. His approach relies on stronger exclusion restrictions in the non-policy block of the

economy, but given those restrictions requires less empirical evidence on policy news shocks.

Barnichon & Mesters (2021) use policy shock impulse responses to test the optimality of

some given observed policy rule. We show that, under relatively mild additional structural

assumptions, such policy shock impulse responses can in fact be used to fully characterize

optimal policy rules for a given policymaker loss function.6

Finally, our identification result builds on recent advances in solution methods for struc-

tural macro models. At the heart of our analysis lies the fact that equilibria in such models

can be characterized by matrices of impulse response functions (Auclert et al., 2021). As in

Guren et al. (2021) and Wolf (2020), we connect this sequence-space representation to empir-

ically estimable objects. In contemporaneous and independent work, De Groot et al. (2021)

and Hebden & Winker (2021) show how to use similar arguments to efficiently compute

policy counterfactuals by generating impulse responses to policy shocks from a structural

model. Our focus is not computational—we aim to calculate policy counterfactuals directly

from empirical evidence, forcing us to confront the fact that such evidence is limited.

6Kocherlakota (2019) presents a dynamic policy game in which the policymaker can select the optimal
action via regression analysis. In his setting, the policy action does not cause the private sector to update
its beliefs about the future strategy of the policymaker. Therefore policymaker payoffs only depend on the
current policy choice and not on the future expected instrument paths that we emphasize in our analysis.
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Outline. The remainder of the paper proceeds as follows. Section 2 presents the core iden-

tification result, mapping causal effects of policy shocks to counterfactuals for policy rules.

Section 3 then introduces our empirical methodology and illustrates using applications to

several monetary policy rule counterfactuals. Section 4 discusses how, in “typical” struc-

tural models, the causal effects of policy shocks at different horizons are linked. Section 5

concludes, and supplementary results are relegated to several appendices.

2 From policy shocks to policy rule counterfactuals

We begin in Section 2.1 by presenting a stylized version of our identification argument in a

particular, familiar environment: the canonical three-equation New Keynesian model. We

then in Sections 2.2 to 2.5 extend the argument to a general class of infinite-horizon linearized

dynamic models and discuss its scope and limitations.

The main identification result is presented for a linearized perfect-foresight economy. Due

to certainty equivalence, the equilibrium dynamics of a linear model with uncertainty will

coincide with the solution to such a linearized perfect-foresight environment. We thus em-

phasize that all results presented below extend without any change to models with aggregate

risk solved using conventional first-order perturbation techniques.7

2.1 A simple example

We begin with a discussion of our identification argument in the context of a simple and

familiar model environment: the canonical three-equation New Keynesian model (Gaĺı, 2015;

Woodford, 2011). We also use this model to explain the relationship between our approach

to constructing policy counterfactuals and that of Sims & Zha (2006).

Model. The variables of the economy are two private-sector aggregates—output yt and

inflation πt—and a policy instrument—the nominal rate it. They are related through three

equations: an Euler equation and a Phillips curve as the private-sector block,

yt = yt+1 −
1

γ
(it − πt+1), (1)

πt = κyt + βπt+1 + (εt + θεt−1), (2)

7For example see Fernández-Villaverde et al. (2016), Boppart et al. (2018) or Auclert et al. (2021) for a
detailed discussion of this point.
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and a simple Taylor rule as the policy rule,

it = φπt + ν0,t︸︷︷︸
contemp. shock

+
∞∑
`=1

ν`,t−`︸ ︷︷ ︸
news shocks

. (3)

In our perfect-foresight set-up, the two private-sector equations as well as the policy rule hold

for t = 0, 1, 2, . . . . These equations feature two kinds of disturbances. First, εt is a cost-push

shock; for the illustrative analysis in this section, we will find it useful to assume that it

induces a first-order moving average wedge in the Phillips curve (2). Second, there are the

policy shocks ν`,t−`; here, ν0,t is a conventional contemporaneous policy shock, while ν`,t−`

for ` > 0 denotes a deviation from the policy rule at time t announced at t− `—an `-period

“news” shock. These policy shocks will turn out to be crucial for our identification result. As

usual, given a vector of time-0 cost-push as well as policy (news) shocks {ε0, ν0,0, ν1,0, . . . }, a

perfect-foresight transition path—or impulse response function—are paths of {yt, πt, it} such

that (1) - (3) all hold at all t.

For the subsequent analysis, the crucial property of this simple model economy is that the

coefficients in the private-sector equations (1) - (2) are independent of the policy rule—i.e.,

γ, κ and β are unaffected by changes in φ. Equivalently, private-sector behavior is affected

by policy only through the current and future values of the policy instrument it. Our general

identification analysis in Sections 2.2 to 2.5 will discuss the generality and limitations of this

crucial assumption.

Object of interest. Under the baseline policy rule, the impulse response of the economy

to a cost-push shock is given as the solution of (1) - (3) for some cost-push shock ε0 together

with ν`,0 = 0 for all `. We wish to instead characterize the behavior of this economy in

response to ε0 not under the baseline policy rule (3), but instead under some counterfactual

policy rule of the form

it = φ̃πt (4)

where φ̃ 6= φ. Note that this thought experiment supposes that the private sector perfectly

understands the change in rule: the new relation between i and π holds at t = 0, 1, 2, . . . . Our

identification result characterizes the information required to construct this counterfactual.

The identification argument. We consider an econometrician living in our simple

three-equation economy (1) - (3). Using conventional semi-structural time series methods
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(Ramey, 2016), and with access to suitable identifying assumptions or instruments, that

econometrician can in principle estimate the dynamic causal effects of the cost-push shock εt

as well as the policy shocks {ν`,t−`}∞`=0 under the baseline rule (3). Our main identification

result states that this knowledge is sufficient to predict the counterfactual propagation of

the shock εt under the alternative rule (4). While our formal result is stated and proved for

a more general class of models in Sections 2.2 and 2.3, we here provide the core intuition

using our simple three-equation model structure.

The key idea is to choose time-0 policy shocks ν`,0 to the baseline rule in order to mimic

the desired counterfactual policy rule. To develop the argument, note first that, because our

model has no endogenous state variables, the impulse response to a time-0 cost-push shock

will die out after t = 1, by our assumption on shock persistence. We collect the 2×1 transition

paths of {yt, πt, it} in response to a cost-push shock ε0 under the baseline rule as the vectors

{yyyφ(ε0),πππφ(ε0), iiiφ(ε0)}. Similarly, contemporaneous and one-period-ahead policy shocks also

have no effects after t = 1. For ` ∈ {0, 1}, we collect the corresponding 2×1 impulse responses

under the baseline rule to a policy shock ν`,0 as the vectors {Θy,ν`,φ,Θπ,ν`,φ,Θi,ν`,φ} × ν`,0;

e.g., Θy,ν`,φ is the 2×1 impulse response path of y to an `-period ahead shock to the baseline

φ-rule (3). Now consider setting the two policy shocks to values {ν̃0,0, ν̃1,0} so that, under

the baseline rule (3) and in response to the shocks {ε0, ν̃0,0, ν̃1,0}, the counterfactual rule (4)

holds at both t = 0 and t = 1 along the perfect foresight transition path; that is, we solve

the following two equations in the two unknowns {ν̃0,0, ν̃1,0}

iiiφ(ε0) + Θi,ν0,φν̃0,0 + Θi,ν1,φν̃1,0 = φ̃× [πππφ(ε0) + Θπ,ν0,φν̃0,0 + Θπ,ν1,φν̃1,0] . (5)

The left-hand side of this equation gives us the impulse response of the interest rate following

our combination of three shocks {ε0, ν̃0,0, ν̃1,0} under the baseline rule (3), while the right-

hand side does the same for inflation, just scaled by φ̃. By our informational assumptions,

the econometrician can evaluate the system of equations (5) given ε0 and for any candidate

set of the two policy shocks {ν̃0,0, ν̃1,0}. Now suppose a solution {ν̃0,0, ν̃1,0} to (5) exists and

compute the responses of {yt, πt, it} to {ε0, ν̃0,0, ν̃1,0} under the baseline policy rule. The

content of our identification result is that those impulse responses are in fact identical to the

impulse responses to ε0 alone under the counterfactual rule (4). Crucially, this alternative

computation uses only impulse responses under the baseline rule, and so in particular does

not require direct knowledge of the structural equations (1)-(3).

The intuition underlying the identification result is straightforward. Since the private

sector’s decisions only depend on the expected path of the policy instrument {i0, i1, . . . }, it
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follows that it does not matter whether this path comes about due to the systematic conduct

of policy or due to policy shocks. Equation (5) leverages this logic, looking for a combination

of date-0 policy shocks that results in the counterfactual policy rule (4) holding both at t = 0

and in expectation at t = 1.

We emphasize that this argument inherently relies on knowledge of the causal effects of

both the contemporaneous policy shock ν̃0,0 as well as the policy news shock ν̃1,0: it is only

with those two that we can enforce the counterfactual rule along the entire transition path

(which here consists of two time periods). With access only to the contemporaneous policy

shock ν̃0,0, on the other hand, the researcher could only impose the counterfactual rule at

t = 0, but not at t = 1. The method proposed by Sims & Zha (2006) is instead to subject

the economy to another new surprise contemporaneous policy shock ν̃0,1 at t = 1; while this

ex post enforces the counterfactual rule both at t = 0 and t = 1, the key difference is that the

private-sector block did not at t = 0 expect the counterfactual rule to hold at t = 1; rather,

the rule only holds at t = 1 because of yet another surprise. As a result, as long as policy

at t = 1 matters for t = 0 decisions, the constructed counterfactual will differ from the true

counterfactual {yyyφ̃(ε0),πππφ̃(ε0), iiiφ̃(ε0)}. We will further elaborate on this connection between

our identification result and the empirical methodology of Sims & Zha in Section 2.4.

Discussion & outlook. The identification result sketched in this section is special in two

respects: first, it is presented within the context of a particular explicit structural model; and

second, since impulse responses to ε0 are non-zero only for two periods, the result required

knowledge of the effects of two policy shocks. The remainder of this section will state and

prove our main identification result in the context of a general class of infinite-horizon models.

In terms of our informational requirements, the key change will be that the econometrician

now needs to know the causal effects of all policy shocks {ν`,0}∞`=0, rather than just the first

two. The economic intuition on the other hand will be exactly the same: the argument will

work as the long as the private-sector block depends on the policy rule only through the

path of the policy instrument, as was the case here.

2.2 General model & objects of interest

We consider a linearized perfect-foresight, infinite-horizon model economy. Throughout,

boldface denotes time paths for t = 0, 1, 2, . . . , and all variables are expressed in deviations

from the model’s deterministic steady state.
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The economy is summarized by the system

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000 (6)

Axxxx+Azzzz + ννν = 000 (7)

wt and xt are nw- and nx-dimensional vectors of endogenous variables, zt is a nz-dimensional

vector of policy instruments, εt is a nε-dimensional vector of exogenous structural shocks,

and νt is an nz-dimensional vector of policy shocks.8 The distinction between w and x is that

the variables in x are observable while the variables in w are not; specifically, x contains the

outcomes of interest to the econometrician and the arguments of the counterfactual policy

rule. The infinite-dimensional linear maps {Hw,Hx,Hz,Hε} summarize the non-policy block

of the economy, yielding nw + nx restrictions for each t. Our key assumption—echoing the

simple model of Section 2.1—is that the maps {Hw,Hx,Hz,Hε} do not depend on the

coefficients of the policy rule {Ax,Az}; instead, policy only matters through the path of the

instrument z, with the rule (7) giving nz restrictions on the policy instruments for each t.

As in our simple example, entries of the shock vectors εεε and ννν for t > 0 should again be

interpreted as news shocks. In particular, the policy shock vector ννν collects the full menu of

contemporaneous and news shocks to the prevailing policy rule at all horizons, generalizing

the two-shock set-up that was our focus in the simple three-equation model.

Given {εεε,ννν}, an equilibrium is a set {www,xxx,zzz} that solves (6) - (7). We assume that the

baseline rule {Ax,Az} is such that an equilibrium exists and is unique for any {εεε,ννν}.

Assumption 1. The policy rule in (7) induces a unique equilibrium. That is, the infinite-

dimensional linear map

B ≡

(
Hw Hx Hz

000 Ax Az

)
is invertible.

Given {εεε,ννν}, we write that unique solution as {wwwA(εεε,ννν),xxxA(εεε,ννν), zzzA(εεε,ννν)}. As in the

simple example, we often focus on impulse responses to exogenous shocks εεε when the policy

rule is followed perfectly (ννν = 000); with some slight abuse of notation we will simply write

those impulse responses as {wwwA(εεε),xxxA(εεε), zzzA(εεε)}.

8The boldface vectors {www,xxx,zzz,εεε,ννν} stack the time paths for all variables (e.g., xxx = (xxx′1, . . . ,xxx
′
nx

)′), and
the linear maps {Hw,Hx,Hz,Hε} are conformable.
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Discussion & scope. Our identification results in Section 2.3 and the empirical analysis

in Section 3 will apply to any structural model that can be written in the general form (6)

- (7). As emphasized before, in addition to linearity, the key property of the model for our

purposes is that policy enters the non-policy block of the economy only through the realized

path of the policy variables zzz; equivalently, in the linearized economy with aggregate risk,

policy matters only through its effects on the expected future path of the instrument z. How

restrictive are those assumptions?

Our first observation is that many of the explicit, parametric structural models used for

counterfactual and optimal policy analysis in the classical “Lucas program” literature (see

Christiano et al., 1999) fit into our framework. Such models are routinely linearized, and their

linear representation features the separation between policy rule and non-policy block that

our results require. We illustrate this point by giving several examples of well-known models

that are consistent with our assumptions. Our simple model in Section 2.1 has already

illustrated that one particular canonical environment—the textbook three-equation New

Keynesian model—fits into our framework.9 By the same line of reasoning, even workhorse

estimated business-cycle models (e.g. Christiano et al., 2005; Smets & Wouters, 2007) as well

as recent quantitative HANK models (e.g. Auclert et al., 2020; McKay & Wieland, 2021)

fit into our structure. For example, in standard HANK-type models, the standard Euler

equation of the representative household is simply replaced by a more general “aggregate

consumption function” (e.g. Auclert et al., 2018; Wolf, 2021):

ccc = C(yyy,πππ, iii, εεεd) = Cyyyy + Cππππ + Ciiii+ εεεd

Such models continue to fit into our framework precisely because the derivative matrices

C• depend only on the model’s deterministic steady state, and not on policy rules that

influence the economy’s fluctuations around that steady state (e.g., a Taylor rule for interest

rates). We will give a concrete numerical illustration of our identification result in the

context of a quantitative HANK-type model in Section 2.4. Finally, as we discuss further

in Appendix A.1, several interesting behavioral models (such as those of Gabaix (2020) or

Carroll et al. (2018)) are also consistent with our assumptions.

While thus clearly quite general, our framework also has important limitations. First,

since we leverage certainty equivalence of the linearized model economy, our identification

9For reference, we in Appendix A.1 explicitly write down the model (1) - (3) in the form of our general
matrix system (6) - (7).
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results will generally not yield globally valid policy counterfactuals. Second, the policy in-

variance assumption embedded in the equilibrium system (6) - (7) is not plausible for all

kinds of policy rules: it generally holds for rules that only respond to aggregate perturbations

of the macro-economy (such as Taylor rules), but will be violated by policies that change the

model’s steady state. For example, in the aggregate consumption function sketched above,

changes in the long-run tax-and-transfer system will invariably affect the stationary distri-

bution of households and thus the coefficient matrices C•, so such policies are necessarily

outside the purview of our analysis. Third, some models—even after linearization—do not

feature a separation of policy and non-policy blocks as in (6) - (7). An important example

are models featuring an asymmetry of information between the policymaker and the private

sector (like Lucas, 1972). Here, private-sector agents solve a filtering problem, and in general

the coefficients of the policy rule matter for this filtering problem both through the induced

movements of the policy instrument and through the information contained in those move-

ments. In particular, as we show in Appendix A.2, the standard Lucas island model induces

an aggregate supply relation of the form

yt = θ [pt − Et−1(pt)]

where yt denotes output and pt is the price level. The coefficient θ depends on the policy rule

for nominal demand growth simply because the rule affects the private sector’s interpretation

of changes in the island-level price, thus breaking the separation between the two blocks.

Objects of interest. As in our simple model, we wish to learn about systematic policy

rule counterfactuals. Specifically, we consider an alternative policy rule

Ãxxxx+ Ãzzzz = 000 (8)

Just like the baseline rule, this alternative policy rule is also assumed to induce a unique

equilibrium.

Assumption 2. The policy rule in (8) induces a unique equilibrium. That is, the infinite-

dimensional linear map

B̃ ≡

(
Hw Hx Hz

000 Ãx Ãz

)
is invertible.
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Given this alternative rule Ã, we ask: what are the dynamic response paths xxxÃ(εεε) and

zzzÃ(εεε) to some given exogenous non-policy shock path εεε?

As a special case of the general counterfactual rule (8), we can study optimal policy

rules corresponding to a given loss function. Specifically, we consider a policymaker with a

quadratic loss function of the form

L =
nx∑
i=1

λixxx
′
iWxxxi (9)

where i indexes the nx distinct (observable) macroeconomic aggregates collected in x, λi

denotes policy weights, and W = diag(1, β, β2, · · · ) allows for discounting.10 As for our

general counterfactual rule, we assume that the optimal policy problem has a unique solution.

Assumption 3. Given any vector of exogenous shocks εεε, the problem of choosing the policy

variable zzz to minimize the loss function (9) subject to the non-policy constraint (6) has a

unique solution.

We are then interested in two questions. First, what policy rule is optimal for such a

policymaker? Second, given that optimal rule (A∗x,A∗z), what are the corresponding dynamic

response paths xxxA∗(εεε) and zzzA∗(εεε) for a non-policy shock path εεε?

Finally, for both general as well as optimal counterfactual policy rules, we would like to go

beyond counterfactuals for particular non-policy shock paths εεε, and instead also predict the

effects of a rule change on unconditional macroeconomic dynamics. In particular, we would

like to predict how the change in policy rule would affect the unconditional second-moment

properties of the observed macroeconomic aggregates x.

The objective of the remainder of this section is to characterize the information required to

recover these desired policy counterfactuals. The key insight is that, exactly as in our simple

model, all of the required information can in principle be recovered from data generated

under the baseline policy rule.

10We emphasize that our results are completely silent on the shape of the loss function, with structural
modeling still the most natural way of obtaining a mapping from observables to welfare. We instead take
as given the loss function and ask what kind of empirical evidence would be most useful to figure out how
to minimize the loss. We furthermore note that our focus on a separable quadratic loss functions is in line
with standard optimal policy analysis, but not essential. As shown in Appendix A.3, our results extend to
the non-separable quadratic case, where the loss is now given by xxx′Qxxx for a weighting matrix Q. While our
approach in principle also applies to even richer loss functions, the resulting optimal policy rule will generally
not fit into the form (8).
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2.3 Identification results

We begin by defining the dynamic causal effects that lie at the heart of our identification

results. By Assumption 1, we can write the solution to the system (6) - (7) aswwwxxx
zzz

 = −B−1 ×

(
Hε 000

000 I

)
︸ ︷︷ ︸

≡ΘA

×

(
εεε

ννν

)

The linear map ΘA collects the impulse responses of www, xxx and zzz to the non-policy and

policy shocks (εεε,ννν) under the prevailing baseline policy rule (7) with parameters A. We will

partition it as

ΘA ≡

Θw,ε,A Θw,ν,A

Θx,ε,A Θx,ν,A

Θz,ε,A Θz,ν,A

 . (10)

All of our identification results will require knowledge of {Θx,ν,A,Θz,ν,A}—the impulse

responses of the policy instruments z and macroeconomic observables x to contemporaneous

as well as all possible future shocks ννν to the prevailing policy rule. Furthermore, to construct

counterfactual paths that correspond to a given non-policy shock sequence εεε, we also require

knowledge of the dynamic causal effects of that particular shock sequence under the baseline

policy rule, {xxxA(εεε), zzzA(εεε)}. We emphasize that, in principle, all of these objects are estimable

using data generated under the baseline policy rule: for example, given valid instrumental

variables for all the distinct policy shocks ννν as well as a single instrument for the non-

policy shock path εεε, the required entries of the Θ’s can be estimated using semi-structural

time-series methods (e.g. see Ramey, 2016, for a review).

These informational requirements are the natural generalization of those for the simple

model in Section 2.1. First, since we are now considering an infinite-horizon economy, any

given shock generates entire paths of impulse responses, corresponding to the rows of the Θ’s.

Second, rather than two policy shocks, we now need to know causal effects corresponding to

the full menu of possible contemporaneous and news shocks ννν—all columns of the Θν ’s.

General counterfactual rule. We begin with the main object of interest—policy

counterfactuals after a non-policy shock sequence εεε under an alternative policy rule.

Proposition 1. For any alternative policy rule {Ãx, Ãz} that induces a unique equilibrium,
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we can recover the policy counterfactuals xxxÃ(εεε) and zzzÃ(εεε) as

xxxÃ(εεε) = xxxA(εεε, ν̃νν) ≡ xxxA(εεε) + Θx,ν,A × ν̃νν (11)

zzzÃ(εεε) = zzzA(εεε, ν̃νν) ≡ zzzA(εεε) + Θz,ν,A × ν̃νν (12)

where ν̃νν is the unique solution of the system

Ãx [xxxA(εεε) + Θx,ν,A × ν̃νν] + Ãz [zzzA(εεε) + Θz,ν,A × ν̃νν] = 000. (13)

Proof. The equilibrium system under the new policy rule can be written as(
Hw Hx Hz

000 Ãx Ãz

)wwwxxx
zzz

 =

(
−Hε

000

)
εεε (14)

By Assumption 2 we know that (14) has a unique solution {xxxÃ(εεε), zzzÃ(εεε)}. To characterize

this solution as a function of observables, suppose instead that we could find a ν̃νν that solves

(13). Since (6) also holds under the baseline policy rule, and since (13) imposes the new

policy rule, it follows that any (xxxA(εεε, ν̃νν), zzzA(εεε, ν̃νν)) with ν̃νν solving (13) are also part of a

solution of (14). Since by assumption (14) has a unique solution, it follows that the system

(13) is solved by at most one ν̃νν.

It remains to establish that the system (13) has a solution. For this consider the candidate

ν̃νν = (Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε). Since the paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} solve (14), it

follows that they are also a solution to the system

(
Hw Hx Hz

000 Ax Az

)wwwxxx
zzz

 = −

(
Hεεεε

(Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε)

)
(15)

But by Assumption 1 we know that the system (15) has a unique solution, so indeed the

paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} are that solution. It then follows from the definition of ΘA in

(10) that the candidate ν̃νν also solves (13), completing the argument.

It follows from Proposition 1 that we can recover the desired counterfactual as a function

of {Θx,ν,A,Θz,ν,A} and {xxxA(εεε), zzzA(εεε)} alone. The key building block equation (13) is the

infinite-horizon analogue of the bivariate system (5) from our simple two-period example

in Section 2.1. The intuition is exactly the same: since we know the effects of all possible

perturbations ννν of the baseline rule, we can always construct a date-0 shock vector ν̃νν that
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mimics the equilibrium instrument path under the new instrument rule. But since the first

model block (6) depends on the policy rule only via the expected instrument path, the

equilibrium allocations under the new counterfactual rule and the perturbed prevailing rule

are the same. The only difference relative to the simple model is that, because we now

consider an infinite-horizon setting, we in general require evidence on contemporaneous and

all possible future news shocks to the baseline rule in order to be able to mimic an arbitrary

alternative policy rule.

Optimal policy. A very similar argument allows us to recover optimal policy rules cor-

responding to a given loss function.

Proposition 2. Consider a policymaker with loss function (9). For any εεε, the solution to

the optimal policy problem is uniquely implemented by the rule {A∗x,A∗z} with

A∗x =
(
λ1Θ′x1,ν,AW,λ2Θ′x2,ν,AW, . . . , λnxΘ

′
xnx ,ν,AW

)
, (16)

A∗z = 000. (17)

Given {A∗x,A∗z}, the corresponding counterfactual paths under the optimal policy rule, xxxA∗(εεε)

and zzzA∗(εεε), are characterized as in Proposition 1.

Proof. The solution to the optimal policy problem is characterized by the following first-order

conditions:

H′w(I ⊗W )ϕϕϕ = 000 (18)

(Λ⊗W )xxx+H′x(I ⊗W )ϕϕϕ = 000 (19)

H′zWϕϕϕ = 000 (20)

where Λ = diag(λ1, λ2, . . . ) and ϕ is the multiplier on (6). By Assumption 3 we know that

the system (18) - (20) together with (6) has a unique solution {xxx∗(εεε), zzz∗(εεε),ϕϕϕ∗(εεε)}.
Now consider the alternative problem of choosing deviations ννν∗ from the prevailing rule

to minimize (9) subject to (6) - (7). This second problem gives the first-order conditions

H′w(I ⊗W )ϕϕϕ = 000 (21)

(Λ⊗W )xxx+H′x(I ⊗W )ϕϕϕ+A′xWϕϕϕz = 000 (22)

H′z(I ⊗W )ϕϕϕ+A′zWϕϕϕz = 000 (23)

Wϕϕϕz = 000 (24)
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where ϕz is the multiplier on (7). It follows from (24) that ϕϕϕz = 000. But then (21) - (23)

together with (6) determine the same unique solution as before, and ννν∗ adjusts residually to

satisfy (7). The original problem and the alternative problem are thus equivalent.

Next note that, by Assumption 1, we can re-write the alternative problem’s constraint

set as wwwxxx
zzz

 = ΘA ×

(
εεε

ννν∗

)
(25)

The problem of minimizing (9) subject to (25) gives the optimality condition

nx∑
i=1

λiΘ
′
xi,ν,AWxxxi = 0 (26)

By the equivalence of the policy problems, it follows that (26) is an optimal policy rule,

taking the form (16) - (17). Finally, the second part of the result follows from Proposition 1

since (26) is just a special example of a policy rule {Ãx, Ãz}.

Proposition 2 reveals that, in conjunction with a given policymaker loss function, the

information required to construct valid counterfactuals for arbitrary policy rules also suffices

to characterize optimal policy rules.11 The intuition is exactly as before: since we know the

causal effects of every possible policy perturbation ννν on the policymaker targets xxx, we in

particular know the space of those targets that is implementable through policy actions. At

an optimum, we must be at the point of this space that minimizes the policymaker loss. As

before, it does not matter whether this optimum is attained through some systematic policy

rule or through shocks to an alternative rule.

11Note that, by mapping our perfect foresight economy to a linearized economy with aggregate risk, we
can re-write that optimal policy rule as a forecasting targeting rule (Svensson, 1997):

nx∑
i=1

λiΘ
′
xi,ν,AWEt [xxxi] = 0 (27)

where now xxxi = (xit, xit+1, . . . )
′. In words, expectations of future targets must always minimize the pol-

icymaker loss within the space of (expected) allocations that are implementable via changes in the policy
stance. For a timeless perspective, (27) must apply to revisions of policymaker expectations at each t.
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Unconditional second-moment properties. While Propositions 1 and 2 predict coun-

terfactual dynamics for particular non-policy shock paths εεε, researchers may also be inter-

ested in unconditional second-moment properties following a change in policy rule. Of course,

if researchers have estimated the effects of all distinct non-policy shocks hitting the economy,

then such unconditional analysis is simple: apply Propositions 1 and 2 for each such shock

and then collect the results in the form of a vector moving average representation.

In practice, however, researchers may not be able to isolate all distinct aggregate non-

policy shocks. Our third identification result states that, in some cases, it is nevertheless

possible to recover the desired counterfactual second-moment properties. Since the result

requires some investment in additional notation, we only state the main idea here and rele-

gate all details to Appendix A.4. The key assumption allowing us to make progress is that

of “invertibility”: we need to assume that the vector moving average representation of the

observable data x and z under the baseline policy rule is invertible with respect to the struc-

tural shocks driving the economy. This assumption, while restrictive (Plagborg-Møller &

Wolf, 2021a), is routinely imposed in conventional Structural Vector Autoregression analysis

(Fernández-Villaverde et al., 2007). Under this assumption, researchers need not be able to

separately observe all of the individual aggregate shocks; instead, it suffices to simply apply

our counterfactual prediction results in Propositions 1 and 2 to Wold innovations and then

again collect the results in the form of a counterfactual vector moving average. Appendix A.4

also discusses why this argument fails in the non-invertible case.

Discussion. The identification results in Propositions 1 and 2 offer a bridge between the

“Lucas program” as presented in Christiano et al. (1999) and purely empirical approaches to

policy counterfactual analysis (as in Sims & Zha, 2006). The propositions reveal that, under

our assumptions, impulse responses to contemporaneous and news policy shocks—objects

that are estimable using semi-structural empirical techniques—are sufficient statistics for

predicting the effects of changes in systematic policy rules. Key to our argument is the use

of multiple distinct policy shocks. By using many such shocks (all at date 0), counterfactual

rules can be imposed not just ex post but also in ex ante expectation, which is enough to

fully sidestep the Lucas critique. We further elaborate on the connection to the approach of

Sims & Zha—which uses one policy shock, set to a new level at each date t—in Section 2.4.

Our results also resonate with recent attempts to bring insights from the “sufficient

statistics” approach popular in public finance to macroeconomics (Chetty, 2009; Nakamura

& Steinsson, 2018). For a large family of structural models and policy rule counterfactuals,
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policy shock impulse responses turn out to be precisely such sufficient statistics for systematic

policy rule counterfactuals.

2.4 Illustration

We now provide a visual illustration of our theoretical identification results. As our labora-

tory we use the structural HANK model of Wolf (2021), with details of the model parameter-

ization relegated to Appendix A.1. In this environment we compute policy counterfactuals

in two ways: first by using the structural equations of the model and solving the model with

a counterfactual policy rule, and second by using our identification results.

We begin by solving the model with a baseline policy rule of

it = φππt (28)

for φπ = 1.5. In particular, we recover a) the impulse responses {xxxA(εεε), zzzA(εεε)} to a contrac-

tionary cost-push shock ε0 and b) the causal effects of all policy shocks ννν, {Θx,ν,A,Θz,ν,A}.
We emphasize that those causal effects would be estimable for an econometrician living in

our model laboratory and with access to valid instrumental variables for the cost-push shock

ε as well as the policy shocks {ν0,t, ν1,t, . . . }.
We now entertain the following counterfactual policy rule:

it = φiit−1 + (1− φi)(φππt + φyyt) (29)

for φi = 0.9, φπ = 2, φy = 0.5. Figure 1 shows model-implied impulse responses to a cost-

push shock ε0 under the baseline rule (28) (grey) and the counterfactual rule (29) (orange),

where both of these lines are computed from the structural equations of the model. Next,

following Proposition 1, we use the estimable effects of policy shocks to the baseline policy

rule to construct the counterfactual, with results shown as the navy blue line. As expected,

the outcome is identical to the one from the true structural solution of the model (i.e., orange

and blue lines coincide). Finally, the right panel shows the sequence of shocks ν̃νν that maps

the baseline rule into the counterfactual rule. Since the new rule is more accommodating, the

sequence of shocks is persistently negative (i.e., the shocks are expansionary). Appendix A.5

illustrates Proposition 2 with a similar application to optimal policy counterfactuals.

Link to Sims & Zha (2006). Our identification result enforces the counterfactual rule

using date-0 contemporaneous and news policy shocks ννν. To shed further light on this logic
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Alternative Policy Rule, HANK Model

Figure 1: Output and inflation impulse responses for the HANK model with policy rules (28) and
(29) together with the policy shock ν̃νν to (28) that mimics (29) (see (13)).

and its relationship to Sims & Zha (2006), Figure 2 constructs policy rule counterfactuals

using instead a mix of date-0 and date-t > 0 policy shocks. Formally, we consider a researcher

with access to the causal effects of the first ns entries of the policy shock vector ννν. Using

only the first entry (i.e., the contemporaneous shock ν0,t), she could implement the method

of Sims & Zha: she could subject the economy to a new surprise shock ν0,t at each t chosen

so that, at each t, the policy instrument and macro aggregates are related as required by

the counterfactual policy rule (29). For ns > 1, we generalize this approach: our researcher

uses her ns policy shocks at each t ≥ 0 to enforce the desired counterfactual rule not only ex

post (as Sims & Zha do with one shock), but also in ex ante expectation for the next ns− 1

periods. We present implementation details for this approach in Appendix A.6.

The main takeaway from the figure is that, as ns → ∞, the constructed counterfactual

converges to the true counterfactual, consistent with our identification results. For ns = 1,

on the other hand, the constructed counterfactual (in light grey) is quite far from the truth.

Intuitively, the issue is that the contemplated counterfactual policy rule is only imposed ex

post but not in ex ante expectation. Since expectations about the future in general affect

the present, enforcing the rule through ex post surprises is not the same as switching and

committing to a different rule from time t = 0 onwards.12 Moving to ns = 2 shocks enforces

12It follows from this discussion that, if the private sector were not at all forward-looking, then one shock
would already be enough for Lucas critique-robust counterfactuals, simply because there is no distinction
between ex post shocks and news shocks.
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Alternative Policy Rule (ex post surprises), HANK Model

Figure 2: Counterfactual output and inflation impulse responses using ex post surprises. At each
date, we solve for the first ns policy shocks to enforce the counterfactual rule contemporaneously
and in expectation for the next ns − 1 periods. Results are for ns ∈ {1, 2, 8} and for the HANK
model with policy rules (28) and (29).

the counterfactual rule also in one-period-ahead expectation, thus reducing the size of the

required ex post surprises, reducing the error from incorrect expectations, and so giving

a more accurate counterfactual. For ns = 8, the counterfactual rule can be implemented

almost perfectly using only date-0 shocks, so ex post surprises and impulse response are

close to the theoretical ns → ∞ limit. This is unsurprising: if the underlying non-policy

shock is rather transitory, then differences between the new and old rules will be transitory,

and so the mapping between policy rules will mostly rely on knowledge of the causal effects

of short-run policy shocks. Intuitively, under both the prevailing as well as the contemplated

counterfactual rule, the private sector expects the economy to have returned to steady state

anyway at medium horizons, so those medium-run expectations do not distort short-run

dynamics. This observation will turn out to be key for our empirical applications in Section 3.

2.5 Discussion

We have demonstrated that, in a quite general family of linearized structural macroeconomic

models, impulse responses to policy shocks can serve as “sufficient statistics” for the effects

of changes in systematic policy rules. Put differently, our results imply that—under our

maintained structural assumptions—the Lucas critique can in principle be circumvented
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purely through empirical measurement.13

In the remainder of this paper we discuss how to operationalize our insights. The main

challenge is that our informational requirements are quite high: the population identification

result requires evidence on the dynamic causal effects of the full menu of contemporaneous

and news policy shocks at all possible horizons. Section 3 presents a measurement strategy for

the empirically relevant case of researchers with access only to a couple of distinct identified

policy shocks. Section 4 then discusses the role of structural modeling in cases where the

existing empirical evidence is too limited to apply our empirical method.

3 Counterfactuals with finitely many shocks

This section presents our empirical method for constructing policy counterfactuals with

evidence on multiple, but finitely many, distinct policy shocks. Section 3.1 sets the stage by

connecting the objects in our identification result to objects that are estimated in practice,

Section 3.2 introduces the methodology, and Section 3.3 presents several applications to

monetary policy counterfactuals.

3.1 From empirical evidence to our “sufficient statistics”

Empirical researchers have relied on different pieces of identifying information to estimate

the effects of policy shocks. For example, the monetary policy shock literature has identified

quasi-random variation in policy using a large variety of methods (e.g. Romer & Romer, 2004;

Gürkaynak et al., 2005; Gertler & Karadi, 2015; Antolin-Diaz et al., 2021; Inoue & Rossi,

2021), with each exogenous piece likely to load on different shocks {ν`,t−`}∞`=0, thus resulting

in different paths of nominal rates.14 Anticipating our empirical application, Figure 3 pro-

vides an illustration showing interest rate paths for two shocks: the left panel corresponding

to a transitory rate hike, and the right panel showing a more gradual change.

What is the connection between such empirical evidence and the informational require-

ments of our “sufficient statistics” identification results? The theoretical discussion of con-

13In fact, as we discuss in Appendix A.7, our identification results can in principle even be extended to non-
linear models with aggregate risk; as we discuss there, the main change is that our informational requirements
increase even further, with the required causal effects of policy shocks now additionally indexed by the state
of the economy as well as the magnitude of the policy intervention.

14Similarly, the fiscal policy literature has studied both transitory as well as persistent changes in aggregate
government purchases (e.g. Mertens & Ravn, 2010; Ramey, 2011; Leeper et al., 2013). Our focus on monetary
policy is in keeping with much of the prior literature on policy rule counterfactuals.
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Identified Policy Shock Paths, Illustration

Figure 3: Two possible instrument paths zzz(νννs) corresponding to two different shock paths νννs,
s = 1, 2: a short-lived change (orange, left panel) and a gradual, persistent departure from the rule
(purple, right panel).

temporaneous and news policy shocks in Section 2 was phrased in terms of policy shocks ννν

that perturb the prevailing policy rule {Ax,Az} horizon by horizon. The proofs of our iden-

tification results, however, reveal that what ultimately matters is not the particular shock

path ννν; rather, the key is that the researcher can predict the counterfactual effects of the

policy instrument path associated with some given counterfactual rule. Viewed in this light,

we may re-state our identification results as requiring estimates of the effects of all possible

policy instrument paths zzz (rather than all shocks {ν0,t, ν1,t, . . . }).15 Existing studies give us

the dynamic causal effects associated with particular paths of the policy instrument, as in

Figure 3. Thus, the more shocks are estimated, the larger the space of policy instrument

paths whose counterfactual effects we can predict. Our theoretical identification result corre-

sponds to the limit where the estimated shocks span the space of all possible changes in the

current and expected future path of the policy instrument. The methodology presented in

Section 3.2 discusses how researchers can use the available evidence for particular policy in-

strument paths (like those in Figure 3) to provide a best Lucas critique-robust approximation

to the desired policy rule counterfactual.

15Formally, what we are discussing here is nothing but a change of basis: we solve for the policy coun-
terfactual not in terms of shocks to some (arbitrary) baseline rule {Ax,Az}, but directly in terms of policy
instrument paths. This switch of basis is without loss of generality as long as the policymaker can implement
any possible path of the policy instrument (i.e., the map Θz,ν,A is invertible).
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3.2 Empirical methodology

We consider a researcher that has access to the dynamic causal effects associated with ns

distinct paths of the policy instrument z. We denote those effects by {Ωx,A,Ωz,A}, where each

of the ns columns of the Ω’s gives the impulse response to a distinct identified policy shock

associated with a distinct path for the policy instrument. Given such lower-dimensional

causal effect maps, and given a non-policy shock εεε and a counterfactual rule {Ãx, Ãz}, the

proof strategy of Proposition 1 will now in general fail. We would need to set

Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss) = 000 (30)

where sss ∈ Rns denotes weights assigned to the ns empirically identified policy shocks at date

0. The problem is that this system of T equations (where T is the large maximal transition

horizon) in ns unknowns will generically not have a solution. So how can researchers proceed?

Lucas critique-robust method. Our main proposal is to simply select the weights sss

on the ns date-0 shocks to enforce the desired counterfactual rule as well as possible. In

practice, this means solving a straightforward regression problem:

min
sss

||Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss)||. (31)

The output of the simple problem (31) is the best approximation to the desired policy coun-

terfactual within the space of empirically identified policy shock paths. By our identification

results in Section 2 and because all shocks are dated t = 0 (i.e., no ex post surprises), this

approach is fully Lucas critique-robust. The richer the evidence on policy shock propagation

(i.e., as ns →∞), the better this approximate counterfactual will enforce the counterfactual

rule, eventually converging to the truth. The important limitation of our approach is that,

for small ns, it will not always be possible to construct an accurate approximation of the

desired counterfactual rule: for some contemplated counterfactual rules, the target (30) can

be made to hold almost exactly, while for others the implementation error will be large. The

usefulness of our proposed method is thus an inherently application-dependent question.

Alternative: a multi-shock refinement of Sims & Zha (2006). In keeping with

this paper’s overarching focus on robustness to Lucas critique concerns, we will mostly con-

sider results from our baseline method. However, we note that our identification results

also suggest a refinement of Sims & Zha (2006)—a refinement that relies on stronger as-

sumptions than our baseline method, but weaker assumptions than the original one-shock
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approach proposed by Sims & Zha. Given the popularity of the Sims & Zha (2006) approach

we briefly discuss this refinement here.

The idea of the refinement is that, by going from one to multiple identified policy shocks,

a researcher can reduce her reliance on ex post (i.e., date t ≥ 1) policy surprises to enforce the

counterfactual policy rule. As we discussed in Section 2.4, the original Sims & Zha method is

subject to Lucas critique concerns precisely because of ex post surprises: the counterfactual

rule holds at each t, but is not expected to hold from t+ 1 onwards. Our proposed extension

of the Sims & Zha method trades off rule accuracy versus ex post surprises in the form

of a simple ridge regression, generalizing our baseline method (31). To formally state this

approach we require some additional notation. We let {Ω(h)
x,A,Ω

(h)
z,A} denote impulse responses

to policy shocks that materialize at horizon h; that is, for h = 0 those impulse responses are

simply given as {Ωx,A,Ωz,A}, while for h > 0 impulse responses at the first h − 1 horizons

are exactly zero, and impulse responses from horizon h onwards are equal to {Ωx,A,Ωz,A}.
Now let sssh ∈ Rns denote the weights assigned to the ns shocks at horizon h. Our refinement

of Sims & Zha then solves the following ridge regression problem:

min
{sssh}Hh=0

||Ãx(xxxA(εεε) +
H∑
h=0

Ω
(h)
x,A × sss

h) + Ãz(zzzA(εεε) +
H∑
h=0

Ω
(h)
z,A × sss

h)||+ ψ
H∑
h=1

||sssh||, (32)

where the tuning parameter ψ penalizes ex post policy surprises, and H � 0 is the maximal

shock horizon. For ψ =∞ this method simply reduces to our baseline method, with only the

date-0 shocks sss0 allowed to be different from zero. For ψ = 0 (and large H) the counterfactual

rule is instead imposed perfectly ex post as in the original proposal of Sims & Zha, with

ns = 1 corresponding exactly to their procedure. For intermediate ψ, the researcher is willing

to trade off ex post surprises sssh for h ≥ 1 in return for higher accuracy in implementing

the desired counterfactual policy rule.16 If those ex post surprises are small enough, then

researchers may be willing to accept the expectational errors they entail in return for more

accurately imposing the counterfactual rule ex post.

The key appeal of this hybrid method relative to the original proposal of Sims & Zha will

be that, precisely because our method uses multiple distinct policy shocks, a (much) better

16Rather than smoothly penalizing ex post surprises as in (32), researchers may instead consider using ns
shocks to enforce a given counterfactual rule ex post and in expectation for the next ns − 1 periods, as we
did in Figure 2. Unfortunately we have found this method often yields explosive dynamics in actual data—a
problem that actually also arises with the original approach of Sims & Zha (2006). We provide further details
in Appendix B.5.
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fit can be achieved using date-0 shocks alone, with less need to rely on ex post surprises. We

will illustrate this observation in our applications.

Optimal policy rules. By Proposition 2, our results also allow researchers to learn

about optimal counterfactual policy rules, given some exogenously specified loss function.

Appendix B.1 shows how to apply both our baseline Lucas critique-robust method as well as

the multi-shock refinement of Sims & Zha (2006) to such questions of optimal policy design.

Very briefly, the idea is to use date-0 policy shocks to reduce the policymaker loss as much

as possible. Our approach thus minimizes the loss function by perturbing the baseline policy

response in directions spanned by the empirically identified policy shocks.17

3.3 Applications

In this section we apply our empirical strategy to predict the effects of investment-specific

technology shocks under various counterfactual monetary policy rules. In particular, our

objects of interest are the counterfactual behavior of the output gap, inflation, and the

short-term nominal rate. We choose to focus on investment-specific technology shocks since

such shocks are widely argued to be one of the main drivers of aggregate business-cycle

fluctuations, at least in the U.S. (e.g. see Justiniano et al., 2010; Ramey, 2016).

We proceed as follows: we estimate the inputs required by our methodology, apply the

method and present the main results, and then discuss how to interpret those results in light

of our theoretical identification results in Section 2. Appendix B provides the details of the

empirical implementation.

Inputs. The first input to our analysis are the aggregate effects of the non-policy shock of

interest εεε under the prevailing baseline policy rule. To recover those effects we rely on the

investment-specific technology news shock series identified by Ben Zeev & Khan (2015)—

a shock that induces an anticipated change in the relative price of investment goods. We

estimate the propagation of this shock by ordering it first in a recursive Vector Autoregression

(VAR) (as recommended in Plagborg-Møller & Wolf, 2021b).

The second input are the causal effects of a menu of different monetary policy shocks. For

17This part of our method is related to work by Barnichon & Mesters (2021). Those authors argue that,
under quite general conditions, evidence on policy shock impulse responses can be used to test the optimality
of policy conduct. Our method makes stronger assumptions—notably the separation of the policy and non-
policy blocks in (6) - (7)—allowing us to explicitly characterize optimal policy (rules), as in Proposition 2.
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this we consider two of the most popular examples of such monetary shocks: the shock series

of Romer & Romer (2004) and Gertler & Karadi (2015). Our estimates of the responses of

interest rates to those two shocks differ quite substantially: rather short-lived for Romer &

Romer, and more gradual for Gertler & Karadi. Indeed, in our illustrative figure from before

(Figure 3), the left panel corresponds to the short-run nominal interest rate path identified

by the Romer & Romer shock, while the right panel presents the Gertler & Karadi interest

rate path. To interpret these estimates, it is instructive to return to the simple monetary

policy rule from our illustrative example:

it = φπt + ν0,t︸︷︷︸
contemp. shock

+
∞∑
`=1

ν`,t−`︸ ︷︷ ︸
news shocks

We interpret the differences in our estimated rate response paths as indicative of the Romer

& Romer and Gertler & Karadi policy IVs loading differentially on contemporaneous versus

news policy shocks. While the Romer & Romer shock is short-lived, the Gertler & Karadi

shock is well-known to move longer-term rates and is thus more likely to have a larger forward

guidance component, consistent with Figure 3.18 To correctly account for joint uncertainty

in the estimation of the two shocks, we study their propagation through a single VAR.

Counterfactual policy results. We use our methodology to construct policy rule

counterfactuals for several different alternative rules: output gap targeting; a standard Taylor

(1993) rule; a nominal interest rate peg; nominal GDP targeting; and the optimal policy rule

corresponding to a loss function with equal weight on the output gap and a weighted average

of current and lagged inflation (i.e., average inflation targeting). Our discussion will mostly

focus on our preferred method that does not allow any ex post surprises, though we also

consider results from the Sims & Zha refinement (for an equal penalty on rule inaccuracy and

ex post policy shock surprises, i.e. ψ = 1). Finally, the counterfactual implied by the original

method of Sims & Zha—using only one of our two shocks—is discussed in Appendix B.5.

Throughout, our measure of rule accuracy is the horizon-by-horizon error in enforcing the

desired counterfactual rule (i.e., the argument of (31) or (32)).

First, Figure 4 shows our counterfactual results for output gap stabilization. The iden-

tified investment technology shock has both a cost-push as well as a negative demand com-

18Our finding of persistent changes in rates following the Gertler & Karadi shock is consistent with the
estimates reported in their paper (their Tables 1 & 3). Alternative approaches that identify (partial) forward
guidance shocks and that we could have used include Antolin-Diaz et al. (2021) or Inoue & Rossi (2021).
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Policy Counterfactual, Output Gap Targeting

Figure 4: Top panel: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted grey) and the best
feasible approximation to output gap targeting (orange and black dashed), computed following (31)
and (32) for ψ = 1. Bottom panel: implementation error for the counterfactual rule and ex post
nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th percentile
confidence bands.

ponent, consistent with theory (e.g. Justiniano et al., 2010). Under the baseline policy rule

(dotted grey), interest rates are cut relatively aggressively, though by not enough to stabilize

the output gap; furthermore inflation stays moderately above target. Under our approxima-

tion to output gap targeting, rates are cut much more aggressively, essentially stabilizing the

output gap from around a couple of quarters after the shock, at the cost of quite persistently

higher inflation. The bottom panels and the dashed lines reveal that allowing for some ex

post shocks essentially does not change the picture: later shocks do not help with output gap

stabilization right at the beginning, but after a couple of quarters the output gap is almost

perfectly stabilized anyway using date-0 shocks.
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Policy Counterfactual, Taylor Rule

Figure 5: Top panel: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted grey) and the best
feasible approximation to a Taylor rule ît = 0.5π̂t + 0.5ŷt (orange and black dashed), computed
following (31) and (32) for ψ = 1. Bottom panel: implementation error for the counterfactual rule
and ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

Second, Figure 5 shows the results for the rule proposed in Taylor (1993), with response

coefficients of 0.5 on aggregate inflation and the output gap. Due to the observed increase

in inflation, this rule actually dictates a much less aggressive interest rate cut, resulting in

somewhat lower output and inflation at medium horizons. The bottom left panel reveals that

the counterfactual rule is imposed relatively well throughout, except at a couple of quarters

after the initial shock (where rates are still cut by too much relative to the rule prescription).

The black dashed lines furthermore reveal that a moderate ex post interest rate surprise at

this point is sufficient to impose the desired rule almost perfectly, with relatively little effect

on the implied output gap, inflation, and policy instrument dynamics.
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Policy Counterfactual, Optimal AIT Policy Rule

Figure 6: Top panel: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted grey) and the best
feasible approximation to an optimal average inflation targeting monetary policy rule (purple and
black dashed), computed as discussed in Appendix B.1 for ψ = ∞ and ψ = 1. Bottom panel:
ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

Third, we proceed in the spirit of the recent change in the Federal Reserve’s strategy and

consider a policymaker with preferences over output and average inflation π̄t, where19

π̄t =
K∑
`=0

ω`πt−`.

19Here K denotes the maximal (lagged) horizon that enters the inflation averaging, and ω` denotes the
weight on the `th lag, with

∑
` ω` = 1 and ω` ≥ 0 ∀`. For our application we set K = 20 and ω` ∝ exp(−0.1`).

Suitably stacking the weights {ω`}, we can define a linear map Π̄ such that π̄̄π̄π = Π̄× πππ.
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We then represent the loss function of a dual mandate policymaker with preferences over

average inflation as

L = λππ̄ππ
′Wπ̄ππ + λyyyy

′Wyyy

with λπ = λy = 1, W = diag(1, β, β2, · · · ) and β = 1/1.01. Results for our optimal policy

counterfactual are displayed in Figure 6. The key takeaway here is that this optimal policy

counterfactual differs very little from actually observed outcomes. In other words, there is

little room to improve upon the observed allocation by changing policy within the space of

policy instrument paths spanned by our two identified policy shocks. Furthermore allowing

for ex post surprises does not materially change this conclusion.

Finally, detailed results for our two other counterfactuals are presented in Appendix B.4.

We briefly review the main findings here. Fourth, it is challenging to implement a nominal

interest peg using only date-0 shocks—in particular at short horizons, nominal interest rates

in our best approximation still fall a bit too much. Small ex post surprises, however, are

sufficient to almost perfect stabilize rates. In either case, output in this counterfactual

contracts by more, and inflation is materially lower at medium horizons. We emphasize that

this policy counterfactual corresponds to our version of the classical policy “zero-ing out”

exercise routinely implemented in classical VAR analysis through the Sims & Zha approach

(e.g. Bernanke et al., 1997; Hamilton & Herrera, 2004; Brunnermeier et al., 2021). Fifth,

strict nominal GDP targeting can be implemented quite accurately with only date-0 shocks.

Interestingly, this counterfactual looks quite similar to our estimated outcomes under the

baseline rule, with rates cut only slightly less aggressively.

Discussion. The results from our applications reveal that existing empirical evidence on

policy shocks is already sufficient to tightly restrict policy counterfactuals for several promi-

nent alternative monetary policy strategies. At the same time, our empirical method is

clearly not always applicable: for some non-policy shocks and some counterfactual rules, it

will not be possible to enforce the counterfactual rule accurately. We emphasize that the

counterfactuals implied by our baseline method for the investment shock application were

relatively accurate precisely because the investment shock is rather transitory, thus only re-

quiring knowledge of the effects of similarly transitory interest rate changes, along the lines

of those in Figure 3. More persistent shocks necessarily induce more persistent policy instru-

ment movements and thus would require more empirical evidence on such highly persistent

policy shocks (e.g. far-ahead forward guidance). The next section briefly discusses the role

of explicit structural modeling in constructing such policy rule counterfactuals.
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4 Extrapolating policy shock causal effects

Our identification results in Section 2 provide a new perspective on the role played by struc-

tural models in the “Lucas program” (see Christiano et al., 1999). Recall that this program

identifies and then matches empirical evidence on a single policy shock, thus pinning down

the effects of one particular policy instrument path; the purpose of the model is then to ex-

trapolate from that evidence to all other possible policy instrument paths. Our applications

in Section 3 reveal that, in some cases, empirical work has already identified sufficiently rich

policy instrument paths to tightly characterize policy counterfactuals, allowing us to sidestep

model-based extrapolation. In other cases, however, the existing empirical evidence may not

suffice and thus model extrapolation will be needed, at least until empirical measurement

improves further.

This section sheds some light on how this extrapolation from one policy shock to others

is achieved in “typical” structural macroeconomic models. Our general insight is that the

causal effects of policy shocks at different horizons tend to be closely tied together in standard

models: that is, information about the effects of policy shocks at one horizon very tightly

restricts the level and shape of effects of such shocks at other horizons. Section 4.1 begins

with an example, showing that—for a particular but important class of monetary policy

counterfactuals—all of the required causal effect extrapolation is actually governed by one

partial model block: the Phillips curve. Section 4.2 then offers a general analysis.

4.1 Output-inflation counterfactuals with a partial model

We begin by restriting attention to a particular but important family of systematic policy

rule counterfactuals. We consider a researcher interested in the behavior of the output gap

and inflation under counterfactual policy rules of the particular form

Ãππππ + Ãyyyy = 000 (33)

For example, (33) nests traditional flexible inflation targeting, average inflation targeting,

nominal GDP targeting, as well as strict output gap and inflation stabilization. Counterfac-

tual rules of the sort (33) are thus of substantial interest.

By our results in Section 2, knowledge of the two causal effect maps Θπ,ν,A and Θy,ν,A is

sufficient to construct counterfactuals for alternative policy rules like (33). More precisely,

we in fact only require knowledge of relative policy shock impulse responses: if Θπ,ν,A is
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invertible, then the proof of our identification result applies without any change using only

knowledge of Θy,ν,A × Θ−1
π,ν,A. Intuitively, for rules of the form (33), we can effectively treat

inflation as the policy instrument and then use the relative (or normalized) causal effects

Θy,ν,A × Θ−1
π,ν,A to determine the output path associated with a given inflation path.20 The

simple insight of this section is that, for any structural model that features a Phillips curve

relationship between y and π, that Phillips curve already fully pins down the required relative

causal effects, completely independently of the rest of the model.

Phillips curves as restrictions on causal effects. Consider a structural model

that features a Phillips curve relationship—that is, a link between inflation and leads and

lags of the aggregate output gap. Using our perfect-foresight notation of Section 2, we can

write a general dynamic Phillips curve relationship as

πππ = Πy × yyy + Πε × εεε. (34)

In this relation, the matrix Πy governs the link between inflation and the output gap up to

(non-policy) shocks Πε × εεε. For example, in the textbook three-equation New Keynesian

model, Πy would take the simple form

Πy =


κ κβ κβ2 . . .

0 κ κβ . . .

0 0 κ . . .
...

...
...

. . .

 . (35)

Monetary policy shocks move the economy along this Phillips curve. Therefore the crucial

implication of (34) is that the responses of output and inflation induced by policy shocks ννν

are related by

Θπ,ν,A = Πy ×Θy,ν,A. (36)

In words, we can map output gap impulse responses into inflation responses (and vice-versa)

using only the matrix Πy. Knowledge of Π−1
y is thus exactly what is needed to construct

counterfactuals for alternative policy rules of the general form (33).

Structural assumptions on a model’s Phillips curve tend to imply low-dimensional pa-

20The assumption that the policymaker can implement any desired path of inflation is generally satisfied
in standard business-cycle models. For example, in the simple model of Section 2.1, it is straightforward to
verify that Θπ,ν,A is an upper-triangular, invertible matrix. We provide further details in Appendix C.1.
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rameterizations of Πy (e.g. as in (35)). Given such structure, knowledge of the causal effects

of one policy shock—informative about one column (or linear combination of columns) of

Πy—will thus identify all of Πy, thereby pinning down policy rule counterfactuals. This

result is thus the first example of the general insight of this section: policy shocks at one

horizon are often extremely informative about those at other horizons, with the restrictions

across horizons in this particular case fully summarized by the Πy matrix implied by the

parametric form of the Phillips curve.

Applications. We illustrate the usefulness of the above insight with a return to our mon-

etary policy counterfactual experiments from Section 3.3. Three of the experiments that we

analyzed there fall into the class of rules (33) considered here: output gap targeting, nominal

GDP targeting, and optimal average inflation targeting. We discuss results for the output

gap targeting counterfactual here, and relegate details on the other two to Appendix C.1.

We assume that Πy is derived from an empirically relevant hybrid Phillips curve relation-

ship (see e.g. Mavroeidis et al., 2014)

πt = γbπ
4
t−1 + γfEt

[
π4
t+4

]
+ κyt + εt (37)

where π4
t−1 = 1

4
× (πt−1 + πt−2 + πt−3 + πt−4). Appendix C.1 shows the linear map Πy cor-

responding to this Phillips curve specification. We then estimate the parameters {γb, γf , κ}
(and so all of Πy) using evidence on identified monetary policy shocks. The econometric

challenge is that the estimated policy effects {Ωπ,A,Ωy,A} will not perfectly align with the

parametric structure imposed by (37); thus, following Barnichon & Mesters (2020), we simply

find the best possible fit. Our estimation uses the shocks of Romer & Romer (2004).

Given an estimate of Πy, we can construct the desired counterfactual: output gap and

inflation impulse responses to investment-specific technology shocks under the counterfactual

output gap targeting policy. The results are reported in Figure 7. Note first that the output

gap is now stabilized perfectly (rather than approximately, as in Section 3.3).21 The results

show persistently elevated inflation relative to the baseline rule outcome, even more than

in our estimates in Section 3.3. While the inflation counterfactual is similar to Figure 4

for short and medium horizons, inflation at longer horizons remains more elevated. This

persistence of inflation reflects the strong backward-looking component in our estimated

21The assumed invertibility of Θπ,ν,A together with the invertible Πy implies invertibility of Θy,ν,A via
(36), so perfect output gap stabilization is in fact implementable.
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Policy Counterfactual via PC Extrapolation, Output Gap Targeting

Figure 7: Output gap and inflation impulse responses to a contractionary investment-specific
technology shock under the prevailing baseline rule (dotted grey) and a counterfactual rule that
perfectly stabilizes the output gap (orange). The shaded areas correspond to 16th and 84th per-
centile confidence bands.

parametric Phillips curve. Thus, for this experiment, the particular parametric assumptions

on the dynamic Phillips curve relationship embedded in (37) exert a quite strong influence

at long horizons—and so whether or not these long-horizon counterfactual predictions are

credible depends on the validity of those particular parametric assumptions.22

Discussion. We have seen in this section that, for a particular (but arguably quite impor-

tant) family of counterfactual policy rules, “typical” structural business-cycle models achieve

the extrapolation of impulse responses from one policy shock to all others in a particular

and very restrictive way: the dynamic output-inflation co-movements are governed by the

model’s Phillips curve. If the researcher is willing to impose the structure of Phillips curve,

then knowledge of the causal effects of a single policy shock is a highly informative “identified

moment” (Nakamura & Steinsson, 2018) for policy rule counterfactuals. In particular, any

fully specified general equilibrium structural model that (i) fits into the general form (6) -

(7), (ii) features a Phillips curve relationship of the form (37) and (iii) is consistent with the

empirical monetary policy shock estimates of Romer & Romer (2004) will produce the same

22The estimated backward-looking component in our setting is in fact large enough to imply that, for
perfect output gap stabilization, inflation dynamics are non-stationary.
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counterfactuals as in Figure 7, independently of any further assumptions on preferences,

technology, and expectation formation.

4.2 General informativeness and asymptotic time invariance

Section 4.1 gave a first analytical example of how the causal effects of policy shocks at differ-

ent horizons may be closely tied together. Economic intuition suggests that this observation

may be more general: for example, we may expect the effects of a policy (news) shock h

periods from now to be similar to the effects of a shock h− 1 periods from now, just shifted

by one time period. Here we argue that this is indeed the case in standard macro models.

Informativeness in a large-scale structural model. To formalize the idea that

policy shock causal effects across different shock horizons may be tied together we build on

Andrews et al. (2020). Those authors provide a measure of the informativeness of certain

estimable moments—in our case the causal effects of a given identified policy shock—for

some counterfactual of interest—in our case policy rule change counterfactuals, which as we

have seen depend only on the causal effects of contemporaneous and news policy shocks.

Our Phillips curve analysis in Section 4.1 is a special case in which a very small number of

estimable moments are fully informative for an important family of counterfactuals. In the

general case, our application of the approach of Andrews et al. quantifies informativeness in

the form of an R2 of counterfactual of interest on estimable moments.

Appendix C.2 presents an application to the popular large-scale structural model of Smets

& Wouters (2007). We show there that, even though this model is very richly parameterized,

the policy shock causal effect maps Θ at the heart of our identification results (approximately)

live in small-dimensional subspaces, as formalized by a high R2 of individual policy shock

causal effects for the entirety of Θ. Appendix C.3 then explains why: impulse responses

to different news policy shocks are indeed simply time-shifted versions of each other, thus

tightly restricting the co-movement of policy shock impulse responses at different horizons.

Discussion. Our interpretation of this “informativeness” analysis is that, at least condi-

tional on conventional macroeconomic model structures, already identified (short-run) policy

shocks are highly informative about the effects of other policy shocks and so the universe

of policy rule counterfactuals—an “identified moment” result in the spirit of Nakamura &

Steinsson (2018) that justifies the practice of model estimation via impulse response match-

ing (as in Christiano et al., 2005). Of course this particular way of extrapolating policy shock
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impulse responses may simply be a feature of “typical” models, and not of data. Viewed in

this light, empirical evidence on further long-run (news) policy shocks would be particularly

welcome, both to check the plausibility of model-implied extrapolation and—in our opinion

even more usefully—to expand the set of counterfactual rules that can be enforced directly

from the empirical estimates as in Section 3.

5 Conclusions

The standard approach to counterfactual analysis for changes in policy rules relies on fully-

specified general equilibrium models. Our identification results instead point in a different

direction: researchers can estimate the causal effects of distinct policy shocks and combine

them to form policy counterfactuals. Importantly, these counterfactuals are valid in a large

class of models that encompasses the majority of structural business-cycle models that are

currently used for policy analysis.

An important challenge in implementing this strategy is that its informational require-

ments are high. We showed how to proceed in the empirically relevant case of evidence on

multiple but finitely many policy shocks. We illustrated through several examples that em-

pirical evidence is already sufficient to tightly characterize a variety of interesting monetary

policy rule change counterfactuals, reducing the need for explicit structural modeling. More

generally, a key message of this paper is to emphasize the value of empirical strategies that

recover the dynamic causal effects associated with different time paths of policy instruments.

Every additional piece of empirical evidence on a different policy instrument path will expand

the space of counterfactual policy rules that can be analyzed.
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Auclert, A., Bardóczy, B., Rognlie, M., & Straub, L. (2021). Using the Sequence-Space

Jacobian to Solve and Estimate Heterogeneous-Agent Models. Working Paper.

Auclert, A., Rognlie, M., & Straub, L. (2018). The Intertemporal Keynesian Cross. Technical

report, National Bureau of Economic Research.

Auclert, A., Rognlie, M., & Straub, L. (2020). Micro jumps, macro humps: Monetary policy

and business cycles in an estimated HANK model. Technical report, National Bureau of

Economic Research.

Barnichon, R. & Mesters, G. (2020). Identifying modern macro equations with old shocks.

The Quarterly Journal of Economics, 135 (4), 2255–2298.

Barnichon, R. & Mesters, G. (2021). Testing Macroeconomic Policies with Sufficient Statis-

tics. Working Paper.

Ben Zeev, N. & Khan, H. (2015). Investment-specific news shocks and US business cycles.

Journal of Money, Credit and Banking, 47 (7), 1443–1464.

Beraja, M. (2020). Counterfactual equivalence in Macroeconomics. Working Paper.

Bernanke, B. S., Gertler, M., Watson, M., Sims, C. A., & Friedman, B. M. (1997). Systematic

monetary policy and the effects of oil price shocks. Brookings papers on economic activity,

1997 (1), 91–157.

Boppart, T., Krusell, P., & Mitman, K. (2018). Exploiting MIT shocks in heterogeneous-

agent economies: the impulse response as a numerical derivative. Journal of Economic

Dynamics and Control, 89, 68–92.

Brunnermeier, M., Palia, D., Sastry, K. A., & Sims, C. A. (2021). Feedbacks: financial

markets and economic activity. American Economic Review, 111 (6), 1845–79.

39



Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., & White, M. N. (2018). Sticky

expectations and consumption dynamics. Technical report, national bureau of economic

research.

Chetty, R. (2009). Sufficient statistics for welfare analysis: A bridge between structural and

reduced-form methods. Annu. Rev. Econ., 1 (1), 451–488.

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (1999). Monetary policy shocks: What

have we learned and to what end? Handbook of macroeconomics, 1, 65–148.

Christiano, L. J., Eichenbaum, M., & Evans, C. L. (2005). Nominal rigidities and the dynamic

effects of a shock to monetary policy. Journal of political Economy, 113 (1), 1–45.

De Groot, O., Mazelis, F., Motto, R., & Ristiniemi, A. (2021). A Toolkit for Computing

Constrained Optimal Policy Projections (COPPs). ECB Working Paper.

Eberly, J. C., Stock, J. H., & Wright, J. H. (2020). The federal reserve’s current framework

for monetary policy: A review and assessment. International Journal of Central Banking,

16 (1), 5–71.

Fernández-Villaverde, J., Rubio-Ramı́rez, J. F., Sargent, T. J., & Watson, M. W. (2007).

Abcs (and ds) of understanding vars. American economic review, 97 (3), 1021–1026.

Fernández-Villaverde, J., Rubio-Ramı́rez, J. F., & Schorfheide, F. (2016). Solution and

estimation methods for DSGE models. In Handbook of Macroeconomics, volume 2 (pp.

527–724). Elsevier.

Gabaix, X. (2020). A behavioral New Keynesian model. American Economic Review, 110 (8),

2271–2327.
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Online Appendix for:

What Can Time-Series Regressions

Tell Us About Policy Counterfactuals?

This online appendix contains supplemental material for the article “What Can Time-Series

Regressions Tell Us About Policy Counterfactuals?”. We provide (i) supplementary results

complementing our theoretical identification analysis in Section 2 as well as implementation

details for (ii) our empirical methodology in Section 3 and (iii) the “identified moment”

structural analysis of Section 4.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded “A.”—“C.” refer to the main article.
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A Supplementary theoretical results

This appendix provides several results complementing our theoretical identification analysis

of Section 2. Appendix A.1 discusses examples of structural models that are nested by our

results, Appendix A.2 gives an example of a model that is not, Appendix A.3 extends our

optimal policy arguments to more general loss functions, Appendix A.4 provides the details

for unconditional second-moment counterfactuals, Appendix A.5 studies optimal policy in

our illustrative HANK model, Appendix A.6 shows how we compute counterfactuals with

finitely many shocks, and finally Appendix A.7 provides a global identification analysis with

even higher informational requirements.

A.1 Examples of nested models

We provide further details on three sets of models: the three-equation New Keynesian model

of Section 2.1, a general class of behavioral models, and the HANK model of Section 2.4.

Three-equation NK model. We here state the three-equation model of Section 2.1 in

the form of our general matrix system (6) - (7). We begin with the non-policy block. The

Phillips curve can be written as
1 −β 0 . . .

0 1 −β . . .

0 0 1 . . .
...

...
...

. . .

πππ − κyyy − εεεs = 0,

while the Euler equation can be written as

−σ


0 1 0 . . .

0 0 1 . . .

0 0 0 . . .
...

...
...

. . .

πππ +


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
...

. . .

yyy + σiii = 0.

Letting xxx ≡ (πππ′, yyy′)′, we can stack these linear maps into the form (6). Finally the policy

rule can be written as

φππππ − iii+ ννν = 0,
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which directly fits into the form of (7) with zzz = iii.

Behavioral model. Our general framework (6) - (7) nests popular behavioral models

such as the cognitive discounting framework of Gabaix (2020) or the sticky information

set-up of Carroll et al. (2018). We here provide a sketch of the argument for a particular

example—the consumption-savings decision of behavioral consumers.

Let the linear map E summarize the informational structure of the consumption-savings

problem, with entry (t, s) giving the expectations of consumers at time t about shocks at

time s. Here an entry of 1 corresponds to full information and rational expectations, while

entries between 0 and 1 can capture behavioral discounting or incomplete information. For

example, cognitive discounting at rate θ would correspond to

E =


1 θ θ2 . . .

1 1 θ . . .

1 1 1 . . .
...

...
...

. . .


while sticky information with a fraction 1 − θ receiving the latest information could be

summarized as

E =


1 1− θ 1− θ . . .

1 1 1− θ2 . . .

1 1 1 . . .
...

...
...

. . .


Let p denote an input to the household consumption-savings problem (e.g., income or interest

rates). In sequence space, we can use the matrix E to map derivatives of the aggregate

consumption function with respect to p, denoted Cp, into their behavioral analogues C̃p via

C̃p(t, s) =

min(t,s)∑
q=1

[E(q, s)− E(q − 1, s)]Cp(t− q + 1, s− q + 1)

Behavioral frictions thus merely affect the matrices that enter our general non-policy block

(6), but do not affect the separation of policy- and non-policy blocks at the heart of our

identification result.
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Quantitative HANK model. The HANK model used for our quantitative illustration

in Section 2.4 is exactly the same as in Wolf (2021) (including the parameterization, except

of course for the monetary policy rule). The non-policy shock εεε is an AR(1) innovation to

the model’s Phillips curve with persistence 0.8.

A.2 Filtering problems

To illustrate how an asymmetry in information between the private sector and the policy

authority can break our separation of the policy and non-policy blocks in (6) - (7) even for a

linear model, we consider a standard Lucas (1972) island model with a slightly generalized

policy rule. The policy authority sets nominal demand xt according to the rule

xt = φyyt + xt−1 + εmt

where yt denotes real aggregate output and εmt is a policy shock with volatility σm. The

private sector of the economy as usual yields an aggregate supply curve of the form

yt = θ(pt − Et−1pt)

where the response coefficient θ follows from a filtering problem and is given as

θ =
σ2
z

σ2
z + σ2

p

with σz denoting the (exogenous) volatility of idiosyncratic demand shocks and σp denoting

the (endogenous) volatility of the surprise component of prices, pt−Et−1pt. A straightforward

guess-and-verify solution of the model gives

pt =
1

1 + θ
xt +

θ

1 + θ
xt−1

and so

σ2
p =

(
1

1 + θ

)2

Var(φyyt + εmt )

But since

yt =
1

1− θ
1+θ

φy

θ

1 + θ
εmt

it follows that θ depends on the policy rule coefficient φy, breaking our separation assumption.
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A.3 More general loss functions

Proposition 2 can be generalized to allow for a non-separable quadratic loss function. Suppose

the policymaker’s loss function takes the form

L = xxx′Qxxx (A.1)

where Q is a weighting matrix. Following the same steps as the proof of Proposition 2, we

can formulate the policy problem as minimizing the loss function (A.1) subject to (25). The

first-order conditions of this problem are

Θ′ν,x,A(Q+Q′)xxx = 0

so we can recover the optimal policy rule as

A∗x = Θ′ν,x,A(Q+Q′)

A∗z = 000

Even outside of the quadratic case, the causal effects of policy shocks on xxx are still

enough to formulate a set of necessary conditions for optimal policy, but in this general case

the resulting optimal policy rule will not fit into the linear form (7).

A.4 Counterfactual second-moment properties

Our analysis is largely focussed on constructing counterfactuals for particular non-policy

shock paths εεε. This is in keeping with much of the empirical policy counterfactual literature

that followed the lead of Sims & Zha (2006) (e.g. Bernanke et al., 1997; Eberly et al., 2020;

Antolin-Diaz et al., 2021). However, under some additional assumptions, our results can

also be used to construct unconditional counterfactual second-moment properties—that is,

predict how variances and covariances of macroeconomic aggregates would change under a

counterfactual rule. This section provides the detailed argument.

Setting. We consider a researcher that observes and is interested in the counterfactual

properties of some vector of macroeconomic aggregates y = (x, z)—the endogenous outcomes

and policy instruments of our main analysis. We assume that, under the prevailing baseline

policy rule, this vector of macroeconomic aggregates follows a standard structural vector
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moving average representation:

yt =
∞∑
`=0

Θ`εt−` = Θ(L)εt (A.2)

where εt ∼ N(0, I).23 We would like to predict the second-moment properties of yt under

some counterfactual policy rule (8).

If the researcher can estimate the causal effects of all shocks εt on the outcomes yt, then

the identification argument is trivial: she simply applies Proposition 1 for each individual

shock, stacks the resulting impulse responses into a new vector moving average representation

Θ̃(L), and from here computes the counterfactual second-moment properties. This approach

may however not be feasible, as it requires the researcher to be able to correctly disentangle

all of the structural shocks driving the macro-economy.

Procedure. Our proposed procedure has three steps. First, the researcher estimates the

Wold representation of the observables yt. Second, using Proposition 1, she maps the impulse

responses to the Wold errors into new impulse responses corresponding to the counterfac-

tual policy rule. Third, she stacks those new impulse responses to arrive at a new vector

moving average representation, and from this representation constructs a new set of second-

moment properties. Our identification result states that, if the vector moving representation

(A.2) under the baseline rule is invertible, then this procedure correctly recovers the desired

counterfactual second moments.

Identification result. Let Θ̃` denote the lag-` impulse responses of the observables

yt to the shocks εt under the counterfactual policy rule. The process for yt under the

counterfactual policy rule thus becomes

yt =
∞∑
`=0

Θ̃`εt−` = Θ̃(L)εt

and so the second moments of the true counterfactual process are given by

Γy(`) =
∞∑
m=0

Θ̃mΘ̃′m+` (A.3)

23Given our focus on second moments, the normality restriction is purely for notational convenience (see
e.g. Plagborg-Møller & Wolf, 2021b).
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Now consider instead the output of our proposed procedure. Let ut denote the Wold

errors under the observed policy rule, and let ε∗t denote any unit-variance orthogonalization

of these Wold errors (e.g., ε∗t = chol(Var(ut))
−1 × ut). Then yt under the observed policy

rule satisfies

yt = Ψ(L)ε∗t =
∞∑
`=0

Ψ`ε
∗
t−`

where ε∗t ∼ N(0, I). Under invertibility—i.e., Θ(L) has a one-sided inverse—we in fact know

that ε∗t = Pεt, Ψ(L) = Θ(L)P ′, PP ′ = P ′P = I. The second step of our procedure gives the

counterfactual vector moving average representation

yt = Ψ̃(L)ε∗t

where Ψ̃(L) gives the dynamic causal effects of ε∗t = Pεt on yt under the counterfactual rule.

But since the causal effects of εt under the baseline rule are given as Θ̃(L), it follows that

we must also have

Ψ̃(L) = Θ̃(L)P ′

But then the implied second-moment properties of yt are given as

Γy(`) =
∞∑
m=0

Ψ̃mΨ̃′m+` =
∞∑
m=0

Θ̃mP
′P Θ̃′m+` =

∞∑
m=0

Θ̃mΘ̃′m+` (A.4)

which is exactly equal to (A.3), completing the argument.

Finally, we emphasize that this identification result inherently rests on the assumption

of invertibility. Under invertibility, there is a static one-to-one mapping between true shocks

εt and Wold errors ε∗t ; thus, if we can predict the propagation of the Wold errors under

the counterfactual rule, then we also match the propagation of the true shocks, and so we

correctly recover second-moment properties. Under non-invertibility, however, there is no

analogous one-to-one mapping, and so it is not guaranteed that second moments will be

matched by our procedure.

A.5 Optimal policy counterfactual in HANK

Section 2.4 illustrated the general counterfactual rule identification result in Proposition 1

using a quantitative HANK model. We here do the same for the analogous optimal policy

identification result in Proposition 2.
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Optimal Policy, HANK Model

Figure A.1: Output and inflation impulse responses together with the equivalence shock wedge ν̃νν
(see (13)) for the HANK model with policy rules (28) and the optimal policy given by (A.5). The
impact output contraction under the prevailing baseline rule is normalized to −1%.

We consider a policymaker with a standard dual mandate loss function

L = λππππ
′πππ + λyyyy

′yyy (A.5)

with λπ = λy = 1. As in Section 2.4 we start by solving for the optimal policy using

conventional methods: we derive the policy rule corresponding to the first-order conditions

(18) - (20), solve the model given that policy rule, and report the result as the orange lines in

the left and middle panels of Figure A.1. We see that, at the optimum, the cost-push shock

moves inflation by much more than output, consistent with the assumed policy weights and

the relatively flat Phillips curve. Compared to this optimal policy, the simple baseline rule

of the form (28) tightens too much.

We then instead use Proposition 2 to equivalently recover the optimal policy rule and

the corresponding impulse responses. We begin with the optimal rule itself. By (26), the

optimal rule is given as

λπΘ′π,ν,Aπππ + λyΘ
′
y,ν,Ayyy = 0

A researcher with knowledge of the effects of monetary policy shocks on inflation and output,

{Θπ,ν,A,Θy,ν,A}, is able to construct this optimal policy rule. We can then create a counter-

factual response to the cost-push shock using (11)-(13), again requiring only knowledge of

the causal effects of policy shocks as well as the impulse responses to the cost-push shock
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under the baseline rule. As expected, the resulting impulse responses—the dark blue lines—

are identical to those obtained by explicitly solving the optimal policy problem. Finally, the

right panel of Figure A.1 shows the optimal policy as a deviation ν̃νν from the prevailing rule.

The optimal rule accommodates the inflationary cost-push shock more than the baseline rule

(28), so the required policy “shock” is persistently negative (i.e., expansionary).

A.6 Counterfactuals with finitely many shocks

This section provides further details for our finite-shock counterfactuals constructed in Fig-

ure 2. We begin with the one-shock case—the original proposal of Sims & Zha (2006). We

then discuss the extension to a general finite number of observed policy shocks.

One Shock (Sims & Zha, 2006). This approach builds policy counterfactuals using

empirical estimates of the dynamic causal effects of a single (contemporaneous) policy shock;

that is, the researcher knows the first column of the maps in {Θx,ν,A,Θz,ν,A}. To predict the

behavior of the economy under an alternative path of the policy instrument, the economy

is then subjected to a sequence of contemporaneous policy shocks {ν0,0, ν0,1, ν0,2, . . . } that

enforce the desired instrument path in equilibrium. When translated to our notation, this

simply corresponds to implementing our identification result not with the true (unknown)

causal effect maps {Θx,ν,A,Θz,ν,A}, but instead using

Θ̃q,ν,A ≡


Θq,ν,A(1, 1) 0 0 . . .

Θq,ν,A(2, 1) Θq,ν,A(1, 1) 0 . . .

Θq,ν,A(3, 1) Θq,ν,A(2, 1) Θq,ν,A(1, 1) . . .
...

...
...

. . .

 , q ∈ {x, z} (A.6)

where Θ•(i, j) denotes the (i, j)th entry of a map Θ•. This assumed structure implies that

the first column parameterizes the full map—but of course that first column is exactly the

impulse response estimated using the time-series regression. With this structure, surprising

the economy with a suitable new shock each period is the same as announcing a sequence of

contemporaneous and news shocks at t = 0 (i.e., our identification result) because the news

shocks have no effect until they materialize at which point they are treated as if they were

unanticipated.

We note that a structure like that in (A.6) is actually consistent with models populated

by fully myopic agents. For example, in a variant of the behavioral New Keynesian model of
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Gabaix (2020) with full discounting in both the consumer Euler equation and the firm-side

Phillips curve, news shocks have no effect prior to their realization, so the true causal effect

maps {Θx,ν,A,Θz,ν,A} in fact have the lower-triangular structure displayed in (A.6).24 Typical

(rational-expectations) macroeconomic models with forward-looking agents, on the other

hand, have important expectational channels and so are inconsistent with the assumptions

embedded in (A.6). In such environments, using the structure in (A.6) to predict the effects

of changes in policy rules will run afoul of the Lucas critique.

Multiple shocks. The original approach of Sims & Zha (2006) leverages the idea that

evidence on one policy shock—i.e., any single path ννν—is sufficient to enforce any given

counterfactual ex post. With ns distinct shocks, the counterfactual rule can be implemented

ex post as well as in ex ante expectation for the next ns − 1 time periods.

To compute the counterfactuals corresponding to this multi-shock case as reported in

Figure 2 we proceed as follows. First, at t = 0, we solve for the ns-dimensional vector of

policy shocks ννν0
1:ns ≡ (ν0

0 , . . . , ν
0
ns−1)′ such that, in response to εεε and ννν0

1:ns the counterfactual

rule holds at t = 0 and is expected to hold for t = 1, . . . , ns − 1. Output and inflation at

t = 0 are simply given as the thus-derived impulse responses to εεε and ννν0
1:ns . Second, at

t = 1, we solve for the ns-dimensional vector of shocks ννν1
1:ns ≡ (ν1

0 , . . . , ν
1
ns−1)′ such that,

in response to the time-0 shocks {εεε,ννν0
1:ns} and the time-1 shocks ννν1

1:ns , the counterfactual

policy rule holds at t = 1 and in expectation for t = 2, . . . , ns. These impulse responses then

give us output and inflation at t = 1. Continuing iteratively, we obtain the entire output

and inflation impulse responses, as plotted in Figure 2.

A.7 Global identification argument

We here extend our identification results to a general non-linear model with aggregate risk.

Setting. We consider an economy that runs for T periods overall. As in our main analysis,

the economy consists of a private block and a policy block. Differently from our main analysis,

there is no exogenous non-policy shock sequence εεε; rather, there is a stochastic event ωt each

period, with stochastic events drawn from a finite (nω-dimensional) set. Let xt(ω
t) be the

value of the endogenous variables after history ωt ≡ {ω0, ω1, · · · , ωt} and let zt(ω
t) be the

24If agents are quite but not perfectly inattentive (as for example in Auclert et al., 2020), then the one-shock
approach may deliver a reasonably accurate approximation to correct policy counterfactuals.
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realization of the policy instruments after history ωt. Let xxx and zzz be the full contingent

plans for for all t ∈ {0, 1, · · · , T} and all histories. xxx and zzz are vectors in Rnx×N and Rnz×N

respectively, where N = nω + n2
ω + · · ·+ nT+1

ω .

We can write the private-sector block of the model as the non-linear equation

H(xxx,zzz) = 000. (A.7)

Similarly, we can write the policy block corresponding to a baseline policy rule as

A(xxx,zzz) + ννν = 000 (A.8)

where the vector of policy shocks ννν is now nz × N dimensional. We assume that, for any

ννν ∈ Rnz×N , the system (A.7) - (A.8) has a unique solution. We write this solution as

xxx = x(ννν), zzz = z(ννν).

We want to construct counterfactuals under the alternative policy rule

Ã(xxx,zzz) = 000 (A.9)

replacing (A.8). We again assume that the system (A.7) and (A.9) has a unique solution,

now written as (x̃xx, z̃zz). If we are interested in the counterfactual following a particular path

of exogenous events, then we are interested in selections from these vectors.

Proposition A.1. For any alternative policy rule Ã we can construct the desired counter-

factuals as

x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz (A.10)

where ν̃νν solves

Ã(x(ν̃νν), z(ν̃νν)) = 000. (A.11)

The solution ν̃νν to this system exists and any such solution generates the unique counterfactual

(x̃xx, z̃zz).

Proof. We construct the solution ν̃νν as

ν̃νν ≡ Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz).
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By the definition of the functions of x(•) and z(•), we know that

H(x(ν̃νν), z(ν̃νν)) = 000 (A.12)

A(x(ν̃νν), z(ν̃νν)) + Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz) = 000 (A.13)

Similarly, by the definition of the functions x̃(•) and z̃(•), we also know that

H(x̃(000), z̃(000)) = 000 (A.14)

Ã(x̃(000), z̃(000)) = 000 (A.15)

It follows that {x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz} is a solution of the system (A.12) - (A.13). By assump-

tion this system has a unique solution, so it must be that ν̃νν satisfies {x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz}.
We now show that any solution to (A.11) must generate (x̃xx, z̃zz). Proceeding by contra-

diction, consider any other ν̃νν that solves (A.11) and suppose that either x(ν̃νν) 6= x̃xx and/or

z(ν̃νν) 6= z̃zz. By definition of the functions x(•) and z(•) together with the property (A.11) we

know that

H(x(ν̃νν), z(ν̃νν)) = 000

Ã(x(ν̃νν), z(ν̃νν)) = 000

and so (x(ν̃νν), z(ν̃νν)) is a solution of (A.7) and (A.9) that is distinct from (x̃, z̃). But by

assumption only one such solution exists, so we have a contradiction.

Informational requirements. To construct the desired policy counterfactual for all

possible alternative policy rules, we in general need to be able to evaluate the functions x(•)
and z(•) for every possible ννν ∈ Rnz×N . That is, we need to know the effects of policy shocks

of all possible sizes at all possible dates and all possible histories.

To understand how our baseline analysis relaxes these informational requirements, it is

useful to proceed in two steps: first removing uncertainty (but keeping non-linearity), and

then moving to a linear system.

1. Non-linear perfect foresight. For a non-linear perfect foresight economy, we replace

our general (nx + nz)×N -dimensional system with an (nx + nz)× T -dimensional one:

H(xxx,zzz,εεε) = 000
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A(xxx,zzz) + ννν = 000

Because of the lack of uncertainty, other possible realizations of the exogenous events—

now denoted εεε—do not matter. Proceeding exactly in line with the analysis above, we

can conclude that now we need the causal effects of all possible policy shocks ννν ∈ Rnz×T

at the equilibrium path induced by εεε. Thus, since we only care about the actual realized

history of the exogenous inputs, the dimensionality of the informational requirements has

been reduced substantially.

2. Linear perfect foresight/first-order perturbation. Linearity further reduces our

informational requirements in two respects. First, because of linearity, to know the effects

of every possible ννν ∈ Rnz×T , it suffices to know the effects of nz × T distinct paths ννν that

together span Rnz×T . Second, estimates given any possible exogenous state path of the

economy suffice, simply because the effects of policy and non-policy shocks are additively

separable. We have thus reduced the problem to the (still formidable) one of finding the

effects of nz × T distinct policy shock paths.
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B Details for empirical finite-shock analysis

This appendix provides further details for our empirical method and its applications in

Section 3. Appendix B.1 begins by elaborating on our baseline empirical method and the

Sims & Zha refinement. Appendices B.2 to B.4 then offer supplementary details for our

monetary policy rule counterfactuals. Finally, in Appendix B.5, we contrast our results with

those obtained from a standard single-shock approach as in Sims & Zha.

B.1 Econometric implementation

We here discuss the practical implementation of our baseline Lucas critique-robust empirical

method as well as the refinement of the Sims & Zha (2006) method. Since our robust

procedure is a general case of the general ridge regression problem (32) for ψ =∞, we here

simply present implementation details for the ridge regression version.

To express the solution to our basic ridge regression problem (32), we stack the policy

shocks in the vector sssH and the corresponding causal effects in the matrix ΩH
x,A. We fur-

thermore let P denote a matrix that is equal to an (ns ·H)× (ns ·H)-dimensional identity

matrix except for the first ns diagonal entries, which are equal to zero. The ridge regression

solution is then given as

sssH = −
[(
ÃxΩH

x,A + ÃzΩH
z,A

)′ (
ÃxΩH

x,A + ÃzΩH
z,A

)
+ ψP ′P

]−1

×
[(
ÃxΩH

x,A + ÃzΩH
z,A

)′ (
ÃxxxxA(εεε) + ÃzzzzA(εεε)

)]
For our optimal policy counterfactual, we analogously consider the following regularized

optimal policy problem:

min
sssH

nx∑
i=1

λixxx
′
iWxxxi + ψ||PsssH ||

such that

xxx = xxx(εεε) + ΩH
x,Asss

H

This gives the optimality conditions:

(W ⊗ Λ)xxx+ϕϕϕx = 000

−ψPsssH + (ΩH
x,A)′ϕϕϕx = 000,
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where Λ = diag(λ1, λ2, . . . ). Solving this system (together with the constraint of the problem)

gives our optimal policy counterfactual. In particular, for ψ = ∞, we find the optimal

counterfactual within the space of identified time-0 policy shock causal effects, without any

ex post surprises.

B.2 Data

Our analysis of investment-specific technology shocks follows Ben Zeev & Khan (2015), while

our monetary policy shock identification closely mimics that of (i) Romer & Romer (2004)

and (ii) Gertler & Karadi (2015).

Outcomes. We are interested in impulse responses of three outcome variables: the output

gap, inflation, and the policy rate. For the output gap and inflation, we follow Barnichon &

Mesters (2020): we use the detrended real GDP gap (with the underlying trend estimated

using the HP filter) as our measure of the output gap, and compute inflation from changes

in the core PCE. Finally, we consider the federal funds rate as our measure of the policy

rate, obtained from the St. Louis Federal Reserve FRED database. In keeping with much

prior work, we also additionally control for commodity prices, with our measure obtained

from the replication files of Ramey (2016). All series are quarterly.

Shocks & identification. We take the investment-specific technology shock series from

Ben Zeev & Khan (2015) (bzk ist news), the Romer & Romer (2004) shock series from

the replication and extension of Wieland & Yang (2020) (rr 3), and the high-frequency

monetary policy surprise series from Gertler & Karadi (2015) (mp1 tc).25 When applicable,

the shock series are aggregated to quarterly frequency through simple averaging.

B.3 Shock & policy dynamic causal effects

For maximal consistency, we try to estimate all impulse responses within a common empirical

specification. For the investment-specific technology shocks, we order the shock measure first

in a recursive VAR containing our outcomes of interest (following Plagborg-Møller & Wolf,

2021b), estimated on a sample from 1969:Q1–2007:Q4. For our two monetary policy shocks,

we estimate a single VAR in the two shock series, our three outcomes of interest, as well as

25Results are very similar if we use the alternative surprise series ff4 tc instead.
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Policy Shock Impulse Responses, Romer & Romer (2004)

Figure B.1: Impulse responses after the Romer & Romer shock. The grey areas correspond
to 16th and 84th percentile confidence bands, constructed using 10,000 draws from the posterior
distribution of the reduced-form VAR parameters.

commodity prices, also estimated from 1969:Q1–2007:Q4.26 For identification, we order the

Gertler & Karadi shock first (again consistent with the results in Plagborg-Møller & Wolf

(2021b)) and the Romer & Romer last (exactly as in Romer & Romer (2004)).

We use three lags in the technology shock specification, and four lags in the joint monetary

policy VAR. We furthermore estimate all VARs with a constant as well as deterministic linear

and quadratic trends. For the baseline investment-specific technology shock we fix the OLS

point estimates. We then construct policy counterfactuals using our identified monetary

policy shocks, taking into account their estimation uncertainty. Since the transmission of

both shocks is estimated within a single VAR, we can draw from the posterior and compute

the counterfactuals for each draw, thus taking into account joint estimation uncertainty.

Results. The OLS point estimates for the technology shocks of Ben Zeev & Khan (2015)

are reported as the grey lines in Figure 4. For monetary policy, the estimated causal effects

for our two outcomes of interest as well as the policy instrument are displayed in Figure B.1

(for Romer & Romer) and Figure B.2 (for Gertler & Karadi). The results are broadly in line

with prior work: both policy shocks induce the expected signs and magnitudes of the output

gap and inflation responses, though the response shapes are quite distinct, consistent with

the differences in the induced interest rate paths.

26The Gertler & Karadi shock series is only available from 1988 onwards. We thus follow prior work in
the macro IV literature (e.g. Känzig, 2021) and set the missing values to zero.
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Policy Shock Impulse Responses, Gertler & Karadi (2015)

Figure B.2: Impulse responses after the Gertler & Karadi shock. The grey areas correspond
to 16th and 84th percentile confidence bands, constructed using 10,000 draws from the posterior
distribution of the reduced-form VAR parameters.

B.4 Supplementary results for our applications

In Section 3.3 we presented detailed results for only three of our counterfactuals: output gap

targeting, the Taylor rule, and optimal average inflation targeting policy. We here provide

the corresponding detailed results for the other two counterfactuals.

Nominal interest rate peg. Results for the nominal interest rate peg are presented

in Figure B.3.27 The counterfactual rule is implemented well from a couple of quarters out

onwards, but rates are still cut by too much immediately after the shock. Alternatively, at

the cost of a couple of 10 basis point nominal interest rate surprises within the first year after

the shock, the interest rate is fixed almost perfectly. Since interest rates are now not cut (as

much), the output gap and inflation remain low for a longer period of time. We emphasize

that this counterfactual can equivalently be interpreted as giving us the causal effects of the

investment technology shock with the effects of systematic monetary feedback solved out in

a way that respects the Lucas critique.

27As is well-known, such a policy rule will in general not induce a unique equilibrium. In that case our
empirical method will yield the equilibrium that corresponds to the same equilibrium selection as under the
baseline rule (which was assumed to induce a unique equilibrium). In general this unique equilibrium is the
minimal-state-variable equilibrium of the system.
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Policy Counterfactual, Interest Rate Peg

Figure B.3: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a nominal interest rate peg (orange and black dashed), computed
following (31) and (32) for ψ = 1. Bottom panel: implementation error for the counterfactual rule
and ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

Nominal GDP targeting. Results for nominal GDP targeting are presented in Fig-

ure B.4. The counterfactual policy is implicitly defined by the targeting rule

π̂t + (ŷt − ŷt−1) = 0, ∀t = 0, 1, . . .

We find that implementation errors are quite small throughout. Interestingly, the policy

instrument path is quite close to the estimated baseline (dotted grey), indicating that nominal

GDP is stabilized quite well already under the prevailing rule.
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Policy Counterfactual, Nominal GDP Targeting

Figure B.4: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a nominal GDP targeting (orange and black dashed), computed
following (31) and (32) for ψ = 1. Bottom panel: implementation error for the counterfactual rule
and ex post nominal interest rate surprise at time t. The shaded areas correspond to 16th and 84th
percentile confidence bands.

B.5 Results for one-shock counterfactuals

In this section we briefly compare the results from our empirical strategy with that of the

canonical one-shock approach of Sims & Zha. As discussed previously, this approach corre-

sponds a special case of our ridge regression strategy with ψ = 0, ns = 1, and H = T − 1.

Explosive dynamics. Our first observation—already mentioned in Sims & Zha (2006)—

is that the one-shock approach to constructing policy counterfactuals may produce explosive

dynamics. The argument is simple and easily seen for the particular case of our interest rate
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peg counterfactual. Here, the sequence of shocks sssH satisfies

sssH = −(ΩH
z,A)−1 × zzz(εεε)

where z now indicates the nominal rate and ΩH
z,A is a triangular matrix with the vector

Ωz,A below the main diagonal for each column. ΩH
z,A is thus a lower-triangular Toeplitz ma-

trix. Letting {an}∞n=0 denote the sequence characterizing that Toeplitz matrix, the sequence

{bn}∞n=0 characterizing its inverse is given by the recursion b0 = 1/a0 and

bn = − 1

b0

n∑
r=1

arbn−r

It is straightforward to verify numerically that, for the OLS point estimates ΩH
z,A correspond-

ing to our Romer & Romer (2004) and Gertler & Karadi (2015) shocks, the resulting inverse

sequences {bn}∞n=0 and thus the shocks sssH diverge, thus indeed yielding explosive output gap

and inflation dynamics corresponding to an exactly fixed nominal rate of interest.

One shock vs. multiple shocks. To avoid explosive dynamics in the one-shock case,

our refinement of the original Sims & Zha procedure with ψ = 1 may be implemented for

ns = 1 (rather than ns = 2, as in our main analysis). As expected, the counterfactual rule fit

in that case is materially worse. For example, for the output gap targeting counterfactual, a

one-shock counterfactual based on the Gertler & Karadi fails to achieve high rule accuracy

(with a maximal error point estimate of 75 per cent), while the counterfactual based on the

Romer & Romer shock requires large ex post nominal interest rate surprises. Figure B.5

illustrates with the results for the one-shock Gertler & Karadi counterfactual.
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1-Shock Policy Counterfactual, Output Gap Targeting

Figure B.5: Top panel: Output gap, inflation and interest rate impulse responses to a contrac-
tionary investment-specific technology shock under the prevailing baseline rule (dotted grey) and
the best feasible approximation to a output gap targeting (orange and black dashed) using only
the shock of Gertler & Karadi and for ψ = 1. Bottom panel: implementation error for the coun-
terfactual rule and ex post nominal interest rate surprise at time t. The shaded areas correspond
to 16th and 84th percentile confidence bands.
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C Details for Section 4

Appendix C.1 begins with our Phillips curve-based counterfactuals. Appendix C.2 then

presents our general informativeness discussion and applies it to the well-known model of

Smets & Wouters (2007), while Appendix C.3 rationalizes those results through the concept

of asymptotic time invariance of impulse response functions.

C.1 Phillips curve theory & estimation

This section provides further details for our theoretical analysis and empirical application in

Section 4.1.

Recovering policy counterfactuals from Πy. Knowledge of Πy—together with the

assumption that Θπ,ν,A is invertible, i.e., any path of inflation is in principle implementable

through policy shocks—is sufficient to construct output and inflation counterfactuals corre-

sponding to alternative rules of the general form (33). Formally, using a change of basis for

ν we can recover the desired counterfactual outcomes by solving the system

Ãππππ + Ãyyyy = 0

πππ = πππA(εεε) + ννν

yyy = yyyA(εεε) + Π−1
y ννν

for the three unknowns {πππ,yyy,ννν}.
Strictly speaking, the above result leveraging Πy imposes the additional assumption that

the monetary policymaker can in principle implement any desired path of inflation. This

assumption is routinely satisfied in standard business-cycle models. For example, in our

simple model of Section 2.1, it is straightforward to verify that Θπ,ν,A is an upper-triangular

matrix with

Θπ,ν,A(i, i) = − κσ

1 + κσφπ

and Θπ,ν,A(i, j) for i < j defined recursively via the system

Θy,ν,A(i, j) = −σ(φπΘπ,ν,A(i, j)−Θπ,ν,A(i+ 1, j)) + Θy,ν,A(i+ 1, j)

Θπ,ν,A(i, j) = κΘy,ν,A(i, j) + βΘπ,ν,A(i+ 1, j)
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Special case: hybrid Phillips curve. Consider the hybrid Phillips curve (37). Along

a perfect foresight transition path, we can write this relationship as
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≡Ππ

× πππ = κ × yyy + εεεs

We thus have

Πy ≡ Π−1
π × κ

Estimation details. Barnichon & Mesters (2020) show how to use estimates of monetary

policy impulse responses to identify a Phillips curve relationship of the form (37). For

our empirical analysis in Figure 7 we closely follow their estimation strategy; since we use

almost the same data (see Appendix B.2), our estimation results are very similar to theirs. In

particular, for our headline results in Figure 7 we also impose the constraint that γf +γb = 1,

so our confidence sets are almost identical to those reported in panel (B) of Figure II in the

original article (Barnichon & Mesters, 2020).

Additional counterfactuals. In addition to the output gap targeting counterfactual,

we can also use the estimated Phillips curve relationship to revisit the nominal GDP targeting

and optimal average inflation targeting policy rule policy rule counterfactuals studied in

Section 3.3 and Appendix B.4. We do so in Figures C.1 and C.2. While the nominal GDP

targeting counterfactual is very similar to our baseline result in Figure B.4, the optimal

average inflation targeting counterfactual induces a somewhat smaller output decline, at

the cost of somewhat more persistently elevated inflation. We note furthermore that, by

Proposition 2, this particular counterfactual corresponds to the general optimal policy rule

λπΠ̄′π̄ππ + λy(Π
′
y)
−1yyy = 000 (C.1)
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Policy Counterfactual via PC Extrapolation, Nominal GDP Targeting

Figure C.1: Output gap and inflation impulse responses to a contractionary investment-specific
technology shock under the prevailing baseline rule (dotted grey) and a counterfactual rule that
targets nominal GDP (orange). The shaded areas correspond to 16th and 84th percentile confidence
bands.

where π̄ denotes the targeted average of current and lagged inflation and Π̄ maps inflation

into this targeted average, with π̄̄π̄π ≡ Π̄ × πππ (see Section 3.3). (C.1) takes the form of an

implicit targeting rule (Svensson, 1997): it imposes a set of restrictions that current, lagged

and expected future values of inflation and the output gap must satisfy at all times when

policy is set optimally.

C.2 Informativeness of policy shocks as identified moments

Building on Andrews et al. (2020), we provide a measure of the informativeness of particular

estimable moments—the causal effects of certain estimable policy shocks—to the object of

interest—structural policy rule counterfactuals. The identification results in Section 2 reveal

that policy shock causal effects for enough shocks are sufficient statistics for policy rule

changes, while economic intuition suggests that the effects of policy shocks across different

horizons should be tightly related. Our analysis in this section confirms this intuition for a

particular popular structural model: that of Smets & Wouters (2007).

Local informativeness in a general structural model. We consider a researcher

that entertains a particular structural model ζ ∈ Z, where ζ denotes a vector of the model’s

structural parameters. As a result of model estimation (or simply through some kind of prior

68



Policy Counterfactual via PC Extrapolation, Optimal AIT Policy Rule

Figure C.2: Output gap and inflation impulse responses to a contractionary investment-specific
technology shock under the prevailing baseline rule (dotted grey) and the optimal average inflation
targeting policy rule (purple). The shaded areas correspond to 16th and 84th percentile confidence
bands.

information), the researcher entertains a distribution over that parameter vector:

ζ ∼ F (ζ0,Σζ).

The researcher is interested in some structural counterfactual c given as a function of the

model’s parameters, c = c(ζ). We seek to study the (local) informativeness of some other

function of the model’s parameters, γ = γ(ζ), for the counterfactual of interest, in a neigh-

borhood of ζ0. In the context of this paper c should be interpreted as counterfactual impulse

response paths under alternative policy rules, while γ collects certain impulse responses to

observable policy shocks.

Our formalization of the notion of informativeness is inspired by—though conceptually

distinct from—Andrews et al. (2020).28 In a neighborhood of ζ0, the covariance matrix of

(c, γ) is given as

Σ =

(
Σc Σcγ

Σγc Σγ

)
=

(
∂c(ζ0)
∂ζ

∂γ(ζ0)
∂ζ

)
Σζ

(
∂c(ζ0)
∂ζ

′

∂γ(ζ0)
∂ζ

′

)

28We compute the exact same measure of informativeness as Andrews et al., (C.2). The interpretation,
however, is rather different: Andrews et al. jointly estimate a model as well as descriptive statistics (their
γ), while we study the informativeness of certain features of the model (our γ) for others (our c) conditional
on the particular estimated model.
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For any individual scalar entry ci ∈ c, we then compute the following measure of the (local)

informativeness of γ for ci:

∆i ≡
ΣciγΣ

−1
γ Σγci

Σci

∈ [0, 1] (C.2)

The informativeness measure ∆i answers the following question: how tightly does knowledge

of the observables γ restrict the counterfactual ci? If for example γ contains impulse responses

to certain policy shocks, and the counterfactual ci can be obtained as a linear combination

of these shocks (our analysis from Section 3), then ∆i = 1. If on the other hand ci depends

mostly on policy shocks at other horizons, and the structural model implies little in the way

of cross-column restrictions on the impulse response maps {Θx,ν,A,Θz,ν,A}, then ∆i will be

low. Of course, once γ is large enough, we can invert the mapping γ(ζ) to back out ζ and

therefore c(ζ), trivially giving ∆i = 1. Our question is whether we can have ∆i ≈ 1 for

certain small-dimensional yet in principle observable γ. If so, then we would have shown

that the model robustly maps the given γ into the same counterfactual irrespective of the

particular model parameterization, thus suggesting a robustness in the “identified moment”

sense of Nakamura & Steinsson (2018).

Results for Smets & Wouters (2007). We present results for a particular data-

generating process: the structural model of Smets & Wouters. We pick this model because it

is parameterized flexibly enough to provide a fit to aggregate time series that is competitive

with reduced-form VARs; in particular, the output gap and inflation causal effect maps

{Θy,ν,A,Θπ,ν,A} are affected by 17 distinct structural parameters—our vector ζ. We estimate

the model in the usual way using aggregate time series data, and then use the posterior mean

and variance-covariance matrix as ζ0 and Σζ , respectively.

Given the model, it remains to specify the counterfactuals c and the observables γ. Here

we proceed as follows. First, for c, we begin by considering the entirety of the output and

inflation causal effect maps {Θy,ν,A,Θπ,ν,A}—i.e., our sufficient statistics for the universe of

possible systematic rule change counterfactuals. We will later consider counterfactuals for

particular shock paths. Second, for γ, we choose the impulse responses corresponding to the

two interest rate paths that we used in our empirical applications (displayed in Figure 3).

Recall that we collected the output and inflation impulse responses to these two shock paths

in the matrices {Ωy,A,Ωπ,A}. We then proceed as follows: for the output causal effect map

Θy,ν,A as the counterfactual c, we select as our observables γ the short- and medium-run
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(a) Informativeness for Θy,ν,A (b) Informativeness for Θπ,ν,A

Figure C.3: Output gap and inflation informativeness for monetary policy shocks in the structural
model of Smets & Wouters (2007), computed using (C.2) and for the observables γ defined in (C.3).

average responses of output to our two identified policy instrument paths, i.e.,

γ =

(
1

4

4∑
h=1

Ωy,A(h, •), 1

12

16∑
h=5

Ωy,A(h, •)

)
(C.3)

We proceed similarly for inflation. We thus in both cases ask the question: how much

does knowledge of only the average short- and medium-run causal effects of the observed

instrument paths onto the outcome of interest—i.e., four numbers—restrict the remainder of

the (high-dimensional) policy shock causal effect maps? We here present the main results,

and then discuss some further computational details at the end of this section.

The left panel of Figure C.3 shows the informativeness measure ∆i of our four output

gap impulse response moments for the rest of Θy,ν,A, while the right panel does the same

for inflation. The heatmaps reveal that informativeness is reasonably high throughout, with

averages of 0.75 for the output gap and 0.91 for inflation. Informativeness is particularly high

for short-term shocks—corresponding to our two identified instrument paths—and relatively

short horizons—corresponding to the averaged impulse responses in our γ’s—and decreases

away from the main diagonal. Adding a third long-run average to our observables γ, the

average ∆’s increase to 0.94 and 0.95, respectively.29

While Figure C.3 depicts our measure of informativeness for the entire causal effect maps,

29To be precise, we set γ =
(

1
4

∑4
h=1 Ωy,A(h, •), 18

∑12
h=5 Ωy,A(h, •), 18

∑20
h=13 Ωy,A(h, •)

)
.
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Informativeness ∆ for rule (29) in Smets & Wouters

Figure C.4: Time paths of the output gap and inflation informativeness in the structural model of
Smets & Wouters (2007) for the counterfactual rule (29), to be implemented following the model’s
estimated investment-specific technology shock, for γ defined as in (C.3) (solid line) and adding a
third, long-run impulse response observable (shaded, see Footnote 29).

in practice counterfactuals for typical business-cycle fluctuations are likely to depend mainly

on impulse responses to contemporaneous and a couple of short-run policy news shocks, as

for example suggested by our illustrative analysis in Section 2.4 as well as our applications

in Section 3.3. Given this observation, we would expect informativeness for such particular

policy counterfactuals to be even higher than the averages across all of the shock causal effects

reported above. We illustrate this conjecture by computing our informativeness measure for

a particular shock—the investment-specific technology shock of Smets & Wouters—and a

particular counterfactual rule—the rule (29) previously considered in Section 2.4. We pick

this rule because it implies substantial nominal interest rate inertia and thus lies outside

of the purview of the Phillips curve-based analysis from Section 4.1. Figure C.4 presents

the results, plotting horizon-by-horizon informativeness for the desired counterfactual, in

solid for our baseline γ (i.e., four observables) and shaded if we add long-run response for

each shock. Exactly as expected, the informativeness measures are higher than the averages

reported before at short horizons, before falling at longer horizons.

Discussion. Closely building on Andrews et al. (2020), the analysis in this section has

introduced a tool that allows researchers to communicate—given their maintained parametric
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structural model—which moments of the data “drive” their reported policy counterfactuals.

Consistent with our identification results coupled with basic economic intuition, we find that

impulse responses to identified policy shocks can be highly informative “identified moments”

(Nakamura & Steinsson, 2018) for structural policy rule counterfactuals, providing a novel

justification to impulse response matching as a way of estimating structural macroeconomic

model (Rotemberg & Woodford, 1997; Christiano et al., 2005). Appendix C.3 provides some

intuition by discussing the concept of asymptotic time invariance to link impulse responses

to policy (news) shocks at different horizons.

Aside: further computational details. Our estimation of the structural model of

Smets & Wouters (2007) uses replication codes kindly provided by Johannes Pfeifer.30 The

estimation yields the posterior mode ζ0 and the variance-covariance matrix Σζ .

We compute the monetary policy shock causal effect maps {Θx,ν,A,Θz,ν,A} by solving

the model using sequence-space methods, and then sequentially adding all different contem-

poraneous and news shocks to the policy rule. We then compute
∂Θx,ν,A
∂ζ

and
∂Θz,ν,A
∂ζ

using

finite-difference methods. Given that all counterfactuals c and observables γ are functions

of {Θx,ν,A,Θz,ν,A}, we can use these derivative matrices to construct the joint variance-

covariance matrix Σ for counterfactual ĉ and observables γ̂.

Our observables γ are chosen using the estimated policy instrument paths from our

empirical analysis, plotted in Figure B.1 and Figure B.2. We take the point estimates of the

interest rate path, and then at the estimated mode ζ0 construct the sequence of monetary

policy shocks νννrr and νννgk that would correspond to the two identified shocks. Our observables

γ are then computed from the model-implied output and inflation impulse responses to those

two shocks νννrr and νννgk. The informativeness of the impulse responses to these particular

shocks for impulse responses to all other possible shocks is reported in Figure C.3.

Finally, for the particular counterfactual studied in Figure C.4, we consider the investment-

specific technology shock estimated by Smets & Wouters. We then, at the model’s mode

ζ0, compute the particular monetary policy shock paths ν̃νν that would map the investment-

specific technology shock under the baseline rule to its counterfactual propagation under our

alternative rule (29). Figure C.4 shows the informativeness of our selected observed impulse

responses (i.e., entries of the causal effects of νννrr and νννgk) for the responses to this ν̃νν.

30The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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C.3 Asymptotic time invariance

This section formalizes the intuition that impulse responses to policy shocks at different hori-

zons are tightly linked, using the concept of asymptotic time invariance of impulse responses.

This property provides a (partial) rationalization of the high degree of informativeness of

individual impulse responses documented in Appendix C.2.

The precise definition of asymptotic time invariance is that, for all s ∈ N,

lim
h→∞

Θx,ν,A(h+ s, h) = Θ̄x,ν,A(s), lim
h→∞

Θz,ν,A(h+ s, h) = Θ̄z,ν,A(s) (C.4)

where Θ̄x,ν,A and Θ̄z,ν,A are two sequences. Figure C.5 provides an illustration of this prop-

erty in the model of Smets & Wouters, showing output impulse responses to various different

contemporaneous and forward guidance monetary shocks. We see that, for forward guidance

shocks far into the future (large shock horizon h), the output impulse responses are left-

and right-translations of each other, exactly as expected. In light of this observation, it is

not surprising that a small number of identified shock impulse responses are highly infor-

mative about the entirety of the policy shock causal effect maps {Θx,ν,A,Θz,ν,A}, as seen in

Appendix C.2 for the model of Smets & Wouters.

Asymptotic Time Invariance of IRFs in Smets & Wouters

Figure C.5: Output impulse responses to contemporaneous and forward guidance monetary policy
shocks in the model of Smets & Wouters (2007).
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