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Abstract

The rise of information technology and big data analytics has given rise to “the new econ-

omy.” But are its economics new? This article constructs a dynamic equilibrium model where

firms accumulate data, instead of capital. We incorporate three key features of data: 1) Data

is a by-product of economic activity, 2) data is information used for prediction, and 3) uncer-

tainty reduction enhances firm profitability. The model can explain why data-intensive goods

or services, like apps, are given away for free, why many new firms are unprofitable and why

some of the biggest firms in the economy profit primarily from selling data. While the transition

dynamics of the data economy and a capital economy differ, the long-run dynamics are similar:

Data has diminishing returns; comparative advantage dictates who produces what, and capital

allocations are efficient. However, even in the long run, data creates new economic distortions,

relative to social optimum.
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Does the data economy have new economics? In the information age, production increasingly

revolves around information and specifically, data. Many firms, particularly the most valuable U.S.

firms, are valued primarily for the data they have accumulated. Collection and use of data is as old

as book-keeping. But recent innovations in data-intensive prediction technologies allow us to use

more data more efficiently. Our goal is to explore whether or not the accumulation of data used

by these new technologies generates dynamics that are fundamentally different from capital or idea

accumulation. We show that the long-run forces are mostly familiar. However, the short-run forces

are new: The transition dynamics of data-accumulating firms differ from their capital-accumulating

predecessors.

Most of the discussion about big data is about a particular type of digitized information:

transaction-generated data, used by firms to optimize their business processes, by accurately pre-

dicting future outcomes. The hype about data economics has arisen because of breakthrough data

technologies, like machine learning and artificial intelligence. These are prediction algorithms.

They require enormous amounts of data, which are naturally generated by transactions: informa-

tion about online buyers, satellite images of traffic patterns near stores, textual analysis of user

reviews, click through data, and other evidence of economic activity. The predictions made with

this big data are typically used for business process optimization, such as advertising, forecasting

sales, earnings, inventories, shipping needs or estimating the future value of investments or product

lines. The reason we focus on this type of data is because this is where the technological change

took place (Goldfarb and Tucker, 2019), this is the type of data that concerns regulators, and this

is the type of data that supposedly will spawn a new information age. This is what we mean when

we talk about “data.”

What we are not focusing on is digitized knowledge – patents, textbooks or art – or data used

for research or innovation. This type of data is not what the claims of a new data economy are

about. There are existing literatures on patents and on the role of ideas in growth. While we

extend our model to include data as an input in the growth process, such research data or digitized

knowledge is not what “data” refers to, in this paper.

Therefore, Section 1 proposes a model of a data economy where data is user-generated, is used

to form predictions about uncertain future outcomes and helps firms to optimize their business

processes. Because data is non-rival, increases productivity and is freely replicable (has returns to
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scale), previous thinking equated data growth with idea or technological growth. What is new in

this model is that data is information, used for prediction, while still being an asset that a firm can

accumulate.

Section 2 examines the data economy in the long run. We start with a thought experiment:

Can data sustain growth, in the absence of any technological progress? This is an analogy to the

question Solow (1956) asks about capital. We find that diminishing returns arises from data’s role

in improving predictions. Prediction errors can only be reduced to zero. That places a natural

bound on how much prediction error data can possibly resolve. Unforecastable randomness is a

second force that limits how much firms can benefit from better data and better predictions. Either

one of these forces ensures that when data is abundant, it has diminishing returns. The presence

of diminishing returns means data accumulated for process improvements cannot sustain growth.

Is it possible for data to play a role in long-run growth? Yes, if data is an input into research and

development. Section 2.3 shows how data might feature in a quality-ladder model of endogenous

growth. The key question for long-run growth then becomes whether transactions data – who

bought what – can inform growth-sustaining technological innovation.

The use and sale of data is governed by a mostly familiar force – comparative advantage – with

some novel predictions as well. Section 2.3 shows that data firms have returns to specialization.

When high-efficiency data producers are scarce, they specialize more in selling data to others. The

organization of the market resembles the large data platform companies we see currently dominating

the U.S. market.

In the long run, a data economy will feature specialization, if data is sufficiently non-rival. In

such an economy, large firms that have a comparative advantage in data production derive most of

their profit from data sales. Meanwhile, small firms have a comparative advantage in high-quality

goods production. Therefore, such large firms produce high volumes of low-price goods. The

business model of these large firms is to do lots of transactions at a low price for goods and earn

more revenue from data sales. While we know that many firms execute a strategy like this and the

idea of comparative advantage is familiar, this is different from a capital accumulation economy.

It surprising that, even with diminishing returns everywhere, this realistic market structure arises

from simple economic properties of data as information.

In Section 3, we focus on the short run, meaning the transition dynamics before a firm gets
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to steady state. When data is scarce, it may have increasing returns, which arise because of the

way in which data is produced. Our model features what is referred to as a “data feedback loop.”

More data makes a firm more productive, which results in more production and transactions, which

generate more data, further increasing productivity and data generation. This force is the dominant

force when data is scarce, before the diminishing returns to forecasting set in and overwhelm it.

This increasing returns force can generate a data poverty trap. Firms with low levels of data earn

low profits, which makes little production optimal. But little production generates little data,

which keeps the firm poor.

Because data is a long-lived asset, firms may choose to produce goods with negative profits,

because goods production will also produce data, which is an asset with long-lived value. This

rationalizes the commonly-observed practice of data barter (Section 3.2). Many digital services,

like apps, which were costly to develop, are given away to customers at zero price. This is not

generosity. Firms are exchanging these services for their customers’ data. The exchange of data for

a service, at a zero monetary price, is a classic barter trade. Such trades can arise in our model:

Firms give away their goods, as a form of costly investment in data.

The data economy has raised many regulatory questions. To answer these, one needs to know:

Is a data economy efficient? Section 4 adds microfoundations, to examine the optimality of our

equlibrium. In the baseline model, despite the non-rivalry of data, the increasing returns, and the

fact that output generates data as a by-product, equilibrium choices are efficient.

However, this answer depends crucially on the assumption that all data is used for product

quality improvement. In reality, many firms use data to steal business from rivals. We show how

to model such business stealing and find that in this economy, inefficiencies arise. Two distinct

inefficiencies emerge: First, too much data is supplied and traded on the data market. This is

because firms to do not internalize that the data they sell harm their own profits on the good

market by improving their rivals’ quality. Second, the fact that data is a by-product of output

makes capital choices inefficient. Firms over-invest in capital to rip off the benefits of having more

data and an improved quality, and do not internalize loss that their choices inflicts on their rivals’

business. This observation suggest that part of the over-investment in data can be inferred from

capital measurement, which is more precise. Nevertheless, better data measurement is required to

understand the inefficiencies in the data market.
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The primary contribution of the paper is not the particular predictions we explore. Some of

those predictions are more obvious, some more surprising. The larger contribution is a tool to

think clearly about the economics of aggregate data accumulation. Because our tool is a simple

one, many applications and extensions are possible. We explore some in subsections of the paper;

others are suggested in the conclusion. While adding features to the main model is tempting, to

allow the model to better address one question or another, the advantage of keeping the main model

simple is that it allows the tool to be used in many different ways.

The model also offers guidance for measurement. Measuring and valuing data is complicated by

the fact that frequently, data is given away, in exchange for a free digital service. Our model makes

sense of this pricing behavior and assigns a private and social value to goods and data that have

a zero transaction price. In so doing, it moves beyond price-based valuation, which often delivers

misleading answers when valuing digital assets.

Related Literature. Compared to the existing literature on data and growth, the key difference

in our model is that data is information, used to forecast a random variable. In Jones and Tonetti

(2018) and related work in Cong et al. (2020), data contributes directly to productivity. It is

not information. A fundamental characteristic of information is that it reduces uncertainty about

something. When we model data as information with an exogenous bound on technology, Jones

and Tonetti (2018)’s conclusions about the benefits of data privacy may still hold. But the long-run

growth conclusions do not.

In models of learning-by-doing (Jovanovic and Nyarko (1996), Oberfield and Venkateswaran

(2018)) and organizational capital (Atkeson and Kehoe (2005), Aghion et al. (2019)), firms also

accumulate a form of knowledge. But the economics differ. Unlike prediction data, this knowledge

need not have long-run diminishing returns. Also, it is not a tradeable asset. Our short-run

increasing return to data differs from growth models with increasing returns Farmer and Benhabib

(1994), because those are based on positive spillovers between firms. Ours is a feedback loop within

a firm.

Work on information frictions in business cycles (Caplin and Leahy (1994), Veldkamp (2005),

Lorenzoni (2009), Ordonez (2013), Ilut and Schneider (2014) and Fajgelbaum et al. (2017)) have

early versions of a data-feedback loop whereby more data enables more production, which in turn,
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produces more data. In each of these models, information was a by-product of economic activity;

firms used this information to reduce uncertainty and guide their decision-making. But the key

difference is that information was a public good, not a private asset. The private asset assumption

in this paper changes firms’ incentives to produce data. In these earlier models, firms use data to

forecast business cycles, not optimal firm strategy. We model data that is industry or firm specific,

and is private property of the firm.

Work exploring the interactions of data and innovation complements ours. For example, Agrawal

et al. (2018) develop a combinatorial-based knowledge production function to explore how break-

throughs in AI could enhance discovery rates and economic growth.1 Acemoglu and Restrepo (2018)

explore similar questions to ours, but about the growth potential from robots. Although robots

require data, they are rival capital goods, distinct from the data itself. Our work analyzes big data

and new prediction algorithms, in the absence of technological change. Once we understand this

foundation, one can layer these insights about data, innovation and automation on top.

In the finance literature, Begenau et al. (2018) explore how growth in the processing of financial

data affects firm size. They do not model firms’ use of their own data. There is also a literature on

data-driven decision making, which explores how data matters at a microeconomic level. We add

the aggregate effects of such activities.

Finally, the insight that the stock of knowledge can serve as a state variable comes from the

five-equation toy model sketched in Farboodi et al. (2019). That was a partial-equilibrium numer-

ical exercise, designed to explore the size of firms with heterogeneous data. This paper builds an

aggregate equilibrium model, with goods markets, data markets, data non-rivalry, analytical solu-

tions and welfare analysis. These new dimensions to this model fundamentally shape the answers

to our main questions about aggregate dynamics and long-run outcomes.

1 A Data Economy

We build a framework in which data is information, which helps forecast random outcomes. More

accurate forecasts help firms optimize business processes. The model looks much like a simple Solow

1Other work in the vein includes: Lu (2019) who embeds self-accumulating AI in a Lucas (1988) growth model
and examines growth transition paths and welfare; Aghion et al. (2017) who explore the reallocative effects of AI, as
Baumol (1967)’s cost disease leads to the declining share of traditional industries’ GDP.

6



(1956) model. To isolate the effect of data accumulation, the model holds fixed productivity, aside

from that which results from data accumulation. There are inflows of data from new economic

activity and outflows, as data depreciates. The depreciation comes from the fact that firms are

forecasting a moving target. Economic activity many periods ago was quite informative about the

state at the time. However, since the state has random drift, such old data is less informative about

what the state is today.

The key differences between our data accumulation model and Solow’s capital accumulation

model are three-fold: 1) Data is used for forecasting; 2) data is a by-product of economic activity,

and 3) data is, at least partially, non-rival. Multiple firms can use the same data, at the same time.

These subtle changes in model assumptions are consequential. They alter the source of diminishing

returns, create increasing returns and data barter, and produce returns to specialization.

1.1 Model

Real Goods Production Time is discrete and infinite. There is a continuum of competitive

firms indexed by i. Each firm can produce kαi,t units of goods with ki,t units of capital. These goods

have quality Ai,t. Thus firm i’s quality-adjusted output is

yi,t = Ai,tk
α
i,t (1)

The quality of a good depends on a firm’s choice of a production technique ai,t. Each period

firm i has one optimal technique, with a persistent and a transitory components: θt+ εa,i,t. Neither

component is separately observed. The persistent component θt follows an AR(1) process: θt =

θ̄ + ρ(θt−1 − θ̄) + ηt. The AR(1) innovation ηt ∼ N(0, σ2
θ) is i.i.d. across time.2 The transitory

shock εa,i,t ∼ N(0, σ2
a) is i.i.d. across time and firms and is unlearnable.

The optimal technique is important for a firm because the quality of a firm’s good, Ai,t, de-

pends on the squared distance between the firm’s production technique choice ai,t and the optimal

2One might consider different possible correlations of ηi,t across firms i. An independent θ processes
(corr(ηi,t, ηj,t) = 0, ∀i 6= j) would effectively shut down any trade in data. Since buying and selling data hap-
pens and is worth exploring, we consider an aggregate θ process (corr(ηi,t, ηj,t) = 1, ∀i, j). It is also possible to
achive an imperfect, but non-zero correlation.
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technique θt + εa,i,t:

Ai,t = g
(
(ai,t − θt − εa,i,t)2

)
. (2)

The function g is strictly decreasing. A decreasing function means that techniques far away from

the optimum result in worse quality goods.

Data The role of data is that it helps firms to choose better production techniques. One in-

terpretation is that data can inform a firm whether blue or green cars or white or brown kitchens

will be more valued by their consumers, and produce or advertise accordingly. In other words, a

technique could represent a resource allocation. Transactions help to reveal customers’ marginal

values, but these values are constantly changing. Firms must continually learn to catch up. An-

other interpretation is that the technique is inventory management, or other cost-saving activities.

Observing production and sales processes at work provides useful information for optimizing busi-

ness practices. For now, we model data as welfare-enhancing. We relax that assumption in Section

3.

Specifically, data is informative about θt. At the start of date t, nature chooses a countably

infinite set of potential data points for each firm i: ζit := {si,t,m}∞m=1. Each data point m reveals

si,t,m = θt+1 + εi,t,m, (3)

where εi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all the shocks

in the model are normally distributed: fundamental uncertainty is ηt ∼ N(µ, σ2
θ), signal noise is

εi,t,m ∼ N(0, σ2
ε ).

The next assumption captures the idea that data is a by-product of economic activity. The

number of data points n observed by firm i at the end of period t depends on their production kαi,t:

ni,t = zik
α
i,t, (4)

where zi is the parameter that governs how much data a firm can mine from its customers. A data

mining firm is one that harvests lots of data per unit of output. Thus, firm i’s production uncovers
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signals {sm}
ni,t
m=1.

The temporary shock εi,t,m is important in preserving the value of past data. It prevents firms,

whose payoffs reveal their productivity Ai,t, from inferring θt at the end of each period. Without

it, the accumulation of past data would not be a valuable asset. If a firm knew the value of θt−1 at

the start of time t, it would maximize quality by conditioning its action ai,t on period-t data ni,t

and θt−1, but not on any data from before t. All past data is just a noisy signal about θt−1, which

the firm now knows. Thus preventing the revelation of θt−1 keeps old data relevant and valuable.

Data Trading and Non-Rivalry Let δi,t be the amount of data traded by firm i a time t. If

δi,t < 0, the firm is selling data. If δit > 0, the firm purchased data.3 We restrict δi,t ≥ −ni,t so

that a firm cannot sell more data than it produces. Let the price of one piece of data be denoted

πt.

Of course, data is non-rival. Some firms use data and also sell that same data to others. If there

were no cost to selling one’s data, then every firm in this competitive, price-taking environment

would sell all its data to all other firms. In reality, that does not happen. Instead, we assume that

when a firm sells its data, it loses a fraction ι of the amount of data that it sells to each other firm.

Thus if a firm sells an amount of data δi,t < 0 to other firms, then the firm has ni,t + ιδi,t data

points left to add to its own stock of knowledge. Recall that for a data seller, ιδ < 0 so that the firm

has less data than the ni,t points it produced. This loss of data could be a stand-in for the loss of

market power that comes from sharing one’s own data. It can also represent the extent of privacy

regulations that prevent multiple organizations from using some types of personal data. Another

interpretation of this assumption is that there is a transaction cost of trading data, proportional

to the data value. If the firm buys δi,t > 0 units of data, it adds ni,t + δi,t units of data to its stock

of knowledge.

Data Adjustment and the Stock of Knowledge The information set of firm i when it

chooses its technique ai,t is4 Ii,t = [{Ai,τ}t−1
τ=0; {{si,τ,m}

ni,τ
m=1}

t−1
τ=0]. To make the problem recursive

and to define data adjustment costs, we construct a helpful summary statistic for this information,

3This formulation prohibits firms from both buying and selling data in the same period.
4We could include aggregate output and price in this information set as well. We explain in the model solution

why observing aggregate variables makes no difference in the agents’ beliefs. Therefore, for brevity, we do not include
these extraneous variables in the information set.
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called the “stock of knowledge.”

Each firm’s flow of ni,t new data points allows it to build up a stock of knowledge Ωi,t that it

uses to forecast future economic outcomes. We define the stock of knowledge of firm i at time t

to be Ωi,t. We use the term “stock of knowledge” to mean the precision of firm i’s forecast of θt,

which is formally:

Ωi,t := Ei[(Ei[θt|Ii,t]− θt)2]−1. (5)

Note that the conditional expectation on the inside of the expression is a forecast. It is the firm’s

best estimate of θt. The difference between the forecast and the realized value, Ei[θt|Ii,t] − θt, is

therefore a forecast error. An expected squared forecast error is the variance of the forecast. It’s

also called the variance of θ, conditional on the information set Ii,t, or the posterior variance. The

inverse of a variance is a precision. Thus, this is the precision of firm i’s forecast of θt.

Data adjustment costs capture the idea that a firm that does not store or analyze any data

cannot freely transform itself to a big-data machine learning powerhouse. That transformation

requires new computer systems, new workers with different skills, and learning by the management

team. As a practical matter, data adjustment costs are important because they make dynamics

gradual. If data is tradeable and there is no adjustment cost, a firm would immediately purchase

the optimal amount of data, just as in models of capital investment without capital adjustment

costs. Of course, the optimal amount of data might change as the price of data changes. But such

adjustment would mute some of the dynamics we are interested in.

We assume that, if a firm’s data stock was Ωi,t and becomes Ωi,t+1, the firm’s period-t output

is diminished by Ψ(∆Ωi,t+1) = ψ(∆Ωi,t+1)2, where ψ is a constant parameter and ∆ represents the

percentage change: ∆Ωi,t+1 = (Ωi,t+1 − Ωi,t)/Ωi,t. The percentage change formulation is helpful

because it makes doubling one’s stock of knowledge equally costly, no matter what units data is

measured in.

Firm’s Problem A firm chooses a sequence of production, quality and data-use decisions

ki,t, ai,t, δi,t to maximize

E0

∞∑
t=0

(
1

1 + r

)t (
PtAi,tk

α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t

)
(6)
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Firms update beliefs about θt using Bayes’ law. Each period, firms observe last period’s revenues

and data, and then choose capital level k and production technique a. The information set of firm

i when it chooses its technique ai,t and its investment ki,t is Ii,t.

As in Solow (1956), we take the rental rate of capital as given. This reveals the data-relevant

mechanisms as clearly as possible. It could be that this is an industry or a small open economy,

facing a world rate of interest r.

Equilibrium Pt denotes the equilibrium price per quality unit of goods. In other words, the price

of a good with quality A is APt. The inverse demand function and the industry quality-adjusted

supply are:

Pt = P̄E
[
Y −γt

]
, (7)

Yt =

∫
i
Ai,tk

α
i,tdi. (8)

Firms take the industry price Pt as given and their quality-adjusted outputs are perfect substi-

tutes.

1.2 Solution

The state variables of the recursive problem are the prior mean and variance of beliefs about θt−1,

last period’s revenues, and the new data points. However, we can simplify this to one sufficient

state variables to solve the model simply. The next steps explain how.

Optimal Technique and Expected Quality Taking a first order condition with respect to

the technique choice, we find that the optimal technique is a∗i,t = Ei[θt|Ii,t]. Thus, expected quality

of firm i’s good at time t in (2) can be rewritten as E[Ai,t] = E
[
g
(
(Ei[θt|Ii,t]− θt − εa,i,t)2

)]
. The

squared term is a squared forecast error. It’s expected value is a conditional variance, of θt + εa,i,t.

That conditional variance is denoted Ω−1
i,t + σ2

a.

To compute expected quality, we first take a second-order Taylor approximation of the quality

function, expanding around the expected value of its argument: g(v) ≈ g(E[v])+g‘(v) · (v−E[v])+

(1/2)g′′(v) · (v − E[v])2. Next, we take an expectation of this approximate function: E[g(v)] ≈
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g(E[v]) + g‘(v) · 0 + (1/2)g′′(v) · var(v). Recognizing that the argument v is a chi-square variable

with mean Ω−1
i,t + σ2

a and variance 2(Ω−1
i,t + σ2

a), the expected quality of firm i’s good at time t in

(2) can be approximated as

Ei[Ai,t] ≈ g
(

Ω−1
i,t + σ2

a

)
+ g′′

(
Ω−1
i,t + σ2

a

)
·
(

Ω−1
i,t + σ2

a

)
. (9)

Assume that the g function is not too convex, so that quality is a deceasing function of expected

forecast errors. Or put simply, more data precision increases quality. We will return to the question

of highly convex, unbounded g functions in the next section.

Notice that the way signals enter in expected utility, only the variance (or precision) matters,

not the prior mean or signal realization. As in Morris and Shin (2002), precision, which in this case

is the stock of knowledge, is a sufficient statistic for expected utility and therefore, for all future

choices. The quadratic loss, which eliminates the need to keep track of signal realizations, simplifies

the problem greatly.

The Stock of Knowledge Since the stock of knowledge Ωi,t is the sufficient statistic to keep

track of information and its expected utility, we need a way to update or keep track of how much

of this stock there is. Lemma 1 is just an application of Bayes’ law, or equivalently, a modified

Kalman filter, that tell us how the stock of knowledge evolves from one period to the next.

Lemma 1 Evolution of the Stock of Knowledge In each period t,

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+
(
ni,t + δi,t(1δi,t>0 + ι1δi,t<0)

)
σ−2
ε (10)

The proof of this lemma and of all the lemmas and propositions that follow are in Appendix

A. Lemma 1 says that the stock of knowledge is the depreciated stock from the previous period t,

plus new data inflows.

The inflows of data are new pieces of data that are generated by economic activity. The number

of new data points ni,t is assumed to be data mining ability times end of period physical output:

zik
α
i,t. By Bayes’ law for normal variables, the total precision of that information is the sum of

the precisions of all the data points: ni,tσ
−2
ε . The term σ−2

a in (10) is the additional information

learned from seeing one’s own realization of quality Ai,t, at the end of period t. That information
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also gets added to the stock of knowledge. At the firm level, we need to keep track of whether a

firm buys or sells data. Thus the newly added stock of data ni,t has to be adjustd for data trade.

That is the role of the indicator functions at the end of (10).

One might wonder why firms do not also learn from seeing aggregate price and the aggregate

output. These obviously reflect something about what other firms know. But what they reflect is

the squared difference between θt and other firms’ technique ajt. That squared difference reflects

how much others know, but not the content of what others know. Because the mean and variance

of normal variables are independent, knowing others’ forecast precision reveals nothing about θt.

Seeing one’s own outcome Ai,t is informative only because a firm also knows its own production

technique choice ai,t. Other firms’ actions are not observable. Therefore, aggregate prices or quan-

tities reveal what other firms predicted well, which conveys no useful information about whether

θt is high or low.

How does data flow out or depreciate? Data depreciates because data generated at time t is

about next period’s optimal technique θt+1. That means that data generated s periods ago is

about θt−s+1. Since θ is an AR(1) process, it is constantly evolving. Data from many periods ago,

about a θ realized many periods ago, is not as relevant as more recent data. So, just like capital,

data depreciates. Mathematically, the depreciated amount of data carried forward from period t

is the first term of (10):
[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The Ωi,t + σ−2

a term represents the stock

of knowledge at the start of time t plus the information about period t technique revealed to a

firm by observing its own output. This stock of knowledge is multiplied by the persistence of the

AR(1) process squared, ρ2. If the process for optimal technique θt was perfectly persistent then

ρ = 1 and this term would not discount old data. If the θ process is i.i.d. ρ = 0, then old data is

irrelevant for the future. Next, the formula says to invert the precision, to get a variance and add

the variance of the AR(1) process innovation σ2
θ . This represents the idea that volatile θ innovations

make knowledge about past θ’s less relevant. Finally, the whole expression is inverted again so that

the variance is transformed back into a precision. This precision represents a (discounted) stock of

knowledge. The depreciation of knowledge is the period-t stock of knowledge, minus the discounted

stock.

At the aggregate level, an economy as a whole cannot buy or sell data. Therefore, for the
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aggregate economy,

Inflows: Ω+
t = σ−2

ε

∫
i
zik

α
i,tdi+ σ−2

a (11)

Outflows: Ω−t = Ωt + σ−2
a −

∫
i

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
di. (12)

A One-State-Variable Problem We can now express expected firm value recursively, with

the stock of knowledge as the single state variable in the following lemma.

Lemma 2 The optimal sequence of capital investment choices {ki,t} and data sales {δi,t ≥ −ni,t}

solve the following recursive problem:

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t]k
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t

+

(
1

1 + r

)
V (Ωi,t+1) (13)

where E[Ai,t] is an increasing function of Ωi,t, given by (9), ni,t = zik
α
i,t, and the law of motion for

Ωi,t is given by (10).

This result greatly simplifies the problem by collapsing it to a deterministic problem with choice

variables k and δ and one state variable, Ωi,t. In expressing the problem this way, we have already

substituted in the optimal choice of production technique. The quality Ai,t that results from the

optimal technique depends on the conditional variance of θt. Because the information structure is

similar to that of a Kalman filter, that sequence of conditional variances is deterministic.

The non-rivalry of data acts like a kinked price of data, or a negative transactions cost in (10).5

Valuing Data Since Ωi,t can be interpreted as a discounted stock of data, V (Ωi,t) captures

the value of this data stock. V (Ωi,t)− V (0) is the present discounted value of the net revenue the

firm receives because of its data. Therefore, the marginal value of one additional piece of data, of

precision 1, is simply ∂Vt/∂Ωi,t. When we consider markets for buying and selling data, ∂Vt/∂Ωi,t

represents the firm’s demand, its marginal willingness to pay for data.

5To see the kinked price interpretation more clearly, redefine the choice variable to be ω, the amount of data added
to a firm’s stock of knowledge Ω. Then, ω = ni,t + δi,t for data purchases (δi,t > 0) and ω = ni,t + ιδi,t for data sales
when δi,t < 0. Then, we could re-express this problem as a choice of ω and a corresponding price that depends on
whether ω ≥ ni,t or ω < ni,t.
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Figure 1: Economy converges to a data steady state: Aggregate inflows and outflows of data.
Line labeled inflows plots the quantity in (11) for the aggregate economy, for different levels of initial data stock.
Line labeled outflows plots the quantity in (12). This is equivalent to the outflow and inflow for a representative firm
i who operates in an economy populated with identical firms with no trade. The representative firm makes optimal
capital decision k∗i,t, with different levels of initial data stock. In this example and the ones that follow, we adopt a
simple, linear quality function g(z) = g(0)− z.

2 Long-Run Features of a Data Economy

In this section, we show the various ways in which the long-run in this data economy is surprisingly

similar to a capital-based production economy. The following section emphasizes the contrasts.

The first set of results show that within the model, there is no long run growth. We then move to

results that describe general conditions under which data used for forecasting can sustain infinite

growth. If one believes that the accumulation of data for process innovation can sustain growth

forever without innovation, there are some logically equivalent statements that one must also accept.

Next, we show how to break this result. To sustain long-run growth, data must be an input into

idea creation. Thus, just like capital, data can sustain growth only if it is an input into research

and development. Third, we explore the pattern of data production and data trade that arise when

some firms are more data savvy than others. Finally, we consider welfare and find that, despite

being non-rival and a by-product of economic activity, long-run data production is not a source of

inefficiency.

2.1 Diminishing Returns and Zero Long Run Growth

Just like we typically teach the Solow (1956) model by examining the inflows and outflows of capital,

we can gain insight into our data economy growth model by exploring the inflows and outflows of
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Figure 2: Aggregate growth dynamics: Data accumulation grows knowledge and output over time,
with diminishing returns. Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 0.4, γ = 0.1, A = 1, P = 1, σ2

a =
0.05, σ2

θ = 0.5, σ2
ε = 0.1, z = 5, ι = 1 . See appendix B for details of parameter selection and numerical solution of the

model.

data. Figure 1 illustrates the inflows and outflows (eq.s 11 and 12), in a form that looks just

like the traditional Solow model with capital accumulation. What we see on the left is the large

distance between inflows and outflows of data, when data is scarce. This is a period of fast data

accumulation and fast growth in the quality and value of goods. What we see on the right is the

distance between inflows and outflows diminishing, which represents growth slowing. Eventually,

inflows and outflows cross at the steady state. If the stock of knowledge ever reached its steady

state level, it would no longer change, as inflows and outflows just balance each other. Likewise,

quality and GDP would stop growing.

One difference between data and capital accumulation is the nature and form of depreciation.

In the Solow model of capital accumulation, depreciation is a fixed fraction of the capital stock,

always linear. In the data accumulation model, depreciation is not linear, but is very close to

linear. Lemma 5 in the Appendix shows that depreciation is approximately linear in the stock of

knowledge, with an error bound that depends primarily on the variance of the innovation in θ.

What diminishing returns means for a data-accumulation economy is that, over time, the aggre-

gate stock of knowledge and aggregate amount of output would have a time path that resembles the

concave path in Figure 2. Without idea creation, data accumulation alone would generate slower

and slower growth.

Conceptually, diminishing returns arise because we model data as information, not as an addi-
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tion to productivity. Information has diminishing returns because its ability to reduce variance gets

smaller and smaller as beliefs become more precise. Forecast errors can, at best, be zero. Mathe-

matically, diminishing returns comes from two distinct and independent sources: the finite-valued

quality function and unlearnable risk. The next set of results explain why either feature bounds

the growth from data.

Long Run Growth Impossibility Results Can data accumulation sustain growth in an

economy without innovation? For sustained growth to be possible, two things must both be true:

1) Perfect one-period-ahead foresight implies infinite real output; and 2) the future is a determin-

istic function of today’s observable data.6 While empirical studies support the idea of decreasing

returns to data (Bajari et al., 2018), it is not possible to prove the nature of a production function

theoretically. What theory can do is tell us that if we believe data can sustain long-run growth, this

logically implies other economic properties. In this case, long-run growth implies two conditions

that are at odds with most theories. If a researcher does not believe either property to be true,

they must then believe data-induced growth, without innovation, cannot be sustained.

In our economy, expected aggregate output is
∑

iE[Ai,t]k
α
i,t. From the capital first order con-

dition, we know that capital choice ki,t will be finite, as long as expected quality E[Ai,t] is finite.

Thus, the question of whether growth can be sustained becomes a question of whether E[Ai,t] can

become infinite in the limit, for any firm i, as all firms accumulate more and more data.

Definition 1 (Sustainable growth) Let Yt =
∑

iE[Ai,t]k
α
i,t such that ln(Yt+1) − ln(Yt) is the

aggregate growth rate of output. A data economy can sustain a minimum growth rate g > 0 if ∃ T

such that in each period t > T , ln(Yt+1)− ln(Yt) > g.

Proposition 1 To Sustain Growth, Forecasts Must Make Infinite Output Possible

Sustainable growth in our data economy requires that there exists a v such that as v → v the quality

function approaches infinity g(v)→∞.

From a mathematical perspective, this result is perhaps obvious. If expected quality (g) does

not approach infinity in the high-data limit, then output cannot become infinite as forecast errors

6It is also true that inflow concavity comes from capital having diminishing returns. The exponent in the production
function is α < 1. But that is a separate force. Even if capital did not have diminishing marginal returns, inflows
would still exhibit concavity.
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go to zero. If output cannot be infinite, then it cannot grow at any rate g > 0 forever. But

this simple idea is economically significant for two reasons. First, there are many models with

perfect foresight. None generate infinite real economic value. Second, if society as a whole knows

tomorrow’s state, they can simply produce today what they would otherwise be able to produce

tomorrow. Thus, imposing finite real output at zero forecast error is a sensible assumption. But

this common-sense assumption then leads to the conclusion that data has diminishing returns.

The next result relates what is random or learnable to the potential for data to sustain growth.

First, we formalize the notion of learnable. Recall that ζi,t is the set of all signals that nature draws

for firm i. These are all potentially observable signals. Not all will be observed. Define Ξt to be the

Borel σ-algebra generated by {ζi,t ∪ Ii,t}∞i=1. This is the set of all variables that can be perfectly

predicted with some combination of prior information Ii,t and time-t observable data, somewhere

in the economy.

Definition 2 (Fundamental randomness) A variable v has time-t fundamental randomness if

v 6 ∈ Ξt.

Fundamental randomness means future events that are not deterministic functions of observable

events today. If they are not deterministic functions of something that can be observed today, then

no signal can perfectly predict these future events. In other words, fundamentally random variables

are not perfectly learnable. In our model, fundamental randomness or unlearnable risk is present

when σ2
a > 0.

Proposition 2 Data-Driven Growth Implies No Fundamental Randomness Suppose

the quality function g is finite almost everywhere, except g(0) → ∞. Sustainable growth requires

that future quality g(at+1 − θt+1εa,t+1) has no time-t fundamental randomness.

The condition that g is finite-valued, except at zero, simply rules out the possibility that firms

that have imperfect forecasts and still make mistakes can still achieve perfect, infinite quality. But

this formulation allows what Proposition 1 does not. It says, even if you believe perfect one-period-

ahead forecasts can produce infinite output, you still might get diminishing returns because of the

existence of fundamental, unlearnable randomness.

An implication of Proposition 2 is that, for long-run data-driven growth, the economically-

relevant state tomorrow must be a deterministic function of observable events today. If fundamental
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randomness means future random events that are not deterministic functions of observable events

today, then there can be no fundamental randomness that affects the profitability of investment.

If such randomness exists, it cannot be learned because it is not a deterministic function of signals,

which are observable today. If it is not a deterministic function of a signal, it cannot be perfectly

forecasted. If forecasts cannot be perfect, output cannot grow indefinitely. In other words, there

cannot be sustainble growth.

Thus, if one believes some events tomorrow are fundamentally random, then even if perfect pre-

cision can potentially generate infinite output, data will still have diminishing returns. Conversely,

even if one believes that nothing is truly random, but they believe that with one-period ahead

knowledge, an economy can only produce the finite amount today that they would otherwise pro-

duce tomorrow, then data must also have diminishing returns. For process-optimizing data, without

technological innovation, to produced sustained growth, one must embrace both the infinite output

and no-fundamental-randomness assumptions. Keep in mind that this analysis holds technology

fixed. This technology includes advances in prediction technology. So to sustain growth, without

technological advance, what is required is that both perfect one-period-ahead forecasts enable in-

finite production, with current production technology, and that current prediction technology can,

with sufficient data, achieve one-period-ahead forecasts with zero prediction error.

2.2 Specialization in Data Production

There are two possible ways a data-efficient firm might profit. First, it could retain the data, to

make high-quality goods, to sell at a high price. Such firms are specialized in the production of

high-quality goods. Alternatively, they could sell off most of their data and produce low-quality

goods. Their goods would earn little or even no revenue. But their data sales would earn profits.

We say that such a firm specializes in data production or data services.

When data is sufficiently non-rival, a version of comparative advantage emerges that resembles

patterns of international trade: Firms that are better at data collection have a comparative (and

absolute) advantage in data and specialize in data sales. Firms that are poor at data collection

have the comparative advantage in high-quality goods production and specialize in that.

From here on, we return to the quality equation (2), withouth endogenous growth.

We consider a competitive market populated by a measure λ of low data-productivity firms
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(zi = zL, hereafter L-firms), and 1−λ of high data-productivity firms (zi = zH , hereafter H-firms),

in steady state. We are interested in the difference between the accumulated data of the H- and

L-firms in the steady state. Firms who accumulate more data produce higher quality goods. In

order to make this comparison, we define the concept of the knowledge gap.

Definition 3 (Knowledge Gap) Knowledge gap denotes the equilibrium difference between knowl-

edge level of a high and low data productivity firm, Υt = ΩHt − ΩLt.

When the knowledge gap is high, data-producing firms produce high-quality goods. When

it is negative, data producers behave like data platforms, providing basic low-cost services and

profiting mostly from their data. Regardless of the knowledge gap, high data-productivity firms

would produce many units of goods and data. The question is whether they use data to produce

high-quality goods or not.

Lemma 3 Data-Accumulation by Individual Efficient Data Producer Suppose there is

a single, measure-zero H-firm in the market with zi = zH (λ = 1). In steady state, the knowledge

gap is positive, Υss > 0, and increasing in H-firm data productivity, dΥss

dzH
> 0, ∀ι and zH .

When a single, high-productivity (H) firm enters a market populated by L-firms (λ = 1). The

steady state outcome is what is intuitively expected. A positive knowledge gap means that the data-

productive firm is larger, accumulates more data in the steady state, and specializes in high quality

production. Furthermore, dΥss

dzH
> 0 means that the data productivity of the H-firm increases, it

accumulates even more knowledge in steady state.

Next, consider a steady state in which there are many H-firms. Formally, the measure of L-

firms, λ, is bounded away from one. In this case, when data is sufficiently non-rival, the reverse

happens; the knowledge gap is negative. The next result shows that, when firms can retain most

of the data they sell, high-productivity data producers sell more data; so much more that they are

left with less knowledge.

Proposition 3 More Efficient Data Producers Accumulate Less Knowledge Suppose

that there is a strictly positive measure of high-data-productivity firms, λ < 1. If α < 1
2 and γ is

sufficiently small then when data is sufficiently non-rival, ι < ῑ, the steady state knowledge gap is

negative: Υss < 0.
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The non-rivalry of data here is essential. The proof in the Appendix also shows that when data

is sufficiently rival (ι > ῑ), the knowledge gap becomes positive Υss > 0. Data non-rivalry acts

like a negative bid-ask spread in the data market. It drives a wedge between the value of the data

sold and the opportunity cost, the amount of data lost through the act of selling. While a bid-ask

spread typically involves some loss from exchange of an asset, with non-rivalry, exchanging data

results in more total data being owned. If the buyer pays a price π per unit of data gained, the

seller earns more than π per unit of data forfeited, because they forfeit only a fraction of the data

sold. This negative spread, or tax, on transactions incentivizes data producers to be prolific sellers

of data. The incentive to sell data can be so great that these data producers are left with almost

no data for themselves.

Since many economists and policy makers are concerned about concentration in data markets,

we also explore what happens to data specialization when the the data market is more concentrated.

The numerical example in Figure 3 illustrates the visible hallmarks of data specialization. Since

data is multi-use (non-rival), the knowledge gap is negative. As a result, efficient data producers

earn more of their profits from data sales. Low-efficiency producers earn negative data profits

because they are data purchasers. We interpret λ close to 1, where there is a small measure of

high-efficiency data producers, as being data market concentration. Figure 3 shows that data

market concentration amplifies the specialization of data firms and high-quality goods producers.

Data specialization also grows as the gap between data-productivity of H- and L-type firms

widens.

Corollary 1 Data Efficiency Divergence Strengthens Specialization Suppose λ < 1,

α < 1
2 , γ is sufficiently small, and the economy is in steady state. For each λ, ∃ῑ2, zH such that

dΥss

dzH
> 0 if zH > zH , ι > ῑ2

dΥss

dzH
< 0 if zH > zH , ι < ῑ2.

If ι is high, the knowledge gap was originally positive, and it becomes more positive when data

processing efficiency diverges. If ι is low, meaning that data is not very rival, negative knowledge

gap becomes more negative. But the cutoff ῑ for positive knowledge gap is not the same as the

cutoff ῑ2 for growing knowledge gap. That means that for some intermediate levels of data rivalry,
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Figure 3: Data market concentration (λ) causes large (H) firms to derive most profits from data.
Data market concentration is one minus the fraction of high-data-efficiency (H) firms. Parameters: ρ = 1, r =
0.2, β = 0.97, α = 0.3, γ = 0.09, A = 1, P = 0.5, σ2

a = 0.05, σ2
θ = 0.5, σ2

ε = 0.1, z1 = 0.01, z2 = 10

the knowledge gap can shrink as the efficiency of the more efficient data producers improve.

Comparing Proposition 3 and Lemma 3 raises the question: How does a positive mass of high-

data-productivity firms cause the result to change sign? The key is that the single, measure-zero

H-firm cannot influence the amount of data held by the continuum or L-firms. The knowledge gap

falls in Proposition 3, not because H-firms lose knowledge but because L-firms gain knowledge.

That gain cannot happen when there is a single, measure-zero H-firm because that one firm is

simply not large enough to sell data to all L-firms. By continuity, the knowledge gap also rises

when data-productive firms in an industry are scarce (λ → 1). Scarce data-efficient firms means

that the data production market is very concentrated in a small number of firms.

Interpretation: Data Platforms and Data Services Large firms that sell most of their

data are like data platforms. That might appear contradictory because social networks and search

engines do use lots of their own data. But they use that data primarily to sell data services to

their business customers, which is a type of data sale. For example, Facebook revenue comes not

from postings, but from advertising, which is a data service. A formal analysis of the equivalence

between data services and data sales is in Admati and Pfleiderer (1990).

We next show how the model can naturally be extended to accommodate endogenous growth

and why using data to accumulate ideas overcomes these limitations.
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2.3 Endogenous Growth

Every result hinges on its assumptions. In this case, long-run stagnation comes from the assumption

that transactions data is used for process optimization, as opposed to technological innovation. If

we relax this assumption, we find that data can sustain growth, under the same circumstances as

those in which capital can sustain growth. If data (or capital) is used for research and development,

the constant addition to the stock of new ideas can sustain growth. This extension connects our

main framework, which is a data economy version of Solow (1956), to a data economy version

of endogenous growth with quality ladders, in the spirit of Grossman and Helpman (1991) and

Aghion and Howitt (1992). Of course, for this extension to make sense, one needs to believe that

information about who buys what can be used to discover growth-sustaining technologies.

Assume instead of equation (2), the evolution of quality follows

Ai,t = Ai,t−1 + max{0,∆Ai,t}, (14)

where ∆Ai,t is a concave-valued function of some output relevant random variable. One can inter-

pret ∆Ai,t as an uncertain technological-improvement opportunity. If adopted, this new technology

will change quality of firm output at t. More data allows for more precisely targeted innovations,

which increase the technology frontier by more:

∆Ai,t = Ā− (ai,t − θt − εa,i,t)2.

The solution follows exactly the same structure as before, E[∆Ai,t] = Ā−E
[
(Ei[θt|Ii,t]− θt − εa,i,t)2

]
.

Therefore, the expected change in quality of firm i’s good at time t can be rewritten again as

Ei[∆Ai,t] = Ā− Ω−1
i,t − σ2

a.

One version of this model might assume that Ā < (1 + ρ2)σ2
a + σ2

θ . In this case, without

any data, the expected value of the technological improvement is negative and the firm would

not undertake it. If furthermore Ā > σ2
a, then with sufficient data, the expected value of the

technological improvement turns positive. In such an economy, there would be no growth without

data; data would make innovations viable.

But in a model where physical capital is an essential ingredient in research, the same would
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be true of capital. The conclusion then is that, in the long run, the economic forces of the data

economy are not very new at all.

3 Short Run Features of a Data Economy

While the long run in the data economy looked familiar, the short run forces differ from the those

in a standard capital accumulation economy. A key source of difference is short-run convexity of

data accumulation at the firm level. The convexity is a form of increasing returns that arises from

the data feedback loop: Firms with more data produce higher quality goods. The higher profit per

unit from higher quality goods induces more production, which results in more transactions and

more data. Thus more data begets more data. This convexity in the data flow explains why new

firms often lose money and why goods might be sold at a zero price. These forces, in turn, affect

the book-to-market or Tobin’s Q of data firms. We also return to welfare and show how the capital

inefficiencies that arise in competitive equilibrium may keep small firms small.

3.1 Increasing Returns in the Short Run

While the previous results focused on diminishing returns, the other force at work is increasing

returns. Increasing returns arise from the data feedback loop: A firm with more data produces

higher-quality goods, which induces them to invest more, produce more, and sell more. This, in

turn, generates more data for them. That feedback causes aggregate knowledge accumulation to

accelerate. The feedback loop competes against diminishing returns. Diminishing returns always

dominate when data is abundant; the previous results about the long run were unambiguous. But

when firms are young, or data is scarce, increasing returns can be strong enough to create an

increasing rate of growth. While that sounds positive, it also creates the possibility of a firm

growth trap, with very slow growth, early on the in the lifecycle of a new firm.

While we have been talking about symmetric firms that do not trade data, we now relax the

symmetry assumption to allow for data trade. From here on, we also adopt a linear formulation

for the quality function, for simplicity. We assume that g(x) = Ā− x. Since the second derivative

of g is zero, this implies that expected quality is simply E[Ai,t] = Ā− Ωi,t − σ2
a.

We consider a setting were all firms are in steady state. Then, we drop in one, atomless, low-

24



data (low Ωi,t) firm and observe its transition. From this exercise, we learn about barriers to new

firm entrants.

Before stating the formal result, we need to define net data flow. Recall that aggregate data

inflows Ω+
t are the total precision of all new data points at t (eq. 11). Aggregate data outflows

Ω−t are the end-of-period-t stock of knowledge minus the discounted stock (eq. 12). We can define

the data flows as the difference between data inflows and outflows. At the aggregate level, this is

dΩt = dΩ+
t − dΩ−t . At he individual level, data flows are defined using the individual version of

equations (11)-(12), which incorporates data trade: dΩi,t = dΩ+
i,t−dΩ−i,t. Proposition 4 states when

a single firm entering faces increasing and then decreasing rates of net data flow.

Proposition 4 S-Shaped Accumulation of Knowledge When all firms are in steady state,

except for one firm i, then the firm’s net data flow dΩi,t

1) increases with the stock of knowledge Ωi,t when that stock is low, Ωi,t < Ω̂, when goods

production has sufficient diminishing marginal return, α < 1
2 , adjustment cost Ψ is sufficiently

low, P̄ is sufficiently high, and the second derivative of the value function is bounded V ′′ ∈

[ν, 0); and

2) decreases with Ωi,t when Ωi,t is larger than
ˆ̂
Ω.

Entry dynamics and aggregate growth dynamics differ. The difference between one firm entering

when all other firms are in steady state, and all firms growing together, is prices. When all firms are

data-poor, all goods are low quality. Since quality units are scarce, prices are high. The high price

of good induces these firms to produce goods, creating data. When the single firm enters, others

are already data-rich. Quality goods are abundant, so prices are low. This makes it costlier for

the single firm to grow. What works in the opposite direction is that data may also be abundant,

keeping the price of data low.

For some parameter values, the diminishing returns to data is always stronger than the data

feedback loop. Proposition 8 in the Appendix shows that, when learnable risk is abundant, knowl-

edge accumulation is concave. In such cases, each firm’s trajectory looks like the concave path in

Figure 2. But for other economies, the increasing returns of the data feedback loop is strong enough

to make data inflows convex, at low levels of knowledge. The inflows, outflows and growth dynamics
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Figure 4: New firms grow slowly: inflows and outflows of data of a single firm.
Line labeled inflows plots the individual firm i version of the quantity in equation (11), that makes an optimal capital
decision k∗i,t and data decision δ∗i,t, with different levels of initial data stock. This firm is in an economy where all
other firms are in steady state. Line labeled outflows plots the individual firm i version of the quantity in (12). Data
production is zik

∗
i,t
ασ−2

ε , which is inflows without the data purchases δi,t.

of such an economy are illustrated in Figure 4. This figure illustrates one possible economy. Data

production may lie above or below the data outflow line.

The difference between data inflows (solid line) and data production (dashed line) is data pur-

chases. These purchases push the inflows line above the outflows line and help speed up convergence.

What does an economy with this S-shaped knowledge accumulation look like? The left panel of

Figure 5 illustrates the growth path of knowledge for a new entrant firm in this environment. On

the left side of the time path, where the firm is young and the stock of data is low, increasing returns

dominates. In this region, increasing returns in knowledge means low returns to production at low

levels of knowledge. The right panel depicts the profits for the same entrant, which is negative

early in its life.

We define the firm book value to be the discounted value of all purchased data. The reason is

that the firm does not own any capital. It just rents capital each period. Of course, the firm also

owns self-produced data. However, intangible assets created by the company, i.e. the firm’s own

data, are not counted. The indicator function 1δi,t>0 captures only data purchases, not sales of

self-produced data. For simplicity, we equate that depreciation rate to the household’s rate of time
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(a) Knowledge
(b) Profits

Figure 5: S-shaped knowledge growth, depicted on the left, can create initial profit losses and high
market-to-book value of data, as depicted on the right. Knowledge stock defined in Lemma 1. Book value
defined in (16). Parameters: ρ = 1, r = 0.2, β = 0.97, α = 0.3, ψ = 4, A = 0.5, σ2

a = 0.05, σ2
θ = 0.5, σ2

ε = 0.1, z =
0.01, π = 0.002, P = 1, ι = 1

preference, 1− β.7 Therefore, profits and book value for the new firm are

Profitst = PtAi,tk
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t (15)

Book Valuet =
t∑

τ=0

βt−τπtδt1δi,τ>0 (16)

The market value of the data is the Bellman equation value function V (Ω) in (13).

Since this firm’s only asset is data, the market or book value of the data is the same as the

value of the firm. However, for a firm that owns capital stock,

The difference between the market value of a firm and its book is used to measure intangible

assets. This result connects our model to work measuring intangible capital as a gap between

market and book values, as well as to work exploring financial barriers to firm entry.

3.2 Data Barter

Data barter arises when goods are exchanged for customer data, at a zero price. While this is a

knife-edge possibility in this model, it is an interesting outcome because it illustrates a phenomenon

we see in reality. In many cases, digital products, like apps, are being developed at great cost to

a company and then given away “for free.” Free here means zero monetary price. But obtaining

7data and software assets are typically amortized over three years. That amounts to accounting depreciation or
30% or β = 0.7 per year.
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the app does involve giving one’s data in return. That sort of exchange, with no monetary price

attached, is a classic barter trade. The possibility of barter is not shocking, given the assumptions.

But the result demonstrates the plausibility of the framework, by showing how it speaks to data-

specific phenomena we see.

Proposition 5 Bartering Goods for Data It is possible that a firm will optimally choose

positive production kαi,t > 0, even if its price per unit is zero: Pt = 0.

At Pt = 0, the marginal benefit of investment is additional data that can be sold tomorrow, at

price πt+1. If the price of data is sufficiently high, and/or the firm is a sufficiently productive data

producer (high zi), then the firm should engage in costly production, even at a zero goods price,

to generate the accompanying data.

Figure 5 illustrates an example where the firm makes negative profits for the first 1-2 periods

because they sell goods at a loss. Producing goods at a loss eventually pays off for this firm. It

generates data that allows the firm to become profitable. This situation looks like Amazon at its

inception. During its first 17 quarters as a public company, Amazon lost $2.8 billion, before turning

a profit. Today, it is one of the most valuable companies in the world.

Our framework allows us to assign a value to such barter trades, despite their zero monetary

price. In practice, a whole segment of the economy is not being captured by traditional GDP

measures because the transactions price misses the value of data being paid. A framework that

captures this value is a first step toward better measurement of aggregate economic activity.

4 Welfare and Data Externalities

Discussions of data regulation abound. Optimal policy depends on what aspects of a data economy

are efficient or inefficient. Our framework can be used for welfare analysis, but lacks an important

consideration: Data is not always used for a socially productive purpose. Firms can use data to

steal customers away from other firms. This section models the household side of the economy and

add a business stealing externality, to examine the welfare properties of a data economy.
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4.1 A Micro-founded Model for Welfare Analysis

Consider an economy with two goods: a numeraire good, mt, that will be produced using labor lt,

and a retail good ct, that is produced using capital and data. Let Pt denote the price of the retail

good in terms of the numeraire.

Households There is a continuum of homogeneous infinitely lived households, with quasi-linear

preferences over consumption of the retail good ct and the numeraire good mt. The representative

household’s optimization problem is

max
ct,mt

+∞∑
t=0

1

(1 + r)t
E [u(ct) +mt]

s.t. Ptct +mt = Φt ∀t (17)

Households have CRRA utility for retail good consumption: u(ct) = P̄
c1−γt
1−γ . The household budget

constraint (17) equates the expenditure on the two consumption goods to household revenue, which

is aggregate firm profits Φt.

Retail good production The producers of the retail goods live forever. They use capital,

rented at a constant exogenous cost r, trade data, and produce the retail good using their capital

and data. There are two types of retail firms. They are identical, except for their, zi, the efficiency

with which they convert produced units into data. We consider a measure λ of low data efficiency

firms with zi = zL , and a measure (1− λ) of high efficiency firms with zi = zH , where zL < zH .

Profit is revenue minus adjustment costs, minus data costs (if δ > 0) or plus revenue from data

sales (if δ < 0), minus the cost of capital, Φit := PtE[Ai,t]k
α
i,t − Ψ(∆Ωi,t+1) − πδi,t − rki,t. The

profit the households get is the aggregate firm profit Φt =
∫

Φitdi. Firms maximize the present

discounted value of their profit:

max
{ki,t,δi,t}∞t=0

V (Ωi,0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t]k

α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
. (18)

Data governs the expected quality of goods, E[Ai,t], described by equations (5) and (9). Data’s

law of motion is expressed in equation (10).
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The retail sector represents an industry where consumption and data are industry-specific, but

capital is rented from an inter-industry market, at rate r, paid in units of numeraire.8

Market Clearing conditions are also the resource constraints in the planner problem:

retail good : ct = λAL,tk
α
L,t + (1− λ)AH,tk

α
H,t,

numeraire good : mt + r (λkL,t + (1− λ)kH,t) +
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
= 0

data : λδL,t + (1− λ)δH,t = 0.

The micro foundations make very little difference for our conclusions so far. They deliver

the same inverse demand as in (7). But these foundations allow us to compare the decentralized

equilibrium and optimal social planner outcomes. That comparison reveals where inefficiencies in

this economy arise.

Proposition 6 Welfare For sufficiently small γ,the steady state allocation is socially efficient.

When γ is small and prices almost do not respond to the level of production, the first welfare

theorem holds in the data economy. The equilibrium capital investment is efficient because when

each firm maximizes profit, society reaps the maximum benefit as well, similar to a capital economy.

Furthermore, the competitive data market ensures that data choices are also efficient.

4.2 Data for Business Stealing

Policy analysis needs to consider potential data externalities. For example, when data can be

used for business stealing, firms’ use of data harms others. In the presence of such an externality,

equilibrium choices will obviously be inefficient. The contribution here is to show how to incorporate

and analyze such an externality, in a tractable way.

8Equivalently, we can interpret this as a small, open economy where capital and numeraire goods are tradeable
and retail goods are non-tradeable. The world rental rate of capital is r. This simplification puts the focus on data.
An endogenously determined rental rate of capital would increase when firms are more productive. This would create
a wealth effect for capital owners. These equilibrium effects are well-studied in previous frameworks, but are not
related to economics of data.
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Using data for business stealing can be represented as an externality that works through quality:

Ai,t = Ā−
(
ai,t − θt − εa,i,t

)2
+ b

∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj for b ∈ [0, 1] (19)

Note that the firm maximum quality can be attained when there is maximum difference between

the chosen technique and the optimal technique for every other firm. This captures the idea

that when one firm uses data to reduce the distance between their chosen technique ai,t and the

optimal technique θ + ε, that firm benefits, but all other firms lose. It is useful to provide an

economic interpretation/example of what this externality captures, specially bc it is a non-pecuniary

externality. If b = 0, there is no externality; (19) and (2) are identical. If b = 1, the losses from

business stealing entirely cancel out the productivity gains from data:
∫
Ai,tdi = Ā. The b = 1

assumption represents an extreme view that data processing contributes nothing to social welfare.

Moving b between 0 and 1 regulates the extent to which data enhances welfare.

Proposition 7 Welfare with Business Stealing For sufficiently small γ, although the steady

state data choices, δi∞, are efficient conditional on capital investment, there is over-investment in

the steady state level of capital ki∞ in equilibrium.

The business stealing externality does not change firms’ choices because it does not enter in

a firm’s first order condition.9 Therefore, it does not change data inflows, outflows, data sales or

accumulation, at a given set of prices.

In the data market, firms do not internalize that selling data is costly for them as it creates

competition by their rivals, which in turn decreases their quality. They only consider the positive

profits generated by selling their data. This leads to an over-supply of data on the data market,

and too much data trade.

In terms of the capital investment, the planner internalizes that an increase in capital of firm i,

leads to an increase in its stock of data, which increases its own quality but decreases the quality of

every other firm in the retail sector. As such, with business stealing externality, firms over invest

in capital to get more data than what is is efficient, a rat race behavior.

9To see why this is the case, note that firm i’s actions have a negligible effect on the average productivity term∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj. So the derivative of that new externality term with respect to i’s choice variables is zero.

If the term is zero in the first order condition, it means it has no effect on choices of the firm. This formulation of
the externality is inspired by Morris and Shin (2002).
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In equilibrium, too much aggregate data is produced and too much data is traded, but good

qualities are too low. Interestingly, although te two inefficiencies have the same source, they go in

opposite directions: two much data production that follows over-investment in capital leads to an

increase in firm’s own quality, while too much data sales lead to a decrease in firm’s own quality.

5 Conclusions

The economics of transactions data bears some resemblance to technology and some to capital.

It is not identical to either. Yet, when economies accumulate data alone, the aggregate growth

economics are similar to an economy that accumulates capital alone. Diminishing returns set in

the result is a higher level of income, but not sustained growth. Data’s production process, with its

feedback loop from data to production and back to data, also makes increasing returns a natural

outcome. Thus, while the accumulation and analysis of data may be the hallmark of the “new

economy,” this new economy has many economic forces at work that are old and familiar.

In conclusion, we describe four possible directions of future research that our framework could

be used for.

Optimal Data Policy. A benevolent government might adopt a data policy to promote the

growth of small and mid-size firms. The policy solution to increasing returns growth traps is

typically a form of big push investment. In the context of data investment, the government could

collect data itself, from taxes or reporting requirements, and share it with firms. For example,

China shares data with some firms, in a way that seems to facilitate their growth Beraja et al.

(2020). Alternatively, the government might facilitate data sharing or act to prevent data from

being exported to foreign firms.

Firm Size Dispersion. One of the biggest questions in macroeconomics and industrial organi-

zation is: What is the source of the changes in the distribution of firm size? One possible source

is the accumulation of data. The S-shaped dynamic of firm growth implies that firm size first

becomes more heterogeneous and then converges. During the convex, increasing returns portion of

the growth trajectory, small initial differences in the initial data stock of firms get amplified.

Investing in data-savviness. The fixed data productivity parameter zi represents the idea that

certain industries will spin off more data than others. Credit card companies learn more than
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barber shops. We could allow a firm to do more to collect, structure and analyze the data that

its transactions produce. It could choose its data-savviness zi, at a cost. Endogenizing this choice

might produce changes in the cross-section of firms’ data, over time.

Data and product portfolio choice. We examined a model about how much data a firm produces

and accumulates. Just as important a question is what type of data that is. Appendix B sketches

a model where different goods can be informative about different risks. In such a world, firms

could invest in a portfolio of products to diversify and learn some about each or could specialize

to become expert in producing one good with high quality. The choices, in turn, would shape the

forces of market competition.

Measurement of economic activity. Since digital service providers often get compensated with

data, rather than monetary payments, valuing digital goods and services according to their market

price undervalues this economic activity. If we can estimate the value function v(·) to value data,

we can then derive new measures of the value of digital goods and services that incorporate the

valuable data involved in each transaction.

This simple framework enables research on many data-related phenomena. It can be a founda-

tion for thinking about many more.
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A Appendix: Derivations and Proofs. Not For Publication.

A.1 Belief updating

The information problem of firm i about its optimal technique θi,t can be expressed as a Kalman filtering system,

with a 2-by-1 observation equation.

We start by describing the Kalman system, and show that the sequence of conditional variances is deterministic.

Note that all the variables are firm specific, but since the information problem is solved firm-by-firm, for brevity we

suppress the dependence on firm index i.

At time t, each firm observes two types of signals. First, date t − 1 output reveals −1 good quality Ai,t−1 =

yi,t−1/k
α
i,t−1. Good quality Ai,t−1 provides a noisy signal about θt−1. Let that signal be sai,t−1 = (Ā − Ai,t−1)1/2 −

ai,t−1. Note that, from equation 2, that the signal derived from observed output is equivalent to

sai,t−1 = θt−1 + εa,t−1, (20)

where εa,t ∼ N (0, σ2
a).

The second type of signal the firm observes is data points. They are a by-product of economic activity. Here, we

introduce a new piece of notation for brevity. It is the number of new data points added to the firm’s data set. For

firms that do not trade data, this is ωi,t = ni,t = zkαi,t. More generally, for all firms, the number of new data points

depends on the amount of data traded:

ωi,t := ni,t + δi,t(1δi,t>0 + ι1δi,t<0).

The set of signals {st,m}m∈[1:ωi,t] are informationally equivalent to a single average signal s̄t such that:

s̄t = θt + εs,t, (21)

where εs,t ∼ N (0, σ2
ε/ωit). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, σ2
θ).

At time, t, the firm takes as given:

µ̂t−1 := E
[
θt | st−1, yt−2]

Ωt−1 := V ar
[
θt | st−1, yt−2]−1

where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yi,t−3, . . . } denote the histories of the observed variables, and

st = {st,m}m∈[1:ωi,t].
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We update the state variable sequentially, using the two signals. First, combine the priors with sai,t−1:

E
[
θt−1 | It−1, s

a
i,t−1

]
=

Ωt−1µ̂t−1 + σ−2
a sai,t−1

Ωt−1 + σ−2
a

V
[
θt−1 | It−1, s

a
i,t−1

]
=
[
Ωt−1 + σ−2

a

]−1

E
[
θt | It−1, s

a
i,t−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, s

a
i,t−1

]
− θ̄
)

V
[
θt | It−1, s

a
i,t−1

]
= ρ2[Ωt−1 + σ−2

a

]−1
+ σ2

θ

Then, use the equations above as prior beliefs and use Bayes law to update them with the new signals s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

· E
[
θt | It−1, s

a
i,t−1

]
+ ωtσ

−2
ε s̄t[

ρ2
[
Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

(22)

Ω−1
t = V ar

[
θt | It

]
=
{[
ρ2[Ωt−1 + σ−2

a

]−1
+ σ2

θ

]−1

+ ωtσ
−2
ε

}−1

(23)

Multiply and divide equation (22) by Ω−1
t as defined in equation (23) to get

µ̂i,t = (1− ωtσ−2
ε Ω−1

t )
[
θ̄(1− ρ) + ρ

(
(1−Mt)µt−1 +Mts

a
i,t−1

)]
+ ωtσ

−2
ε Ω−1

t s̄t, (24)

where Mt = σ−2
a (Ωt−1 + σ−2

a )−1.

Equations (23) and (24) constitute the Kalman filter describing the firm dynamic information problem. Impor-

tantly, note that Ωt is deterministic.

A.2 Making the Problem Recursive: Proof of Lemma 1

Lemma. The sequence problem of the firm can be solved as a non-stochastic recursive problem with one state variable.

Consider the firm sequential problem:

maxE0

∞∑
t=0

(
1

1 + r

)t
(PtAtk

α
t − rkt)

We can take a first order condition with respect to at and get that at any date t and for any level of kt, the optimal

choice of technique is

a∗t = E[θt|It].

Given the choice of at’s, using the law of iterated expectations, we have:

E[(at − θt − εa,t)2|Is] = E[V ar[θt + εa,t|It]|Is] + σ2
a,
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for any date s ≤ t. We will show that this object is not stochastic and therefore is the same for any information set

that does not contain the realization of θt.

We can restate the sequence problem recursively. Let us define the value function as:

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) = max
kt,at

E
[
PtAtk

α
t − rkt +

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|It−1

]

with ωi,t being the net amount of data being added to the data stock. Taking a first order condition with respect

to the technique choice conditional on It reveals that the optimal technique is a∗t = E[θt|It]. We can substitute the

optimal choice of at into At and rewrite the value function as

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) = max
kt

E
[
Pt
(
Ā− (E[θt|It]− θt − εa,t)2)kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|It−1

]
.

Note that εa,t is orthogonal to all other signals and shocks and has a zero mean. Thus,

V ({st,m}m∈[1:ωt], yt−1, µ̂t−1,Ωt−1) = max
kt

E
[
Pt
(
Ā− ((E[θt|It]− θt)2 + σ2

a)
)
kαt − rkt

+

(
1

1 + r

)
V ({st+1,m}m∈[1:ωt+1], yt, µ̂t,Ωt)|It−1

]
.

Notice that E[(E[θt|It] − θt)2|It−1] is the time-t conditional (posterior) variance of θt, and the posterior variance of

beliefs is E[(E[θt|It] − θt)2] := Ω−1
t . Thus, expected productivity is E[At] = Ā − Ω−1

t − σ2
a, which determines the

within period expected payoff. The posterior variance Ω−1
t is given by the Kalman system equation (23), which

depends only on Ωt−1, nt, and other known parameters. It does not depend on the realization of the data. Thus,

{st,m}m∈[1:ωt], yt−1, µ̂t do not appear on the right side of the value function equation; they are only relevant for

determining the optimal action at. Therefore, we can rewrite the value function as:

V (Ωt) = max
kt

[
Pt(Ā− Ω−1

t − σ2
a)kαt + πδi, t−Ψ(∆Ωi,t+1)− rkt +

(
1

1 + r

)
V (Ωt+1)

]
s.t. Ωt+1 =

[
ρ2(Ωt + σ2

a)−1 + σ2
θ

]−1
+ ωi,tσ

−2
ε

Data use is incorporated in the stock of knowledge through (10), which still represents one state variable.

A.3 Lemma 2: Equilibrium and Steady State Without Trade in Data

Capital Choice The first order condition for the optimal capital choice is

αPtAi,tk
α−1
t −Ψ′(·)∂∆Ωt+1

∂ki,t
− r +

(
1

1 + r

)
V ′(·)∂Ωt+1

∂ki,t
= 0

where
∂Ωt+1

∂ki,t
= αzik

α−1
i,t σ−2

ε and Ψ′(·) = 2ψ(Ωi,t+1 − Ωi,t). Substituting in the partial derivatives and for Ωi,t+1, we

get

ki,t =

[
α

r

(
PtAi,t + ziσ

−2
ε (

(
1

1 + r

)
V ′(·)− 2ψ(·))

)]1/(1−α)

(25)
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Differentiating the value function in Lemma 1 reveals that the marginal value of data is

V ′(Ωi,t) = Ptk
α
i,t
∂Ai,t
∂Ωi,t

−Ψ′(·)
(
∂Ωt+1

∂Ωt
− 1

)
+

(
1

1 + r

)
V ′(·)∂Ωt+1

∂Ωt

where ∂Ai,t/∂Ωi,t = Ω−2
i,t and ∂Ωt+1/∂Ωt = ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

.

To solve this, we start with a guess of V ′ and then solve the non-linear equation above for ki,t. Then, update

our guess of V .

Steady State The steady state is where capital and data are constant. For data to be constant, it means that

Ωi,t+1 = Ωi,t. Using the law of motion for Ω (eq 10), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (26)

This is equating the inflows of data ωi,tσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1 − Ωi,t. Given a

number of new data points ωss, this pins down the steady state stock of data. The number of data points depends

on the steady state level of capital. The steady state level of capital is given by (25) for Ass depending on Ωss and a

steady state level of V ′(Ωss). We use the term V ′ss to refer to the partial derivative ∂V/∂Ω, evaluated at the steady

state value of Ω. We solve for that steady state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating V ′(Ωi,t) =

V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss, which in turn depends on

Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Ptk
α
ssΩ
−2
ss (27)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we assumed that

Ψ′(0) = 0.

The equations (25), (26) and (27) form a system of 3 equations in 3 unknowns. The solution to this system

delivers the steady state levels of data, its marginal value and the steady state level of capital.

A.4 Equilibrium With Trade in Data

To simplify our solutions, it is helpful to do a change of variables and optimize not over the amount of data purchased

or sold δi,t, but rather the closely related, net change in the data stock ωi,t. We also substitute in ni,t = zik
α
i,t and

substitute in the optimal choice of technique ai,t. The equivalent problem becomes

V (Ωi,t) = max
ki,t,ωi,t

Pt
(
Ā− Ω−1

i,t − σ
2
a

)
kαi,t − π

(
ωi,t − zikαi,t

1ωi,t>ni,t + ι1ωi,t<ni,t

)
− rki,t

−Ψ (∆Ωi,t+1) +

(
1

1 + r

)
V (Ωi,t+1) (28)

where Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+ ωi,tσ

−2
ε (29)

Capital Choice The first order condition for the optimal capital choice is
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FOC[ki,t] : αPtAi,tk
α−1
i,t +

παzik
α−1
i,t

1ωi,t>ni,t + ι1ωi,t<ni,t
− r = 0 (30)

Solving for ki,t gives

ki,t =

(
1

r
(αPtAi,t + π̃αzi)

) 1
1−α

(31)

where π̃ ≡ π/(1ωi,t>ni,t + ι1ωi,t<ni,t). That the adjusted price π̃ is higher when a firm sells data. We are dividing

by ι < 1, which raises the price. This idea is that a firm that sells δ units of data only gives up δι units of data. So

it’s as if they are getting a higher price per unit of data they actually forfeit.

Note that a firm’s capital decision is optimally static. It does not depend on the future marginal value of data

(i.e., V ′(Ωi,t+1)) explicitly.

Data Use Choice The first order condition for the optimal ωi,t is

FOC[ωi,t] : −Ψ′(·)∂∆Ωi,t+1

∂ωi,t
− π̃ +

(
1

1 + r

)
V ′(Ωi,t+1)

∂Ωi,t+1

∂ωi,t
= 0 (32)

where
∂Ωi,t,t+1

∂ωi,t
= σ−2

ε .

Steady State The steady state is where capital and data are constant. For data to be constant, it means that

Ωi,t+1 = Ωi,t. Using the law of motion for Ω (eq 10), we can rewrite this as

ωssσ
−2
ε +

[
ρ2(Ωss + σ−2

a )−1 + σ2
θ

]−1
= Ωss (33)

This is equating the inflows of data ωi,tσ
−2
ε with the outflows of data

[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1 − Ωi,t. Given a

number of new data points ωss, this pins down the steady state stock of data. The number of data points depends

on the steady state level of capital. The steady state level of capital is given by Equation 31 for Ass depending on

Ωss and a steady state level of V ′ss. We solve for that steady state marginal value of data next.

If data is constant, then the level and derivative of the value function are also constant. Equating V ′(Ωi,t) =

V ′(Ωi,t+1) allows us to solve for the marginal value of data analytically, in terms of kss, which in turn depends on

Ωss:

V ′ss =

[
1−

(
1

1 + r

)
∂Ωt+1

∂Ωt
|ss
]−1

Pssk
α
ssΩ
−2
ss (34)

Note that the data adjustment term Ψ′(·) dropped out because in steady state ∆Ω = 0 and we assumed that

Ψ′(0) = 0.

From the first order condition for ωi,t (eq 32), the steady state marginal value is given by

V ′ss = (1 + r)π̃σ2
ε (35)

The equations (31), (32), (33) and (34) form a system of 4 equations in 4 unknowns. The solution to this system

delivers the steady state levels of capital, knowledge, data, and marginal value data.
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A.4.1 Characterization of Firm Optimization Problem in Steady State

At this point, from tractability, we switch notation slightly. Instead of optimizing over the net additions to data ω,

we refer to the purchase/sale of data δ := ωi,t − ni,t.

Individual Optimization Problem

V (Ωi,t) = max
ki,t,δi,t

PtAi,tk
α
i,t − ψ

(
Ωi,t+1 − Ωi,t

Ωi,t

)2

− πδi,t − rki,t +
1

1 + r
V (Ωi,t+1)

Ωi,t+1 =
(
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ε

E[Ai,t] = Ā− Ω−1
i,t − σ

2
a

where i denotes the firm data productivity.

Thus the steady state is characterized by the following 8 equations:

ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+
(
zLk

α
L + δL

)
σ−2
ε (36)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (37)

αP (Ā− Ω−1
L − σ

2
a)kα−1

L + παzLk
α−1
L = r (38)

αP (Ā− Ω−1
H − σ

2
a)kα−1

H +
παzHk

α−1
H

ι
= r (39)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(40)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(41)

P = P̄
(
λ(Ā− Ω−1

L − σ
2
a)kαL + (1− λ)(Ā− Ω−1

H − σ
2
a)kαH

)−γ
(42)

λδL + (1− λ)δH = 0 (43)

A.5 Proof of Proposition 1: Perfect Foresight Must Imply Infinite Output

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data ni,t →∞ implies finite firm output

yi,t < ∞. Thus My ≡ supi{yi,t} + 1 exists and is finite. By definition, yi,t < My, ∀i. If the measure of all firms is

also finite, that is ∃0 < N < ∞ such that
∫
i
di < N . As a result, the aggregate output is also finite in any period

t+ s, ∀s > 0:

Yt+s =

∫
i

yi,tdi < My

∫
i

di < MyN <∞. (44)

On the other hand, given that the aggregate growth rate of output ln(Yt+1) − ln(Yt) > g > 0, we have that in

period t+ s, ∀s > 0,

ln(Yt+s)− ln(Yt) =[ln(Yt+s)− ln(Yt+s−1)] + · · ·+ [ln(Yt+1)− ln(Yt)] > gs, (45)
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which implies

Yt+s > Yte
gs. (46)

Thus for ∀s > s ≡ d ln(MN)−ln(Yt)
g

e,

Yt+s > Yte
gs > Yte

gs > Yte
g

ln(MyN)−ln(Yt)

g = MyN, (47)

which contradicts (44).

A.6 Proof of Proposition 2: Perfect Foresight Implies a Deterministic Future

We break this result into two parts. Part (a) of the result is that in order to have infinite output in the limit, an

economy will need an infinite forecast precisions. Forecasts with errors won’t produce the maximum possible, infinite,

output.

Part (b) of the result says that if signals are derived from the observations of past events, then infinite precision

implies that the one-period-ahead future is deterministic. Allowing precesion to be infinite means there cannot be

any fundamental randomness, any unlearnable risk, because that would cause forecasts to be imperfect. Infinite

precision means zero forecast error with certainty. Such perfect forecasts can only exist if future events are perfectly

forecastable with past data. Perfectly forecastable means that, conditional on past events, the future is not random.

Thus, future events are conditionally deterministic.

Part a. Claim: Suppose aggregate output is a finite-valued function of each firm’s forecast precision: Yt = f(Γt).

A data economy can sustain an aggregate growth rate of output ln(Yt+1) − ln(Yt) that is greater than any lower

bound g > 0, in each each period t, only if infinite data ni,t →∞ for some firm i implies infinite precision Ωi,t →∞.

Proof part a: From proposition 1, we know that sustaining aggregate growth above any lower bound g > 0 arises

only if a data economy achieves infinite output Yt → ∞ when some firm has infinite data ni,t → ∞. Since Yt is a

finite-valued function of Γt, it can only be that Yt → ∞ if some moment of Γt is also becoming infinite Γt → ±∞.

Moments of Γt cannot become negative infinite because Γt is a distribution over Ωt which is a precision, defined

to be non-negative. Thus for some moment, Γt → ∞. If some amount of probability mass is being placed on Ω’s

that are approaching infinity, that means there is some measure of firms that are achieving perfect forecast precision:

Ωi,t →∞. �

Suppose not. Then, for every firm i ∈ I, with
∫
i/∈I di = 0, producing infinite data ni,t →∞ implies finite precision

Ωi,t < ∞, that is Γt is finite (except for zero-measure sets). Since Yt = f(Γt) is a finite-valued function, we must

have Yt < ∞, as ni,t → ∞. In other words, since Yt is a finite-valued function of Γt, it can only be that Yt → ∞ if

some moment of Γt is also becoming infinite Γt → ±∞. Moments of Γt cannot become negative infinite because Γt

is a distribution over Ωt which is a precision, defined to be non-negative. Thus for some moment, Γt →∞. If some

amount of probability mass is being placed on Ω’s that are approaching infinity, that means there is some measure

of firms that are achieving perfect forecast precision: Ωi,t →∞.
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But finite limit output is inconsistent with sustained growth. From proposition 1, we know that sustaining

aggregate growth above any lower bound g > 0 arises only if a data economy achieves infinite output Yt →∞ when

some firm with positive measure has infinite data ni,t →∞. This is a contradiction.

Part b. Claim: Suppose all data points si,t,m are t-measurable signals about some future event θt+1. If infinite

data ni,t →∞ for some firm i implies infinite precision Ωi,t →∞, then future events θt+1 are deterministic: θt+1 is

a deterministic function of the sigma algebra of past events.

We prove this statement by proving the contrapositive: If the future, θt is not deterministic at t − 1, then the

stock of knowledge must be finite.

Suppose θt+1 is not a deterministic function of the sigma algebra of past events. Then θt+1 is random with

respect to the sigma algebra of the t-1 history of events. Let Ft be the sigma algebra derived from the history

{θτ , sτ,m, sai,τ}t−1
τ=0.

If signals are measurable with respect to all past events, then they are a subset of the sigma algebra of past events.

Formally, the information set of firm i when it chooses its technique ai,t is Ii,t = [{sai,τ}t−1
τ=0; {{si,τ,m}

ωi,τ
m=1}

t−1
τ=0]. By

assumption, si,t−1,m and sai,t−1 are measurable with respect to Ft, that is ∀B ∈ B, {ξ : si,t,m(ξ) ∈ B} ⊂ Ft. So

σ(Ii,t) ⊂ Ft. This implies that t− 1 measurable signals cannot contain information about the future event θt, other

than what is already present in the history of events.

By construction, θt is not measurable with respect to Ft−1, that is ∃B′ ∈ B s.t. {ξ : θt(ξ) ∈ B′} 6⊂ Ft. Since

σ(Ii,t) ⊂ Ft, we have that {ξ : θt(ξ) ∈ B′} 6⊂ Ii,t,m, and thus θt is not measurable with respect to Ii,t,m. Therefore

Var(θt | Ii,t,m) > 0. By the definition of Ω as the inverse of the conditional variance, this implies Ωi,t <∞.

This showed that, if θt is random with respect to past events, it must be random with respect to all possible

signals si,t,m . If θt is random with respect to the signals, there is strictly positive forecast variance. If forecast

variance cannot be zero, then signal precision cannot be infinite.

We proved that the the stock of knowledge must be finite; therefore the contrapositive, that infinite precision

implies a deterministic future, must also be true.

A.7 Proof of Lemma 3: Knowledge Gap When High Data Productivity is

Scarce

When there is a single zH firm, δL = 0 in steady state and (kL,ΩL) and (P, π) are determined by the following 4

equations:
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ΩL =
(
ρ2(ΩL + σ−2

a )−1 + σ2
θ

)−1
+ zLk

α
Lσ
−2
ε (48)

αP (Ā− Ω−1
L − σ

2
a)kα−1

L + παzLk
α−1
L = r (49)

Pσ−2
ε kαL = πΩ2

L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(50)

P = P̄
(
(Ā− Ω−1

L − σ
2
a)kαL

)−γ
(51)

While (kH ,ΩH , δH) are determined by the following 3 equations, taking the above (kL,ΩL, P, π) as given:

αP (Ā− Ω−1
H − σ

2
a)kα−1

H +
παzHk

α−1
H

ι
= r (52)

ιPσ−2
ε kαH = πΩ2

H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(53)

ΩH =
(
ρ2(ΩH + σ−2

a )−1 + σ2
θ

)−1
+
(
zHk

α
H + ιδH

)
σ−2
ε (54)

Manipulate to get

αP (Ā− Ω−1
H − σ

2
a) +

παzH
ι

= rk1−α
H (55)

kαH =
(
k1−α
H

) α
1−α =

π

ιPσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(56)

ι
1−2α
1−α

1

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

(57)

Next we show three steps:

a. For ι < ῑ, more data productivity makes the “more data productive firm” (zH firm) both larger, and retaining

more data.

∃ῑ s.t. ι < ῑ⇒ dkH
dzH

> 0,
dΩH
dzH

> 0.

b. For ι < ῑ and ∀zH , the “more data productive firm” (zH firm) retains more data when ι increases.

∃ῑ s.t. ι < ῑ⇒ dΩH
dι

> 0.

c. ῑ > 1.

This completes the proof.
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Part a. Take the total derivative of equation (57) wrt to zH and simplify. It implies

dΩH
dzH

=

α2πι
2− 1

1−α
(
α
(
ιP
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ4+ρ2σ2

aσ
2
θ

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P

−
α2Pι

1
α−1

+3
(
α

(
ĀιP− ιP (σ2

aΩH+1)

ΩH
+πzH

)) 1
1−α−2

(1−α)Ω2
H

=
πΩ2

iA(H)

B(H)− ιPA(H)

Note that ιiP̄
(
Ā− σ2

a − 1
Ωi

)
+ πzi = ιirk

1−α
i . Use that to simplify dΩH

dzH
by letting

A(i) =
α2ι

2− 1
1−α

i

(
ιirk

1−α
i

) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

(58)

B(i) =

2πσ2
εΩi

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+Ωi))

3

)
P

= π
dC(i)

dΩi
(59)

C(i) =

σ2
εΩ2

i

(
1 + r − ρ2

(ρ2+σ2
θ
(σ2
a+Ωi))

2

)
P

=
ιik

α
i

π
(60)

where i = L,H, ιL = 1 and ιH = ι.

In dΩH
dzH

the numerator is positive. Thus “more data productive firms retains more data”, or dΩH
dzH

> 0 iff the

denominator is positive, which is the case if

2πσ2
εΩH

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+ΩH ))3

)
P

− ιiP
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

> 0

2πσ2
ε (1− α)Ω3

H

(
1 + r − ρ2(ρ2 + σ2

aσ
2
θ)

(ρ2 + σ2
θ(σ2

a + ΩH))3

)
> ιiP

2α2r
2α−1
1−α k2α−1

i

which leads to ῑ:

ῑ =

2πσ2
ε (1− α)Ω3

H

(
1 + r − ρ2(ρ2+σ2

aσ
2
θ)

(ρ2+σ2
θ
(σ2
a+ΩH ))3

)
α2P 2r

2α−1
1−α k2α−1

i

Furthermore, consider equation (41). Keeping the prices constant, the left hand side is increasing in kH . Alter-

natively, the derivative of the right hand side with respect to ΩH is given by

2ΩH

(
1 + r − ρ2(ρ2 + σ2

θσ
−2
a )(

ρ2 + σ2
θ(ΩH + σ−2

a )
)3
)
.

(ρ2+σ2
θσ
−2
a )

(ρ2+σ2
θ
(ΩH+σ−2

a ))
< 1, thus equation (41) implies that the term in the parenthesis is positive, thus the derivative is

positive. Thus ΩH and kH move in the same direction.

Since the high data productivity firm is atomistic, so ΩL and kL are unchanged. Thus the proposition also implies

that surprisingly, both H-L size ratio and H-L knowledge gap of the two firms is increasing in data productivity of
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the more productive firm if ι < ῑ:

d(kH − kL)

dzH
> 0,

d(ΩH − ΩL)

dzH
> 0

Equation (56) implies that fixing ι, kH moves in the same direction as ΩH .

Part b. The proof is the same as the previous step The derivative dΩH
dι

is more complicated but it simplifies

to the exact same expression. Furthermore, let ι̂ denote the smallest ι for which an equilibrium exists. We have

ΩH(ι̂) > ΩL. Since ΩL is independent of ι, this implies that whenever an equilibrium exist, ∀zH ,

ΩH − ΩL > 0 ι < ῑ

Part c. It is straight forward to show that ῑ > 1, i.e. the proposition holds for ∀ ι ≤ 1. Note that ι > 1 would

mean that selling data would result in more data for the seller, which is not economonically meaningful economic.

We have thus restricted ι ≤ 1 from the start. As such, the result holds for every ι.

A.8 Proof of Proposition 3: Negative Knowledge Gap with Non-rival Data

When High Data Productivity is Abundant

The proof proceeds in a few steps. We will do the proof for γ = 0, which implies P = P̄ . Then, by continuity, the

same result holds for γ sufficiently small.

Part a. zH firms are data sellers while zL firms are data buyers (δH < 0 and δL > 0). The marginal benefit of

selling data is the same for both firms, data price π. The marginal cost of producing data is lower for the zH firms

at the same level of capital. Thus the zH firm produces more data in equilibrium. Furthermore, recall that each firm

can only buy or sell data.

Now assume that in equilibrium σL < 0. This means that the H firm prefers to buy the last unit of data rather

than to produce it, while the L firm prefers to produce it and sell it. This would imply that the marginal benefit

of selling data is larger than marginal cost of producing it for a small firm, but smaller than marginal cost of its

production for a large firm, a contradiction.

Part b. dπ
zH

< 0. Step 1 shows that the H firm is always the data seller. Thus higher zH corresponds to an

upward shift of supply curve, which in turn implies a lower dat aprice.

Part c. Negative knowledge gap: ∃ῑ | ι ≤ ῑ⇒ Υss < 0. Merge equations (38)-(41) and use P = P̄ to write ΩH

and ΩL:

π

P̄σ−2
ε

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

=
1

r
α

1−α

(
αP̄ (Ā− Ω−1

L − σ
2
a) + παzL

) α
1−α (61)

π

P̄σ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)

=
ι

1−2α
1−α

r
α

1−α

(
ιαP̄ (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α . (62)

Consider equation (62). Since α < 1
2
, ι → 0 implies that the first term on the right hand since goes to zero. Every
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other term in the left and right hand side of the equation is finite and bounded away from zero, except Ω2
H , so

ΩH → 0. By continuity, as ι gets small, keeping everything else constant ΩH has to decline while there is no effect

in equation (61) on ΩL. Thus ∃ῑ such that ι ≤ ῑ⇒ Υss < 0.

A.9 Proof of Corollary 1: Change in Knowledge Gap dΥss

dzH

Similar to proof of Proposition 3, we do the proof for γ = 0, which implies P = P̄ . Then, by continuity, the same

result holds for γ sufficiently small.

Equations (38) and (40) can be solved to get (kL,ΩL) in terms of data price π:

k1−α
L =

α

r

(
P̄ (Ā− Ω−1

L − σ
2
a) + πzL

)
Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

1(
P̄ (Ā− Ω−1

L − σ2
a) + πzL

) α
1−α

=
P̄ σ−2

ε

π

(α
r

) α
1−α

The second equation implies

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

=

(
P̄ (Ā− Ω−1

L − σ
2
a) + πzL

) α
1−α

π
P̄σ−2

ε

(α
r

) α
1−α

(63)

The same argument as in proposition 3 shows that using equation (40), the derivative of the left hand side with

respect to ΩL is positive. Next, using implicit function theorem on both sides of equation (63) implies that if α ≤ 1
2
,

the equation is only consistent with dΩL
dπ

< 0. Note that α ≤ 1
2

is a sufficient (not necessary) condition. As such,

π ↓⇔ ΩL ↑. Using this in the first equation implies kL increases as well, kL ↑.

Next, merge equations ((38), (40)) and ((39), (41)) to get:

1

r
α

1−α

(
αP (Ā− Ω−1

L − σ
2
a) + παzL

) α
1−α =

π

Pσ−2
ε

Ω2
L

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩL + σ−2

a )
)2
)

(64)

ι
1−2α
1−α

r
α

1−α

(
ιαP (Ā− Ω−1

H − σ
2
a) + παzH

) α
1−α =

π

Pσ−2
ε

Ω2
H

(
1 + r − ρ2(

ρ2 + σ2
θ(ΩH + σ−2

a )
)2
)
. (65)
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Again, γ = 0 implies P = P̄ , thus taking the derivatives we have

dΩL
dzH

=
−
σ2
εΩ2

L

1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩL))2


P̄

+
zLα

2
(
α
(
P̄
(
Ā−σ2

a−
1

ΩL

)
+πzL

)) 1
1−α−2

(1−α)

2πσ2
εΩL

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩL))3


P̄

−
P̄α2

(
α
(
P̄
(
Ā−σ2

a−
1

ΩL

)
+πzL

)) 1
1−α−2

(1−α)Ω2
L

dπ

dzH

dΩH
dzH

=

πα2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

+
−
σ2
εΩ2

H

1+r− ρ2

(ρ2+σ2
θ

(σ2
a+ΩH ))2


P̄

+
zHα

2ι
2− 1

1−α
(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)

2πσ2
εΩH

1+r−
ρ2(ρ2+σ2

aσ
2
θ

)

(ρ2+σ2
θ

(σ2
a+ΩH ))3


P̄

−
P̄α2ι

3− 1
1−α

(
α
(
ιP̄
(
Ā−σ2

a−
1

ΩH

)
+πzH

)) 1
1−α−2

(1−α)Ω2
H

dπ

dzH

Using definition (58)-(60) the above expressions simplify to:

dΩL
dzH

=
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

dΩH
dzH

=
πΩ2

HA(H)

B(H)− ιP̄A(H)
+
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)

dπ

dzH

Thus the derivative of the knowledge gap is given by

dΥ

dzH
=
d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
− zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH

We have already shown that dπ
dzH

< 0. Using that, we first show that fixing the parameters, ∃ι̂ such that if and only

if ι > ι̂, the knowledge gap is increasing in zH .

∃ι̂ s.t. ι > ι̂⇔ dΥ

dzH
> 0.

Note that

d(ΩH − ΩL)

dzH
=

πΩ2
HA(H)

B(H)− ιP̄A(H)
+

(
zHΩ2

HA(H)− C(H)

B(H)− ιP̄A(H)
− zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

)
dπ

dzH
=⇒

d(ΩH − ΩL)

dzH
> 0⇔

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

B(H)− ιP̄A(H)
>
zLΩ2

LA(L)− C(L)

B(L)− P̄A(L)

dπ

dzH

Multiply both sides by the denominator on the left hand side, which is positive as ι < 1. Divide both sides by the

right hand side expression which is also positive. Since both expressions are positive, the inequality sign does not
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change

πΩ2
HA(H) +

(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)
dπ
dzH

> B(H)− ιP̄A(H)

ι >
1

P̄A(H)

B(H)−
πΩ2

HA(H) +
(
zHΩ2

HA(H)− C(H)
)
dπ
dzH

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)
dπ
dzH



A(i) =
α

1
1−α ι

2− 1
1−α

i

((
ιiP̄

(
Ā− σ2

a − 1
Ωi

)
+ πzi

)) 1
1−α−2

(1− α)Ω2
i

=
α2r

2α−1
1−α k2α−1

i

(1− α)Ω2
i

ι >
1

P̄
α2r

2α−1
1−α k2α−1

i

(1−α)Ω2
i

B(H) +
C(H)

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)



ι >ῑ1H =

 (1− α)Ω2
i

P̄α
1

1−α (πzi)
1

1−α−2

B(H) +
C(H)

zLΩ2
L
A(L)−C(L)

B(L)−P̄A(L)

 1− α
2− 3α

Since α < 1
2
, and Ωi and ki, i = L,H are finite, sufficiently large zH insures ῑ1H < 1.

A.10 Proof of Proposition 4: S-shaped Accumulation of Knowledge

We proceed in two parts: convexity and then concavity.

Part a. Convexity at low levels of Ωt. In this part, we first calculate the derivatives of data infow and outflow

with respect to Ωi,t, combine them to form the derivative of data net flow, and then show that it is positive in given

parameter regions for Ωi,t < Ω̂.

Since all other firms, besides firm i are in steady state, we take the prices πt and Pt as given. Since data is

sufficiently expensive, data purchases are small. We prove this for zero data trade. By continuity, the result holds

for small amounts of traded data.

Recall that data inflow is dΩ+
i,t = zi,tk

α
i,tσ
−2
ε and its first derivative is

∂dΩ+
i,t

∂Ωi,t
= αzi,tk

α−1
i,t σ−2

ε
∂ki,t
∂Ωi,t

. We then need

to find
∂ki,t
∂Ωi,t

.

Since we assumed that Ψ is small, consider the case where ψ = 0. In this case, the data adjustment term in

equation 25) drops out and it reduces to ki,t =
[
α
r

(
PtAi,t + ziσ

−2
ε

1
1+r

V ′(Ωi,t+1)
)]1/(1−α)

, which implies

k1−α
i,t =

α

r

(
PtAi,t + ziσ

−2
ε

1

1 + r
V ′(Ωi,t+1)

)
. (66)

Differentiating with respect to Ωi,t on both sides yields

∂k1−α
i,t

∂Ωi,t
=
∂k1−α

i,t

∂ki,t
· ∂ki,t
∂Ωi,t

= (1− α)k−αi,t ·
∂ki,t
∂Ωi,t

Differentiating (66) with respect to Ωi,t and using the relationships
∂Ai,t
∂Ωi,t

= Ωi,t
−2 and

∂Ωi,t+1

∂Ωi,t
= ρ2[ρ2 + σ2

θ(Ωi,t +
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σ−2
a )]−2, yields

∂ki,t
∂Ωi,t

= kαi,t
α

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
.

Therefore,

∂dΩ+
i,t

∂Ωi,t
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r

(
PtΩi,t

−2 + ziσ
−2
ε

1

1 + r
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

)
= zi,tk

2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2.

(67)

Next, take the derivative of data outflow dΩ−i,t = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
with respect to Ωi,t:

∂dΩ−i,t
∂Ωi,t

= 1− 1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

. (68)

The derivatives of net data flow is then

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

= zi,tk
2α−1
i,t σ−2

ε
α2

(1− α)r
PtΩi,t

−2 + z2
i,tk

2α−1
i,t σ−4

ε
α2

1− α
1

r(1 + r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

+
1

ρ2(Ωi,t + σ−2
a )2(σ2

θ + ρ−2(Ωi,t + σ−2
a )−1)2

− 1. (69)

For notational convenience, denote the first term in (69) as M1 = zi,tk
2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 > 0, the sec-

ond term as M2 = z2
i,tk

2α−1
i,t σ−4

ε
α2

1−α
1

r(1+r)
V ′′(Ωi,t+1)ρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2 ≤ 0 and the third term as M3 =

1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

> 0. Notice that M3 − 1 < 0 always holds, and thus M2 + M3 − 1 < 0.

∂dΩ+
i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

> 0 only holds when Pt is sufficiently large so that M1 dominates. Pt is sufficiently large when

P̄ is sufficiently large.

Assume that V ′′ ∈ [ν, 0). Let h(Ωi,t) ≡M1(P̄ ) +M2(ν). Then

h′(Ωi,t) = (2α− 1)zi,tk
3α−2
i,t α

(
α

r(1− α)

)2

σ−2
ε

[
P̄Ωi,t

−2 + zi,tσ
−2
ε

1

1 + r
νρ2[ρ2 + σ2

θ(Ωi,t + σ−2
a )]−2

]2

+zi,tk
2α−1
i,t

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

i,t − zi,tσ
−2
ε

1

1 + r
νρ2 2σ2

θ

(ρ2 + σ2
θ(Ωi,t + σ−2

a ))3

]
.

The first term is positive when α > 1
2
, and negative when α < 1

2
. And the second term is positive when P̄ < f(Ωi,t),

and negative when P̄ > f(Ωi,t). To see this, note that

zitk
2α−1
it

α2

(1− α)r
σ−2
ε

[
−2P̄Ω−3

it − zitσ
−2
ε

1

1 + r
νρ2 2σ2

θ(
ρ2 + σ2

θ

(
Ωit + σ−2

a

))3
]

> 0 (70)

if and only if P̄ < f(Ωi,t), where

f(Ωi,t) := −zitσ−2
ε

1
1+r

νρ2Ω3
it

σ2
θ

(ρ2+σ2
θ(Ωit+σ

−2
a ))

3 (71)
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Notice by inspection that f ′(Ωi,t) < 0.

Let Ω̂ be the first root of

h(Ωi,t) = 1−M3, (72)

then if α < 1
2
, when Ωi,t < Ω̂ and P̄ > f(Ω̂), we have that h(Ωi,t) is decreasing in Ωi,t and h(Ω) ≥ 1 −M3. Since

ν ≤ V ′′, we then have M1 +M2 ≥ 1−M3, that is
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

> 0. By the same token, if α > 1
2

and P̄ < f(Ωi,t),

then
∂dΩ+

i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

< 0.

Part b. Concavity at high levels of Ωt. In this part, we first calculate limit of the derivatives of net data flow

with respect to Ωi,t is negative when Ωi,t goes to infinity and then prove that when Ωi,t is large enough,
∂dΩi,t
∂Ωi,t

is

negative.

For ρ ≤ 1 and σ2
θ ≥ 0, data outflows are bounded below by zero. But note that outflows are not bounded

above. As the stock of knowledge Ωi,t → ∞, outflows are of O(Ωi,t) and approach infinity. We have that
∂dΩ−i,t
∂Ωi,t

=

1− 1

ρ2(Ωi,t+σ
−2
a )2(σ2

θ
+ρ−2(Ωi,t+σ

−2
a )−1)2

. It is easy to see that limΩi,t→∞
∂dΩ−i,t
∂Ωi,t

= 1.

For the derivative of data inflow (67), note that
∂dΩ+

i,t

∂Ωi,t
≤ zi,tk

2α−1
i,t σ−2

ε
α2

(1−α)r
PtΩi,t

−2 because 0 < α < 1 and

V ′′ < 0. Thus limΩi,t→∞
∂dΩ+

i,t

∂Ωi,t
≤ 0.

Therefore, limΩi,t→∞
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
≤ −1. Since data outflows and inflows are continuously differentiable,

∃ ˆ̂
Ω > 0 such that ∀Ωi,t > ˆ̂

Ω, we have
∂dΩi,t+

∂Ωi,t
− ∂dΩi,t−

∂Ωi,t
< 0, which is the decreasing returns to data when data is

abundant.

A.11 Proof of Proposition 5: Firms Sell Goods at Zero Price (Data Barter)

Proof: Proving this possibility requires a proof by example. Suppose the price goods is Pt = 0. We want to show

that an optimal production/ investment level Kt can be optimal in this environment. Consider a price of data πt

is such that firm i finds it optimal to sell a fraction χ > 0 of its data produced in period t: δi,t = −χni,t. In this

case, differentiating the value function (13) with respect to k yields (πt/ι)χziαk
α−1 = r +

∂Ψ(∆Ωi,t+1)

∂ki,t
. Can this

optimality condition hold for positive investment level k? If k1−α = πtχziα(
r+

∂Ψ(∆Ωi,t+1)

∂ki,t

)
ι
> 0, then the firm optimally

chooses ki,t > 0, at price Pt = 0. �

A.12 Proposition 8: Accumulation Can be Purely Concave

It turns out that data accumulation is not always S-shaped. The S-shaped results in the previous proposition hold

only for some parameter values. For others, it can be that data accumulation is purely concave. In other words, even

when Ωi,t is small enough, there is no convex region. Instead, the net data flow (the slope) decreases with Ωi,t, right

from the start.

Proposition 8 Concavity of Data Inflow ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), the net data flow decreases with Ωi,t

if σ2
θ > σ2

a.
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We proceed in two steps. In Step 1, we prove that data outflows are approximately linear when Ωi,t is small.

And then in Step 2, we first calculate the derivative of net data flow with respect to Ωi,t and then characterize the

parameter region where it is negative.

Step 1: Data outflows are approximately linear when Ωi,t is small.

This is proven separately in Lemma 4.

Step 2: Characterize the parameter region where the derivative of net data flow with respect to Ωi,t is negative.

A negative least upper bound is sufficient for it be negative.

Recall that the derivative of data inflows with respect to the current stock of knowledge Ωt is

∂dΩ+
i,t

∂Ωi,t
= ρ2

[
ρ2 + σ2

θ(Ωi,t + σ−2
a )
]−2

> 0 (see the Proof of Proposition 4 for details). Thus

∂dΩ+
i,t

∂Ωi,t
−
∂dΩ−i,t
∂Ωi,t

≈ ρ2 [ρ2 + σ2
θ(Ωi,t + σ−2

a )
]−2 − 1 + ρ2(1 + ρ2σ2

θσ
−2
a )−2. (73)

Since this derivative increases in ρ2 and decreases in Ωi,t = 0, so its least upper bound 2

1+σ2
θ
σ−2
a
− 1 is achieved when

ρ2 = 1 and Ωi,t = 0. A non-negative least upper bound requires σ2
a ≥ σ2

θ . That means, if σ2
θ > σ2

a, the supreme of

∂dΩ+
i,t

∂Ωi,t
−

∂dΩ−i,t
∂Ωi,t

is negative, so it will always be negative ∀Ωi,t ∈ Bε(0).

A.13 Lemma 4, 5, 6: Linearity of Data Depreciation

One property of the model that comes up in a few different places is that the depreciation of knowledge (outflows)

is approximately a linear function of the stock of knowledge Ωi,t. There are a few different ways to establish this

approximation formally. The three results that follow show that the approximation error from a linear function is

small i) when the stock of knowledge is small; ii) when the state is not very volatile; and iii) when the stock of

knowledge is large.

Lemma 4 Linear Data Outflow with Low Knowledge ∃ε > 0 such that ∀Ωi,t ∈ Bε(0), data outflow is approx-

imately linear and the approximation error is bounded from above by
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
. The approximation

error is small when ρ or σθ is small, or when Ωi,t is very close to 0.

Proof:

Recall that data outflows are dΩ−i,t = Ωi,t+σ
−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Its first-order Taylor expansion around 0 is g(Ωi,t) = g(0)+g′(0)Ωi,t+o(Ωi,t),

with g′(0) = ρ2

(1+ρ2σ2
θ
σ−2
a )2

. Thus
∂dΩ−i,t
∂Ωi,t

= 1 − g′(Ωi,t) ≈ 1 − g′(0) for Ωi,t in a small open ball Bε(0), ε > 0, around

0. And the approximation error is |o(Ωi,t)| =
ρ4σ2

θΩ2
i,t

(1+ρ2σ2
θ
σ−2
a )[1+ρ2σ2

θ
(Ωi,t+σ

−2
a )]

, which increases with Ωi,t and thus is

bounded from above by error term evaluated at ε, that is
ρ4σ2

θ

1+ρ2σ2
θ
σ−2
a

ε2

1+ρ2σ2
θ
(ε+σ−2

a )
.
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Lemma 5 Linear Data Outflow with Small State Innovations ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), data outflows

are approximately linear and the approximation error is bounded from above by
ρ4 ε̄2(Ωi,t+σ

−2
a )2

1+ρ2ε2σ(Ωi,t+σ
−2
a )

. The approximation

error is small when ρ is small, or when σθ is close to 0.

Proof:

Recall that data outflows are dΩ−i,t = Ωi,t + σ−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. The non-linear term g(Ωi,t) =

[(ρ2(Ωi,t+σ
−2
a ))−1 +σ2

θ ]−1 is linear when σθ = 0. Therefore, ∃εσ > 0 such that ∀σθ ∈ Bεσ (0), g(Ωi,t) is approximately

linear. The approximation error |g(Ωi,t) − ρ2(Ωi,t + σ−2
a )| is increasing with εσ and reaches its maximum value at

σθ = εσ, with value
ρ4ε2σ(Ωi,t+σ

−2
a )2

1+ρ2 ε̄2(Ωi,t+σ
−2
a )

.

Lemma 6 Linear Data Outflow with Abundant Knowledge When Ωi,t � σ−2
θ , discounted data stock is very

small relative to Ωi,t, so that data outflows are approximately linear. The approximation error is small when ρ is

small or when σθ is sufficiently large.

Proof:

Recall that data outflows are dΩ−i,t = Ωi,t+σ
−2
a −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1
. Let g(Ωi,t) ≡

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1

be the nonlinear part of data outflows. Since (ρ2(Ωi,t + σ−2
a ))−1 ≥ 0, we have g(Ωi,t) ≤ σ−2

θ . Since Ωi,t ≥ 0,

we have g(Ωi,t) ≥ (ρ−2σ2
a + σ2

θ)−1. That is g(Ωi,t) ∈ [(ρ−2σ2
a + σ2

θ)−1, σ−2
θ ]. For high levels of Ωi,t, Ωi,t �

σ−2
θ generally holds. And for low levels of Ωi,t, it holds when σθ is very large. The approximation error is

|σ−2
θ −

[
(ρ2(Ωi,t + σ−2

a ))−1 + σ2
θ

]−1 | and decreases with Ωi,t, reaching its minimum at Ωi,t = 0 with a value of

ρ2

(1+ρ2σ2
θ
σ−2
a )2

.

A.14 Welfare: Proof of Propositions 6 and 7

We begin by characterizing competitive equilibrium. Then we characterize the solution to the social planner problem.

Finally, we compare the two solutions to determine the efficiency of the equilibrium outcome.

Household Problem Let Γt denote the Lagrangian multiplier of the individual problem on his budget

constraint. Individual problem can be written as:

max
ct,mt

+∞∑
t=0

1

(1 + r)t
E [u(ct) +mt] with u(ct) = P̄

c1−γt

1− γ

s.t. Ptct +mt = Φt ∀t

where Φt is the aggregate profit of all firms. The first order conditions for optimal household choices of consumption

of ct and the numeraire good mt are

ct :
1

(1 + r)t
E
[
u′(ct)

]
= PtΓt,

mt : Γt =
1

(1 + r)t
,
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The first-order conditions imply that agents equate their marginal utility of c to its price: E [u′(ct)] = Pt.

Firm Problem Firms’ sequential optimization problem is

max
{ki,t,δi,t}∞t=0

V (0) =

+∞∑
t=0

1

(1 + r)t
(
PtE[Ai,t]k

α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t

)
.

The profits of the firm at time t are Φt = PtE[Ai,t]k
α
i,t −Ψ(∆Ωi,t+1)− πδi,t − rki,t.

In general, i = L,H, j = L,H, and k = L,H. But, only in steady state i = j = k for each type of firm. It does

not need to be the case throughout the dynamic path. Equivalently, in recursive form

V (Ωi,t) = max
ki,t,δi,t

PtE[Ai,t]k
α
i,t −Ψ(∆Ωi,t+1)− πtδi,t − rki,t +

V (Ωi,t+1)

1 + r
(74)

s.t. Ωi,t+1 =
(
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

)−1
+
(
zik

α
i,t +

(
1δi,t>0 + ι1δi,t<0

)
δi,t
)
σ−2
ε (75)

Market Clearing (Resource Constraint)

retail good : ct = λAL,tk
α
L,t + (1− λ)AH,tk

α
H,t,

numeraire good : mt + r (λkL,t + (1− λ)kH,t) +
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
= 0

data : λδL,t + (1− λ)δH,t = 0.

A.14.1 Competitive Equilibrium in Steady State

In equilibrium, households (HHs, hereafter) maximize utility by choosing ct and mt, firms maximize profits by

choosing {ki,t, δi,t}i=L,H , and markets clear. HH optimization implies P eq = E[u′(ceq)], and numeraire good market

clearing, or equivalently HH budget constraint, gives the amount of numeraire in equilibrium, meq.

There are 6 more equilibrium steady state variables. They are: (ΩeqL ,Ω
eq
H , k

eq
L , k

eq
H , δ

eq
L , δ

eq
H ). Thus we need 6

equations to determine them. 3 of the equations are straightforward

1. Two equations for the the dynamic evolution of firm stock of knowledge, i = L,H, equation (82)

2. On equation is the resource constraint for traded data, equation (85).

Firms’ optimal capital choices. There are two equations for first-order condition (FOC) with respect to ki,

i = L,H. We will use the sequential problem to get this first order condition. Consider FOC of firm i with respect

to ki,t:

1

(1 + r)t

(
αPtE[Ai,t]k

α−1
i,t −

∂Ψ(∆Ωi,t+1)

∂ki,t
− r
)

+
1

(1 + r)t+1

(
Pt+1

∂E[Ai,t+1]

∂ki,t
kαi,t+1 −

∂Ψ(∆Ωi,t+1)

∂ki,t

)
= 0.

Substitute

∂E[Ai,t+1]

∂ki,t
= αziσ

−2
ε kα−1

i,t Ω−2
i,t+1.
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Multiply both sides by 1
(1+r)t

. Steady state implies a stable level of knowledge ((∆Ω = 0). With a quadratic

adjustment cost function that is 0 at 0, Ψ′(0) = 0. Thus, in the steady state
∂Ψ(∆Ωi,t+2)

∂ki,t
=

∂Ψ(∆Ωi,t+1)

∂ki,t
= 0.

Imposing this condition simplifies the firm’s FOC:

αPkα−1
i

(
E[Ai,t] +

ziσ
−2
ε

1 + r
Ω−2
i kαi

)
= r. (76)

which is the same as equation (83) with P = E [u′(c)].

Firm’s optimal data choices. In the steady state, where the adjustment cost is zero, the firm’s FOC with

respect to data purchases/sales is

πt =
1

1 + r
V ′(Ωi,t+1)σ−2

ε (1δi,t>0 + ι1δi,t<0).

=⇒ V ′(Ωi,t+1) =
(1 + r)πt

σ−2
ε (1δi,t>0 + ι1δi,t<0)

(77)

Next, differentiate the value function of the firm with respect to Ωi,t and use the envelope condition to hold the

choice variables constant. Again, in steady state

V ′(Ωi,t) = Ptk
α
i,tΩ

−2
i,t +

1

1 + r
V ′(Ωi,t+1)

∂Ωi,t+1

Ωi,t
, (78)

From equation equation (75):

∂Ωi,t+1

∂Ωi,t
=

ρ2(
ρ2 + σ2

θ(Ωi,t + σ−2
a )
)2 (79)

Assume we are in steady state and use equation (77) for V ′(Ωi,t) = V ′(Ωi,t+1) (in steady state) in (78):

(
1− 1

1 + r

∂Ωi,t+1

∂Ωi,t

)
V ′(Ωi,t) = Ptk

α
i,tΩ

−2
i,t

Next substitute for V ′(Ωi,t) in equation (77), using the expression for
∂Ωi,t+1

∂Ωi,t
from equation (79). Then, multiply

through by 1 + r, and re-arrange. This yields one condition for the optimal capital-knowledge ratio for L firms and

one for H firms:

(
1 + r − ρ2

(ρ2 + σ2
θ(Ωi + σ−2

a ))2

)
π

Pσ−2
ε (1δi>0 + ι1δi<0)

= kαi Ω−2
i i = L,H (80)

If we guess and verify that H firms will sell data and L firms will buy it, then we can simplify (1δi>0 + ι1δi<0), by

equating it to 1 for L firms and ι for H firms. Taking the ratio of the L and H optimality conditions allows us to

cancel out Pt:
KαL
Ω2
L

ι
kα
H

Ω2
H

=
1 + r − ρ2

(ρ2+σ2
θ
(ΩL+σ−2

a ))2

1 + r − ρ2

(ρ2+σ2
θ
(ΩH+σ−2

a ))2

(81)

which is the same as equation (84).
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Thus the above 6 equilibrium steady state variables are determined by the following system of equations.

Ωeqi =
[
ρ2(Ωeqi + σ−2

a )−1 + σ2
θ

]−1
+
(
zi(k

eq
i )α + δeqi (1δeqi >0 + ι1δeqi <0)

)
σ−2
ε i = L,H (82)

r = αE
[
u′(ceq)

]
(keqi )(α−1)

[
E[Aeqi ] +

ziσ
−2
ε

1 + r
(keqi )α(Ωeqi )−2

]
i = L,H (83)

(k
eq
L

)α

(Ω
eq
L

)2

ι
(k
eq
H

)α

(Ω
eq
H

)2

=

(
1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
L

+σ−2
a ))2

)
(

1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
H

+σ−2
a ))2

) (84)

λδeqL + (1− λ)δeqH = 0. (85)

Solving for Equilibrium Prices If we adopt the quality function, g(ai,t−θt−εa,i,t) = Ā−(ai,t − θt − εa,i,t)2,

we can make more progress in solving for equilibrium prices explicitly.

Recall that the optimal technique is a∗i,t = Ei[θi|Ii,t], which implies that in steady state, Aeqi,t = Ā−(Ei[θi|Ii,t]− θt − εa,i,t)2

and thus

E[Aeqi ] = Ā− (Ωeqi )−1 − σ2
a,

The above 6 equations in 6 unknowns that constitute the solution to the equilibrium.

The resulting steady state prices of capital and data are

P eq =E
[
u′(ceq)

]
(86)

πeq =
P eqσ−2

ε (Keq
L )α

(ΩeqL )2

(
1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
L

+σ−2
a ))2

) =
ιP eqσ−2

ε (Keq
H )α

(ΩeqH )2

(
1 + r − ρ2

(ρ2+σ2
θ
(Ω
eq
H

+σ−2
a ))2

) . (87)

Equation (86) is simply the HH FOC with respect to ct. Equation (87) is derived from combining the three equations

(77), (78), and (79).

The Taylor approximation for E[u′(c)] around E[c] is given by

E[ceq] = E[Y eq] = λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α

u′(c) = u′(E[c]) + u′′(E[c]) (c− E[c]) +
1

2
u′′′(E[c]) (c− E[c])2

E[u′(c)] = u′(E[c]) +
1

2
u′′′(E[c])var[c]

Using the Taylor approximation and the functional form for u(c), equation (83) can be written as

r = αP̄
(
E[c]−γ +

γ(1 + γ)

2
E[c]−(2+γ)var[c]

)
(keqi )α−1

[
E[Aeqi ] +

ziσ
−2
ε

1 + r
(keqi )α(Ωeqi )−2

]
i = L,H (88)

If we further assume that γ is small, then equation (88) simplifies to

r = αP̄ (keqi )α−1E[ceq]−γ
[
E[Aeqi ] +

ziσ
−2
ε

1 + r
(keqi )α(Ωeqi )−2

]
i = L,H (89)
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Next, use the recourse constraint for the retail good, along with the above Taylor approximation to write equation

(86) as

P eq =P̄
(
λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α

)−γ
+
γ(1 + γ)

2
P̄
(
λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α

)−(2+γ)

var[ceq] (90)

When γ is small, the correction term in equation (90) is negligible and the retail good price is given by

P eq =P̄
(
λE[AeqL ](keqL )α + (1− λ)E[AeqH ](keqH )α

)−γ
. (91)

A.14.2 Social Planner Problem

The planner maximizes HH total discounted utility, taking the resource constraints into account. Thus planner’s

problem can be written as

max
{ki,t,δi,t}i=L,H

∞∑
t=0

1

(1 + r)t

(
E [u(ct)]− r (λkL,t + (1− λ)kH,t)−

(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

))

or in recursive form

V P (ΩL,t,ΩH,t) = max
{ki,t,δi,t}i=L,H

E [u(ct)]− r
(
λkL,t + (1− λ)kH,t

)
−
(
λΨ(∆ΩL,t+1) + (1− λ)Ψ(∆ΩH,t+1)

)
+

1

1 + r
V P (ΩL,t+1,ΩH,t+1)

s.t. ct = λAL,tk
α
i,t + (1− λ)AH,tk

α
i,t (Ξt) ∀t

λδL,t + (1− λ)δH,t = 0 (ηt) ∀t

Ωi,t+1 =
[
ρ2(Ωi,t + σ−2

a )−1 + σ2
θ

]−1
+
(
zi(ki,t)

α + δi,t(1δi,t>0 + ι1δi,t<0)
)
σ−2
ε ∀i, t

E[Ai,t] = Ā− Ω−1
i,t − σ

2
a ∀i, t.

Start by taking a second order Taylor approximation of utility

u(ct) ≈ u(E[ct]) + u′(E[ct]) · (ct − E[ct]) +
1

2
u′′(E[ct]) · (ct − E[ct])

2

E[u(ct)] ≈ u(E[ct]) +
1

2
u′′(E[ct])var(ct)

= P̄
(E[ct])

1−γ

1− γ − γ

2
P̄ (E[ct])

−(1+γ) var(ct). (92)

Social Planner’s optimal capital choice. The planner’s first order condition with respect to ki,t is

rλi =
∂E[u(ct)]

∂ki,t
+

1

1 + r

∂E[u(ct+1)]

∂ki,t
for i = L,H (93)

where λi = λ when i = L and λi = 1− λ when i = H. Furthermore, since E[ct] = λE[AL,t]k
α
L,t + (1− λ)E[AH,t]k

α
H,t
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and E[Ai,t] = Ā− (Ωi,t)
−1 − σ2

a, we can differentiate to get

∂E[ct]

∂ki,t
= αλiE[Ai,t]k

α−1
i,t

∂E[ct+1]

∂ki,t
= λik

α
i,t+1

∂E[Ai,t+1]

∂Ωi,t+1

∂Ωi,t+1

∂ki,t
= αziσ

−2
ε λik

α
i,t+1Ω−2

i,t+1k
α−1
i,t

∂E[u(cτ )]

∂ki,t
= P̄

(
E[cτ ]−γ +

γ(1 + γ)

2
E[cτ ]−(2+γ)var(cτ )

)
∂E[cτ ]

∂ki,t
− γ

2
P̄E[cτ ]−(1+γ) ∂var(cτ )

∂ki,t
∀τ.

Substituting in the marginal utility expressions above into (93),

r =α(kopti )α−1P̄

(
E[copt]−γ +

γ(1 + γ)

2
E[copt]−(2+γ)var(copt)

)[
E[Aopti ] +

ziσ
−2
ε

1 + r
(kopti )α(Ωopti )−2

]
− γ

2λi
P̄ E[copt]−(1+γ)

(∂var(ct)
∂ki,t

+
1

1 + r

∂var(ct+1)

∂ki,t

)
i = L,H (94)

If we further assume that γ is small, then equation (94) simplifies to

r =αP̄ (kopti )α−1E[copt]−γ
[
E[Aopti ] +

ziσ
−2
ε

1 + r
(kopti )α(Ωopti )−2

]
i = L,H (95)

This is the same as equation (89). Thus when γ is sufficiently small, the capital FOCs are the same between optimum

and equilibrium.

Social Planner’s optimal data choice. Let V Pi denote the derivative of the social planner value function with

respect to Ωi,t, i = L,H. The data first order condition reveals that the Lagrange multiplier on the data constraint

is

ηt =
1

1 + r
V Pi (ΩL,t+1,ΩH,t+1)σ−2

ε (1δi,t>0 + ι1δi,t<0). (96)

To solve for V Pi in steady state, differentiate the value function and apply the envelope condition to get:

V Pi (Ωi,t,Ω−i,t) =
∂E[u(ct)]

∂Ωi,t
+

1

1 + r
V P
′

i (Ωi,t+1,Ω−i,t+1)
∂Ωi,t+1

∂Ωi,t

In steady state, equate V pi (Ωi,t,Ω−i,t) and V Pi (Ωi,t+1,Ω−i,t+1) in the previous equation, and use equations (79) and

(96) to replace for
∂Ωi,t+1

∂Ωi,t
and V Pi (Ωi,t+1,Ω−i,t+1) to get

(
1 + r − ρ2

(ρ2 + σ2
θ(Ωi,t + σ−2

a ))2

)
ηt

σ−2
ε (1δi,t>0 + ι1δi,t<0)

=
∂E[u(ct)]

∂Ωi,t
i = L,H (97)

From the Taylor approximation for E[u(ct)] in equation (92) we have

∂E[u(ct)]

∂Ωi,t
= P̄

(
E[ct]

−γ +
γ(1 + γ)

2
E[ct]

−(2+γ)var(ct)

)
∂E[ct]

∂Ωi,t
− γ

2
P̄E[ct]

−(1+γ) ∂var(ct)

∂Ωi,t
(98)

∂E[ct]

∂Ωi,t
= λik

α
i,t
∂E[Ai,t]

∂Ωi,t
= λik

α
i,tΩ

−2
i,t (99)
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If we further assume that γ is small, equation (97) simplifies to

(
1 + r − ρ2

(ρ2 + σ2
θ(Ωi + σ−2

a ))2

)
η

P̄E[c]−γσ−2
ε (1δi>0 + ι1δi<0)

= λik
α
i Ω−2

i i = L,H (100)

In steady state, H firms sell data and L firms buy data. As with the decentralized problem, take the ratio of the H

and L conditions. E[ct]
−γ and the Lagrange multiplier ηt both drop out of the resulting equation, thus we have

(k
opt
L

)α

(Ω
opt
L

)2

ι
(k
opt
H

)α

(Ω
opt
H

)2

=
1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
L

+σ−2
a ))2

1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
H

+σ−2
a ))2

, (101)

which is the same as equation (84).

Finally, the planner’s first order conditions with respect to consumption choice tells us that the Lagrange multi-

plier on the consumption resource constraint is Ξt = E [u′(ct)].

A.14.3 Proof of Proposition 6

The equilibrium is characterized by equations (82) for i = L,H, (84), (85), and (89) for i = L,H.

The Optimum is characterized by equations (82) for i = L,H and (85) (all for optimum variables), equation (95)

for i = L,H, and equation (101).

Capital FOCs and the equation for ration of data FOCs do coincide between optimum and equilibrium. Thus,

the equilibrium is efficient.

A.14.4 Proof of Proposition 7

With business stealing externality, i.e. when b = 1, the only difference is that Ai is determined via equation (19) to

be

Ai,t = Ā−
(
ai,t − θt − εa,i,t

)2
+

∫ 1

j=0

(
aj,t − θt − εa,j,t

)2
dj.

Thus in a symmetric allocation where all firms of type i are the same, in equilibrium we have

E[Ai,t] =
(
Ā− (Ωi,t)

−1 − σ2
a

)
+
(
λi
(
Ω−1
i,t + σ2

a

)
+ (1− λi)

(
Ω−1
−i,t + σ2

a

) )
= Ā− (1− λi)(Ω−1

i,t − Ω−1
−i,t).

By construction, aside from the change in the equilibrium steady state value of E[Aeqi ], the business stealing

externality does not change the firm optimization problem. In particular, it does not affect any of the first order

condition, such as
∂E[Ai,t+1]

∂ki,t
. This with small γ, the equilibrium is still characterized by equations (82) for i = L,H,

(84), (85), and (89) for i = L,H.

For the optimum, equations (82) for i = L,H and (85) clearly remains the same. The other optimum equations

change as the quality of every firm is affected by the capital and data choices of each individual firm i.

Planner FOC for Data with Business Stealing Observe that the amount of data traded by firm i at

time t, δi,t does not affect the stock of knowledge of firm j at t+ 1, Ωj,t+1 conditional on δj,t. Furthermore, Ωi,t does
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not affect Ωj,t+1, j 6= i. As such, equations eqrefeq:opteta-(98) remain intact. However, ∂E[ct]
∂Ωi,t

is adjusted to reflect

data used for business stealing:

∂E[ct]

∂Ωi,t
= λik

α
i,t
∂E[Ai,t]

∂Ωi,t
+ (1− λi)kα−i,t

∂E[A−i,t]

∂Ωi,t
= λi(1− λi)kαi,tΩ−2

i,t − (1− λi)2kαj,tΩ
−2
i,t

= (1− λi)Ω−2
i,t

(
λik

α
i,t − (1− λi)kαj,t

)
. (102)

Comparing equations (99) and (102) clarifies that data with business stealing, data is less useful to increase the

consumption level. The firms do not internalize that selling data is costly for them as it creates competition by their

rivals, which in turn decreases their quality. This, there is an over-supply of data on the data market, and too much

data trade. With business stealing, equations (100) and (101) change to

(
1 + r − ρ2

(ρ2 + σ2
θ(Ωi + σ−2

a ))2

)
η

P̄E[c]−γσ−2
ε (1δi>0 + ι1δi<0)

= (1− λi)Ω−2
i,t

(
λik

α
i,t − (1− λi)kαj,t

)
∀i (103)

(
1− λ
λ

)2
λ(k

opt
L

)α+(1−λ)(k
opt
H

)α

(Ω
opt
L

)2

ι
(1−λ)(k

opt
H

)α+λ(k
opt
L

)α

(Ω
opt
H

)2

=
1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
L

+σ−2
a ))2

1 + r − ρ2

(ρ2+σ2
θ
(Ω
opt
H

+σ−2
a ))2

, (104)

which is different from equilibrium.

Planner FOC for Capital with Business Stealing

rλi =
∂E[u(ct)]

∂ki,t
+

1

1 + r

∂E[u(ct+1)]

∂ki,t
i = L,H

For small γ, we have

∂E[u(cτ )]

∂ki,t
= P̄E[cτ ]−γ

∂E[cτ ]

∂ki,t

E[ct] = λE[AL,t]k
α
L,t + (1− λ)E[AH,t]k

α
H,t,

∂E[ct]

∂ki,t
= αλiE[Ai,t]k

α−1
i,t ,

∂E[ct+1]

∂ki,t
= λik

α
i,t+1

∂E[Ai,t+1]

∂Ωi,t+1

∂Ωi,t+1

∂ki,t
+ (1− λi)kα−i,t+1

∂E[A−i,t+1]

∂Ωi,t+1

∂Ωi,t+1

∂ki,t

= (1− λi)αziσ−2
ε kα−1

i,t

(
λik

α
i,t+1 − (1− λi)kα−i,t+1

)
Ω−2
i,t+1

Thus we have

rλi =
∂E[u(ct)]

∂ki,t
+

1

1 + r

∂E[u(ct+1)]

∂ki,t

r =αP̄ (kopti )α−1E[copt]−γ
[
E[Aopti ] +

ziσ
−2
ε (1− λi)
1 + r

(
(kopti )α − 1− λi

λi
(kopt−i )α

)
(Ωopti )−2

]
. i = L,H (105)

This is different from equation (95) as with business stealing, the planner internalizes that an increase in capital of

firm i, leads to an increase in its stock of data, which increases its own quality but decreases the quality of every
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other firm in the retail sector. As such, with business stealing externality, firms over invest in capital to get more

data than what is efficient. In equilibrium, too much aggregate data is produced, and too much data is traded, but

good qualities are too low.

B Numerical Examples and Model Extensions

The section contains computational details, additional comparative statics and steady state numerical analyses that

illustrate how our data economy responds to changes in parameter values for one or more firms.

Parameter Selection The results below are not calibrated.10 However, the share of aggregate income paid

to capital is commonly thought to be about 0.4. Since this is governed by the exponent α, we set α = 0.4. For

the rental rate on capital, we use a riskless rate of 3% , which is an average 3-month treasury rate over the last

40 years. The inverse demand curve parameters determine the price elasticity of demand. We take γ and P̄ from

the literature. Finally, we model the adjustment cost for data ψ in the same was as others have the adjust cost of

capital.This approach makes sense because adusting one’s process to use more data typically involves the purchase

of new capital, like new computing and recording equipment and involves disruptive changes in firm practice, similar

to the disruption of working with new physical machinery.

Finally, we normalize the noise in each data point σε = 1. We can do this without loss of generality because

it is effectively a re-normalization of all the data-savviness parameter for all firms {zi}. This is because for normal

variables, having twice as many signals, each with twice the variance, makes no difference to the mean or variance of

the agent’s forecast. As long as we ignore any integer problems with the number of signals, the amount of information

conveyed per signal is irrelevant. What matters is the total amount of information conveyed.

B.1 Computational Procedure

Figure 2 solves for the dynamic transition path when firms do not trade data.

Value Function Iteration: To solve for the value function, make a grid a values for Ω (state variable) and k (choice

variable). Guess functions V0(Ω) and P0(Ω) on this grid. Guess a vector of ones for each. In an outer loop, iterate

until the pricing function approximation converges. In an inner loop, given a candidate pricing function, iterate until

the value function approximation converges.

Forward Iteration: Solving for the value function as described above also gives a policy function for k(Ω) and

price function P (Ω). Linearly interpolate the approximations to these functions. Specify some initial condition Ω0.

For each t until T : Determine the choice of kt and price at this state Ωt. Calculate Ωt+1 from Ωt and kt.

Trade Value Function Approximation: Figure 5 solves for dynamic transition path when firms are allowed to

buy/sell data for fixed final goods and data prices. We take the same steps as written above, but now optimize over

10To calibrate the model, one could match the following moments of the data. The capital-output ratio tells us
something about the average productivity, which would be governed by a parameter like Ā, among others. The
variance of GDP and the capital stock, each relative to its mean, var(Kt)/mean(Kt) and var(Yt)/mean(Yt), are
each informative about variance of the shocks to the model, such as σ2

θ and σ2
a.
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ω rather then k.

Heterogeneous Firm Steady State Calculation: Figure 3 solves for the steady state equilibrium with two types of

firms, in which both P and π are endogenous.

B.2 Data Portfolio Choice

A useful extension of the model would be to add a choice about what type of data to purchase or process. Firms that

make different data choices would then naturally occupy different locations in a product space or operate in different

industries.

The relevant state θt becomes an n × 1 vector of variables. The stock of knowledge would then be the inverse

variance-covariance matrix, Ωi,t := Ei[(Ei[θt|Ii,t] − θt)(Ei[θt|Ii,t] − θt)′]−1, which is n × n. The choice variables

{ki,t, δi,t} are n×1 vectors of investments in different sectors, projects or attributes and the corresponding data sales.

The multi-dimensional recursive problem becomes

V (Ωi,t) = max
ki,t,δi,t

P ′t
(
1
′(Ā− σ2

a)1− Ω−1
i,t

)
kαi,t −Ψ(∆Ωi,t+1)− π′tδi,t − rk′i,t1

+

(
1

1 + r

)
V (Ωi,t+1) (106)

where kαi,t means that each element is raised to the power α, 1 is an n× 1 vector of ones, and the law of motion for

Ωi,t is given by (10).

In such a model, locating in a crowded market space presents a trade-off. Abundant production of goods in that

market will make goods profits low. However, for a firm that is a data purchaser, the abundance of data in this

market will allow them to acquire the data they need to operate efficiently, at a low price. If many data purchasers

locate in this product space and demand data about a particular risk θt(j), then efficient data producers might also

want to produce goods that load on risk j, in order to produce high-demand data.

63


