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Abstract5

We propose a model of research and development as a process of experi-6

mentation in which researchers repeatedly revise specifications of a project and7

update their beliefs about the project’s type. Only a good project whose type is8

learned by researchers can generate value. Researchers abandon a project when9

the opportunity costs of continuing exceed the expected benefits. We estimate10

the structural parameters of this dynamic optimization problem using a novel11

data set with information on both successful and abandoned projects from the12

Internet Engineering Task Force (IETF), an organization that creates and main-13

tains standards necessary for the functioning of the internet. The structural14

approach allows us to recover researchers’ unobserved beliefs and opportunity15

costs, and answer questions about whether specific rules and institutions encour-16

age “efficient abandonment” of ongoing projects. We find that opportunity costs17

are decreasing over time, and feedback and comments from the IETF community18

at large increase the speed at which developers learn whether a project is worth19

pursuing.20
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1 Introduction21

There is a vast literature on the economics of innovation, primarily focused22

on the question of how specific institutions influence the “rate and direction”23

of technological change (Lerner and Stern, 2010). This broad literature has24

examined how the patent system, universities, government R&D support, and25

the norms of “open science” all contribute to the production and dissemination26

of knowledge. While many studies focus on the behavior of individual scientists27

and engineers, very few (perhaps none) analyze how these individuals allocate28

the key research input of time in the face of substantial uncertainty. That is29

the question and contribution at the heart of this paper.30

Most researchers have decided to abandon an idea or project at some point.131

This decision reveals that the perceived opportunity costs of continuing down32

a particular path exceed the expected benefits. Yet, if the project was started,33

the expected benefits must have exceeded the opportunity costs at the outset.34

This suggests that researchers learn about the expected costs and benefits of a35

line of research during a project’s development. Because beliefs and opportu-36

nity costs are not directly observable, we will need a model in order to answer37

questions about whether specific rules and institutions encourage researchers’38

efficient abandonment of the project.39

Our proposed model is motivated by several stylized facts about the pro-40

cess of collaborative R&D that we observe at the Internet Engineering Task41

Force (IETF). The IETF is an organization that develops and maintains the42

core technological standards for the Internet, and it provides an ideal setting43

1Henceforth, we use the terms idea, project and proposal interchangeably.
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for studying this problem because of its highly transparent processes. Using44

data on about 16,000 IETF projects initiated between 1996 and 2009, we show45

that many ideas fail quickly. In particular, the hazard of abandonment drops46

sharply, and the hazard of publication grows gradually with the number of47

revisions made to a particular idea. Secondly, we find that increased commu-48

nication (via email) is associated with faster failure, and slower publication.49

And third, we observe a strong positive and monotonic relationship between50

the number of revisions to an idea, and the number of U.S. patent citations51

that it subsequently receives.52

Our model of Bayesian learning combines a one-armed bandit problem53

with a more traditional optimal stopping problem to capture two different54

phases of the research process.2 We assume there are two types of idea, good55

(publishable) and bad (doomed to fail). In the first phase of the process, a56

team of researchers runs a sequence of experiments striving to learn whether57

a project is of the good type. A project’s true type is realized only if there58

is a breakthrough leading to a consensus that the project merits publication.59

In the second phase, conditional on reaching consensus, the team continues60

developing the project to bring it to completion.361

The key parameters in our model are the players’ beliefs about the distribu-62

2Bergemann and Välimäki (2008) provide a survey of the economics literature on bandit
problems. For earlier applications of bandit models to economics, see Rothschild (1974)

3Our definition of consensus is different from that in the IETF. There, a project is
published as RFC (Request for Comments) when a working group chair finds that “rough
consensus” has been reached. In our framework, consensus is not on the final version (after
the second phase) of the project but on the type of the project (after the first phase).
Consensus in our empirical context means that researchers observe the good type of the
project (e.g., after receiving a sufficient number of positive signals from the community)
and anticipate that it will be published after further revisions during the second phase.
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tion of good and bad projects, the rate at which they learn and the opportunity63

costs of continuing a project. We recover these parameters by maximum like-64

lihood estimation of the learning model using data from the IETF. For each65

project submitted to the IETF during our sample period, we observe when it66

was initiated, its outcome (published or abandoned), the number of revisions67

submitted by the author team, the size of the team, the extent of commu-68

nication about the project (e-mails/version), and the number of citations of69

projects in U.S. patents (from 1976 to 2015). We begin the estimation by70

fitting a model of patent citations conditional on the number of revisions to71

a successful project. Given this payoff function, and assuming a set of inde-72

pendently distributed cost shocks, it is possible to solve the learning model73

backwards (recursively) to obtain the likelihood of the data for a given set74

of parameters. Intuitively, the learning and cost parameters are identified by75

the rate at which IETF projects are published and abandoned, as well as the76

overall share of projects that reach each end point.77

Our estimates imply that the marginal opportunity costs of an additional78

revision are decreasing and convex in the version number, with a steep initial79

decline. The estimated opportunity costs are higher when projects are initially80

sanctioned by an IETF working group and when there are fewer researchers81

on the team. This implies that, while we are agnostic about the functioning82

of collaboration within the team, larger teams face lower costs.83

We find that projects initiated by IETF working groups have a higher rate84

of learning than the average project. Researchers in working groups learn the85

type of the project faster and abandon bad projects faster than researchers of86
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projects that are initially not sanctioned by a working group. One explanation87

for this is that projects sanctioned by working groups receive more attention88

and feedback than outside projects. We also further find that researchers’ prior89

beliefs that a project is good are higher for projects initiated by a working90

group.91

Finally, we find that projects that have triggered more discussion and re-92

ceived more comments by the IETF community (measured in terms of e-mails93

per version sent in response to a new version) exhibit a higher rate of learn-94

ing. This suggests that attention and feedback from the IETF community at95

large and communication with other researchers increase the speed at which96

researchers learn the type of their project. With a higher rate of learning,97

research teams abandon projects faster in phase one. This means that commu-98

nication results in a more efficient process because bad projects are abandoned99

earlier. But it also means that researchers are more impatient, thus abandon-100

ing good projects for which they may otherwise observe a breakthrough.101

We use our structural model of learning in collaborative R&D to calculate102

two counterfactuals. For our first counterfactual, we treat the agents’ shared103

beliefs about the distribution of project types as an institutional variable.104

The prior probability is the researchers’ expectations that a consensus can be105

reached and the project will eventually be published as an RFC. In our second106

counterfactual, we consider the effect of imposing a deadline on the publication107

process. One of the interesting features of our model is that it implies some108

share of IETF projects are “false negatives” that could achieve consensus, but109

fail to do so in time, and are abandoned. We focus on both publication timing110
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and the false negative rate in our counterfactual analysis.111

Our paper makes a number of contributions. We construct a novel data112

set with information on both successful (or published) and abandoned R&D113

projects. This information provides us with a unique opportunity to study114

(i) the speed of learning in R&D and (ii) how specific rules and institutions115

influence the speed of learning about bad approaches in R&D, and encourage116

“efficient abandonment” by researchers. Learning in a research framework is117

studied, for instance, by Crawford and Shum (2005). Allen (1966) also ex-118

amines individual R&D projects, and documents how information gathering119

differentially affects the progress of projects at different points in time.4 How-120

ever, we are aware of no other paper that estimates a dynamic learning of121

R&D decision-making at the level of the individual project. There is a parallel122

between our approach of using a dynamic model where expected benefits (cita-123

tions) are observed to recover marginal costs, and the Pakes (1986) approach124

of estimating a model where marginal costs are observed in order to study the125

distribution of benefits.126

We also contribute to the literature in organizational economics studying127

how the design of the institutional environment in IETF spurs successful re-128

search and development. The literature has analyzed the impact on innovation129

of subsidies to firms (Wallsten, 2000; Lerner, 1999), and how internal manage-130

rial practices and neighbors’ R&D increase a firm productivity (Bloom et al.,131

2012, 2013). To our knowledge, we are the first to provide direct structural132

estimates of the impact of organization design on rate of learning and projects’133

4Different approaches under consideration as solution to a problem see their breakthrough
at different times; then differing durations of second phase. See Fig 2 on page 75.
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efficient abandonment.134

Our theoretical model is a mixture of two optimal stopping problems. The135

first phase is a variant of experimentation models using two-armed bandits.5136

We provide estimates of the success probability of the one-armed bandit (i.e.,137

the rate of learning) in the context of internet standard development. A defin-138

ing feature of our model is the second phase following this first phase of ex-139

perimentation. In our framework, the prize of success is not deterministic, but140

is a function of the expected number of versions. Because of potential non-141

linearities in the realized project values and opportunity costs, the expected142

continuation value upon breakthrough (i.e., success on the one-armed bandit)143

depends on the timing of breakthrough.144

Our paper further relates to the literature on technology standardization145

in the IETF (Rysman and Simcoe, 2008; Simcoe, 2012). Our model is one146

of collaborative R&D and standardization. Alternative approaches have been147

taken by Ganglmair and Tarantino (2014), Hellmann and Perotti (2011), or148

Stein (2008). We also contribute to the empirical literature on this question149

of the importance of collaboration in economic activity (Wuchty et al., 2007).150

We are agnostic about the incentives within our author teams, but we find151

that larger research teams face lower opportunity costs. Moreover, collabora-152

tion within the IETF at large (through feedback sent in e-mails) is important153

because it increases the rate of learning.154

The paper is structured as follows. In Section 2, we introduce the Internet155

5Specifically, our model in this phase draws on the single-agent two-armed bandit problem
in Heidhues et al. (2015), under the additional assumption that playing the safe arm is an
absorbing state. Keller et al. (2005) study strategic experimentation in a continuous-time
setting.
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Engineering Task Force and provide details on the standardization process.156

In Section 3, we describe our data and provide simple descriptive and ex-157

ploratory results. In Section 4, we present our two-phase Bayesian learning158

model of experimentation. In Section 5, we discuss the estimation procedure159

and identification strategy. In Section 6, we present the estimation results. In160

Section 7, we provide results on counterfactual simulations. In Section 8, we161

conclude.162

2 The Internet Engineering Task Force163

The IETF creates and maintains the technology standards used to run the164

Internet, such as the Transmission Control Protocol and Internet Protocol165

(TCP/IP) for routing packets. The organization was formed in 1986, and166

early members were primarily academic and government researchers. Dur-167

ing the early 1990s, TCP/IP emerged as the de facto standard for computer168

networking, and the IETF evolved from a small quasi-academic networking169

community into a high-stakes forum for technical decision-making. It is now170

populated by researchers and engineers from public and private organizations171

(firms, universities, and other research centers).172

The IETF has played a major role for the technological development of the173

Internet. Table 1 lists some of the more prominent standards certified by the174

organization. These include critical technologies tied to products in computer175

graphics, electronics, information technologies, and telecommunications. For176

instance, the Session Initiation Protocol (SIP) is the standard for the tech-177
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Table 1: Examples for IETF Internet Standards

Description RFC Year

UTF-8 UTF-8, a transformation format of ISO10646 3629 2003
TIFF Tag Image File Format (TIFF) – image/tiff

MIME Sub-type Registration 3302 2002
SIP Session Initiation Protocol 3261 2002
HTTP Hypertext Transfer Protocol – HTTP/1.1 2616 1999
IPV6 Internet Protocol, Version 6 (IPv6) Specifiction 2460 1998
DHCP Dynamic Host Configuration Protocol 2131 1997
MIME Multipurpose Internet Mail Extensions MIME

Part 1: Format of Internet Message Bodies 2045 1996
POP3 Post Office Protocol – Version 3 1939 1996
PPP The Point-to-Point Protocol (PPP) 1661 1994
FTP File Transfer Protocol 959 1985
TCP Transmission Control Protocol 793 1981
IP Internet Protocol 791 1981

nologies that enable internet service providers across the globe to offer VoIP178

(“Voice over IP”) services. It supports video conferencing, instant messaging,179

file transfer, and online games, among others services.180

A distinctive feature of the IETF is its transparency. It grants access to181

all intermediate and final versions of both published and abandoned projects182

on a public repository. This repository is managed and maintained by the183

organization, whose goal is to spur the participation of the members of the184

community. At the same time, the repository allows for the dissemination185

of the knowledge developed by the organization in the scientific community.186

The organization also provides access to an e-mail server on which much of187

the project-related communication between IETF members is published. Via188

e-mail discussion lists, members discuss the content of a proposal, provide189

feedback, and voice questions and concerns to be considered for a revised190

version.191

9

https://tools.ietf.org/html/rfc3629
https://tools.ietf.org/html/rfc3302
https://www.ietf.org/rfc/rfc3261.txt
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2460
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc1939
https://tools.ietf.org/html/rfc1661
https://tools.ietf.org/html/rfc959
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc791


2.1 The Standards Development Process192

The following description of the IETF standards development process is based193

on Simcoe (2012). The process begins when participants identify a problem194

and form a working group (WG) to consider solutions. To prevent forum195

shopping and overlapping technical agendas, new working groups must be196

approved by an advisory board called the Internet Engineering Steering Group197

(IESG). Once a working group is formed, anyone can submit a proposal for a198

standard by posting it to the public repository. These proposals are referred199

to as “Internet Drafts” (ID). IDs are debated at triannual IETF meetings and200

on the e-mail discussion lists maintained by each working group. Much of the201

communication related to a project’s revision process takes place via these e-202

mail discussion lists. IDs are continually revised, and, as a statutory rule, an203

unpublished ID expires after six months if the authors do not submit a new204

version.205

For an ID to be published as a “Request for Comments” (RFC), the rele-206

vant working group must reach a “rough consensus” on the merits of the pro-207

posal. While the IETF provides no formal definition, rough consensus is often208

described as the “dominant view” of the working group and implies support209

from well over 51 percent of active participants. In practice, a working group210

chair decides whether consensus has been reached. If the working group chair211

declares a consensus, there is a “last call” for comments within the working212

group, and the ID is submitted to the IESG. The IESG reviews the proposal213

and issues a second last call for comments from the entire IETF community.214

Any comments or formal appeals are reviewed by the IESG and may be re-215
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ferred back to the working group for resolution. If the IESG is satisfied that216

a consensus exists within the working group and sees no problem with the ID,217

it will be published as an RFC.218

There are two types of RFCs. Standards-track RFCs define new protocols,219

which progress in maturity from Proposed Standard to Draft Standard and220

then finally to Internet Standard. Nonstandards-track RFCs are classified as221

Informational or Experimental. While standards and nonstandards go through222

an identical development and publication process, nonstandards do not receive223

an official endorsement and may not advance unless resubmitted as an ID for224

standards-track publication.6225

3 Data and Descriptive Results226

For our empirical analysis, we construct a novel project-level dataset of in-227

ternet standard projects at the IETF. Our final sample, spanning the period228

of two decades, holds more than 16,000 completed projects. We have infor-229

mation on both successfully completed projects (published as RFC) and failed230

projects (abandoned), including the size of the project team, project-related231

communication by IETF members during a project’s revision process, and the232

number of times each published project is cited in U.S. patents. The unique233

features of this dataset allow us to relate the development of a project, and its234

characteristics, to the information on whether it is published or abandoned. In235

this section, we describe the construction of the dataset and the main features236

6We will exploit this feature of standard-track and nonstandard-track proposals in our
estimation design.
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of the final sample.237

3.1 Sample Construction238

For the universe of IETF projects, we download bibliographic information239

and all available version documents from the IETF repository. Individual240

versions are identified through an ID designation and a version number.7 These241

designations may change over time, or different IDs are merged.8 We use242

information provided by the IETF to link continuing IDs and thus construct243

projects as a series of IDs and versions.9244

We restrict our sample to projects that were initiated in 1996 or later. We245

drop all projects that are active, that means, all projects that have not been246

completed and thus have not realized an outcome. Out of all active projects,247

97% are initiated in 2010 or later. In order to avoid selecting projects based248

on outcome, we drop all completed projects that were initiated in those years.249

At last, we exclude a list of specialized projects.10 This leaves us with a final250

sample of 16,268 completed projects, initiated in years 1996 through 2009 and251

7For instance, the ID for the Hypertext Transfer Protocol (http) version 1.1 is
draft-ietf-http-v11-spec-rev.

8For instance, the ID draft-arkko-townsley-homenet-arch is superseded by
draft-chown-homenet-arch, which is later superseded by draft-ietf-homenet-arch, and
eventually published as RFC 7368. We link these four IDs and treat them as a single project.

9When constructing these series of IDs and versions, the first available document in
the first ID of a series is the first version of a project. For some (older) IDs initiated by
individuals, early versions of a project are not available. We thus make the first available
document our first version. We also encounter a total of 467 missing intermediate documents
(accounting for about 0.5% of the total number of documents). We do account for missing
documents and interpolate missing values when possible.

10The IETF repository also holds documents on projects associated with the Internet
Research Task Force (IRTF), the Internet Architecture Board (IAB), Internet Engineering
Steering Group (IESG), and the Internet Assigned Numbers Authority (IANA). We exclude
these and focus on standards development within the IETF. We exclude projects designated
as “best current practice”, “draft standard”, “historic”, or “internet standard”.
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completed in years 1996 through 2015.252

Completed projects are of one of two outcomes. We refer to projects that253

have expired or have been withdrawn by either the IETF or the submitter as254

abandoned. We refer to projects that are not abandoned, and thus success-255

ful, as published (as RFCs). In our sample, roughly 25% of all projects are256

published.257

The ID of the first version of a project indicates whether the project was258

initiated within (or sanctioned by) a working group or an individual outside a259

working group.11 Roughly 25% of all projects are initiated within a working260

group. We refer to the sample of these working group projects as the WG261

sample. Note that a considerable number of projects start off as individual262

projects but move into a working group, so that roughly 30% of all projects263

are completed working group projects.264

For the size of the project team, we parse the text of the individual doc-265

uments to obtain information on the authors of a given version.12 We then266

construct a team size variable as the number of authors for a given version.267

We use the team size on the initial version as our project-specific value.13
268

To capture the extent of involvement of the IETF community at large269

(reflecting community attention), we construct a variable of project-related270

communication. We exploit the following feature of the IETF process. Each271

11IDs initiated within a working group start with draft-ietf-; “individual” IDs start
with draft-[...]-.

12We use Jari Arkko’s Perl script which can be downloaded at http://www.arkko.com/

tools/docstats. We manually collect information on authors in about 800 documents for
which the Perl script does not return any information.

13The team size is fairly consistent over time. The mean number of authors on the initial
version is 2.32 (std. dev.: 1.89) whereas the number of authors on the final version is slightly
higher at 2.47 (std. dev.: 1.86).
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version of a project is announced through an e-mail to members of the IETF,272

and a large part of the ensuing discussion of a version is via e-mail discussion273

lists. Using the ID designation and version number, we match a given version274

of a project with all e-mail messages sent in response to that version (i.e., all275

e-mail messages sent between a version t and the next version t + 1). The276

sum of all e-mail messages divided by the number of versions is the measure277

of project-related communication.278

We construct a measure of patent citations to capture the value of a project.279

Using the full text of U.S. patents from 1976 through 2015,14 we count the280

number of patents that cite a given IETF project.15 We find that a considerable281

number of U.S. patents cite IETF projects before these are published as RFCs.282

For our value measure, we use patent citations only for published RFCs. We283

use the predicted log of citations (with a base year of 2005) as the realized284

value of an RFC, denoted by π̂(t).285

3.2 Descriptive Results286

Table 2 provides summary statistics for our main variables for both the full287

sample and the WG sample. We also break down the numbers by whether a288

project is on or off the standard track.289

We see considerable variation of our key variables between as well as within290

samples. In the full sample, 24.5% of all projects (15.5% on the standard track)291

14The PatentsView project provides flat-format files of full-text patents at http://www.

patentsview.org/download/.
15We take three different approaches to search for IETF project citations in patents:

(1) search by RFC number; (2) search by ID; (3) search by project title (only long titles,
in combination with queries “internet draft”, “internet standard”, “IETF”, or “Internet
Engineering Task Force.”

14
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Table 2: Sample Statistics

Full Sample WG Sample

On Off On Off
All Track Track All Track Track

Projects 16268 14549 1719 3982 3201 781
Versions/Project 3.67 3.3 6.81 5.67 5.42 6.7
(Std.Dev.) (4.17) (3.94) (4.68) (4.87) (4.96) (4.35)
% Projects in WG (first) 24.5% 22% 45.4%
% Projects in WG (last) 30.2% 26.6% 60.2%
% Projects Published 24.5% 15.5% 100% 55.5% 44.7% 100%
Length (in Words) 575.7 557.4 650.8 652.2 638.9 696.5
(Std.Dev.) (349.9) (283.5) (536.8) (459.6) (334.5) (734.4)

Projects per Year 1162 1039.21 122.79 284.43 228.64 55.79
1996–2000 (p.a.) 917.8 807.8 110 366.4 307.6 58.8
2001–2005 (p.a.) 1607.2 1440.4 166.8 424.4 334.8 89.6
2006–2009 (p.a.) 1446.75 1263.25 183.5 250.25 190.5 59.75

E-mail/Version 4.87 4.8 5.42 5.27 5.07 6.11
(Std.Dev.) (7.53) (7.66) (6.27) (6.55) (6.58) (6.33)

Team Size 2.32 2.3 2.48 2.5 2.44 2.76
(Std.Dev.) (1.89) (1.89) (1.89) (2.42) (2.49) (2.1)

1 Author 40.9% 41.6% 35.8% 39.1% 41% 31.6%
2 Authors 26.6% 26.4% 28.8% 26.6% 26.6% 26.9%
3-4 Authors 23.7% 23.6% 24.3% 23.3% 22.5% 26.8%
5+ Authors 8.8% 8.5% 11.1% 10.9% 10% 14.7%

Citations (RFC) 9.85 12.11 6.92 13.94 16.4 9.48
(Std.Dev.) (32.22) (39.35) (19.02) (41.04) (47.74) (23.92)

1996–2000 (p.a.) 1.24 1.52 0.89 1.48 1.66 1.14
2001–2005 (p.a.) 0.83 1.1 0.46 1.04 1.34 0.5
2006–2009 (p.a.) 0.39 0.48 0.27 0.34 0.43 0.17
1 Author 7.89 10.26 4.53 12.4 15.06 6.91
2 Authors 9.16 10.7 7.38 12.63 13.88 10.41
3–4 Authors 11.05 12.96 8.48 14.53 16.94 10.3
5+ Authors 15.73 21.44 9.23 19.59 25.51 10.89

Standard deviations in parentheses.

are published, whereas the publication rate in the WG sample is 55.5% (44.7%292

on the standard track). Working group projects have on average more versions293

(5.67 vs. 3.67), and we observe longer processes off-track than on-track (6.81294

vs. 3.3). The conditional probability for each of the two outcomes varies with295
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the number of version. We see this in the lower-left panel in Figure 1. It296

depicts the probabilities of publication (solid line) and abandonment (dashed297

line) as function of a project version. The probability of publication exhibits298

an increasing pattern and eventually levels off, reaching a maximum of about299

19% at version 17. The probability of abandonment, on the other hand, de-300

creases with a project version number. Specifically, 40% of the projects are301

abandoned after the initial version. These results suggest that, while members302

of the community learn fairly fast whether a project should be abandoned, it303

takes a considerably larger number of versions for the project to be ready for304

publication.305

We further document that this revision process has real effects. A project’s306

duration is associated with the length of a project’s specification (in terms307

of unique words) as a measure for content: projects have more content off-308

track than on-track (650.8 vs. 557.4) and when initiated within working groups309

(652.2 vs. 575.7). We illustrate the effect of the number of versions on content310

in the upper-left panel of Figure 1. It plots the text distance of a given311

version T from the initial version.16 This text distance of the average project312

in our sample increases at a decreasing rate, a pattern that suggests that313

the average revision process of a project develops “away” from the initial314

version, but incremental changes decrease over version-time. A priori, this is315

16To construct this measure, we use techniques borrowed from text-based analysis. A
text document (i.e., a version document) is represented as a vector of word frequencies. A
common measure of textual distance is the cosine distance:

1− xT · x1
‖ xT ‖‖ x1 ‖

where xT is the vector of word frequencies for version T and x1 the vector for the initial
version.
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Figure 1: IETF Project Development

Top-left: text distance of version T from initial version 1 for varying ID Version Number.
Top-right: predicted average number of e-mail messages per version for base year 2005.
Bottom-left: probabilities for publication (solid line) and abandonment (dashed line) as
function of project (ID Version) number. Bottom-right: predicted patent citations (of
RFCs) for base year 2005.

not obvious because the pattern could exhibit strong non-monotonicities and316

thus reflect the presence of disagreement among members of the committee.317

The documented monotonicities motivate our later assumption of cooperative318

decisions within author teams.319

Off-track projects and WG sample projects also attract more project-320

related communication (E-mail/Version), which intensifies as the project un-321

dergoes more revisions. The top-right panel of Figure 1 depicts the average322

number of e-mail messages (per version) exchanged over the course of a project.323
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We plot the in-sample prediction of the expected number of e-mail messages324

exchanged in response to an average version for the 2005 base year.17 It shows325

that the number of e-mail messages per version increases with the version326

number, suggesting that the community becomes more active as the number327

of versions increases.328

The figures in Table 2 further suggest that published projects in the WG329

sample receive (on average) more citations (13.94 vs. 9.85); as do on-track330

projects (12.11 vs. 6.92). Also, RFCs published earlier (1996–2000) on average331

receive more citations per annum than RFCs cited in later years (1.24 vs. 0.83332

in 2001–2005 and 0.39 in 2006–2009). We see similar variation when breaking333

down citations by the number of authors on a project. Projects with more334

authors receive more citations (15.73 for RFCs with 5+ authors vs. 7.89 for335

RFCs with 1 author). The bottom-right panel of Figure 1 plots the in-sample336

prediction of the expected number of citations received by an RFC for the337

2005 base year. On average, RFCs with more versions receive more citations.338

This finding implies a positive and strong correlation between the number of339

versions of a project and its value as captured by patent citations.340

Table 2 and Figure 1 have two main take-aways. First, there is ample341

heterogeneity to exploit in the empirical analysis within and between samples.342

We use this heterogeneity in an extension of our model where we allow the343

model parameters to vary across subsamples. Second, the statistical features344

of the projects in the WG sample suggest that there is potential self-selection345

of better (i.e., more likely to be publishable) projects into this subsample. We346

17The choice of alternative years leads to analogous results.
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Table 3: Publication, Learning, and Productivity

Specification OLS Poisson Poisson

Outcome Published Versions Citations

log(Versions) 0.25 0.75
[0.00]** [0.08]**

log(E-mail/Version) 0.02 -0.08 0.29
[0.00]** [0.01]** [0.04]**

Published * log(E-mail/Version) 0.12 0.09
[0.01]** [0.07]

Published 0.95 1.64
[0.02]** [0.09]**

No E-mail 0.03 -0.58 -0.10
[0.01]** [0.02]** [0.16]

WG Project 0.26 0.48 0.15
[0.01]** [0.02]** [0.07]*

Cohort Effects Y Y N
Publication Year Effects N N Y

Observations 16,271 16,271 16,271

* 5% significance; ** 1% significance.

document this by estimating our model both on the full sample and the WG347

sample.348

3.3 Reduced Form Regression Results349

Table 3 presents some exploratory regression results that capture some of the350

relationships depicted in Figure 1, and help to motivate the model we develop351

below. All of these regressions are cross sectional, based on a sample consisting352

of the last version of every project in the IETF sample.353

The first column in Table 3 presents estimates from a linear probability354

model of publication. It shows that there is a strong association between the355
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number of version of a project and the probability of publication. Doubling the356

number of versions increases the probability of RFC publication by around 17357

percentage points. Working group projects are also 26 percentage points more358

likely to be published. There is a positive and statistically significant, but359

economically much smaller relationship between the volume of e-mail linked360

to a project and its likelihood of success. A one standard deviation increase in361

e-mail messages per version increases the publication probability by roughly362

2.5 percentage points.363

The second column in Table 3 examines the link between communication364

and revisions, and motivates the type of Bayesian learning we model below.365

As in the first column, we see a very large and strong association between pub-366

lication and the number of version. However, in this regression we also observe367

that the e-mail per revision variable is negatively correlated with the number368

of version for unpublished projects, and positively associated with versions for369

published projects (after controlling for the “low end” projects that receive no370

e-mail and fail very quickly). This difference-in-difference results suggest a link371

between communication and learning. In particular, more active communica-372

tion seems to lead to “fast failure” for unpublished projects and more versions373

for those eventually published. Our model below will incorporate the idea that374

faster learning leads projects that have not experienced a “breakthrough” to375

drop out more quickly.376

The IETF becomes more efficient if projects that are unlikely to be pub-377

lished drop out more quickly. However, failing fast can produce a trade-off if378

developers give up too soon on ideas that might become successful given more379
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versions. One way to look at the overall productivity of the IETF is to examine380

a citation production function that treats both version and communication as381

inputs. That is what we do in the third column of Table 3. Although we do382

observe some citations to unpublished projects, the model shows a very large383

(roughly 500 percent) increase in cites to published RFCs. We also see a very384

strong positive association between both versions and e-mail communication385

and the expected patent citations to a project.386

One way to deal with the endogenous “input” of versions is to model the387

process of deciding to continue working on a project. If the authors stopped388

as soon as they knew a project could be published, we might expect failures389

to take longer than successes. But instead we observed the opposite – projects390

published as RFCs go through more revisions, and the number of revisions is391

correlated with the number of follow-on cites. In the next section, we develop392

a model of Bayesian learning in R&D that captures each of these features of393

the data.394

4 A Bayesian Learning Model of Experimen-395

tation in Internet Standards Development396

4.1 Overview397

For our model of internet standards development, we consider a process in398

which a team of researchers jointly develops a project. The team is endowed399

with an initial version of a project of unknown quality and can revise its400
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Figure 2: Stylized R&D
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specifications both to learn its type and to increase its (potential) value.18 We401

assume that the project quality can be either good or bad, and the project402

generates value (i.e., materializes its potential value) for the team only if it is403

of the good type, and the team has observed the type before the process ends.404

Each costly version of the project increases the potential value and allows405

the team to run a new experiment. In other words, not yet having learned406

the type, the team can “experiment” by submitting a new version to realize407

whether the project type is good. We refer to the realization of the good type408

as a breakthrough that changes the status of the process. We assume that,409

conditional on a good type, this experimentation process is successful (and a410

breakthrough occurs) with constant probability.411

Figure 2 provides a stylized depiction of this process. The realized potential412

value of a version t is denoted by π̂(t). Suppose the costs of a version n is413

F (n). Then cumulative (non-stochastic) costs of version t are denoted by414

18We do not consider the team’s entry decision by assuming that the initial version comes
at no cost.
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Ft =
∑t−1

k=0 F (k), with F (0) = F1 = 0.19 Bad projects never experience a415

breakthrough and will never realize their potential value. Good projects may416

or may not experience a breakthrough in a period t = τ . The team decides in417

each t ≥ 1 whether to submit a revised version of the project specifications or418

stop the process. After a breakthrough, the decision to continue or stop is a419

simple comparison of the incremental value of a version and the costs of the420

version. Before a breakthrough, the team must form beliefs about the type421

of the project. The more failed experiments the team has observed (without422

a breakthrough), the more pessimistic it will be that the type is good. On423

the other hand, the more versions the team has submitted, the higher is the424

value to be realized when a breakthrough occurs. Thus, if it stops before a425

breakthrough, t < τ , the team loses the opportunity to harvest the potential426

value of the project while having incurred the cumulative costs of all version427

t′ = 1, . . . , t− 1. If it stops after a breakthrough, its payoffs are the potential428

value net of the cumulative costs of all prior versions.429

Before we introduce more notation to formalize these ideas, we find it use-430

ful to relate this general innovation process to the procedures within the IETF.431

In this context, the project is an internet standard to-be-developed by a team432

of engineers. The team has an initial status of the standard. The goal is to de-433

velop specifications that are endorsed by the IETF and published as an RFC.434

We refer to the anticipated endorsement as a breakthrough. For example, the435

breakthrough happens if (a qualified majority of) participants in a working436

group agree on the commercial interest, or the technical merits, of the tech-437

19For a version t, the team must incur revised versions and incur costs F (t′) in all t′ =
1, . . . , t− 1.
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nology under discussion. A project that has experienced a breakthrough will438

eventually be published as an RFC once the team decides to stop the process.439

In our empirical setting we assume that both the team and the econome-440

trician observe the value of π̂(T ), for all T . The probability that a project441

is of the good type, denoted by p, and the probability that a breakthrough442

occurs in t ≤ τ , denoted by b, are known by team of researchers, but unknown443

to the econometrician. At the same time, while the team observes when a444

breakthrough has occured, the econometrician only observes whether but not445

when it takes place during a project. The identification of the parameters for446

the project type and the breakthrough probabilities is our main task in the447

estimation of this model of experimentation. Moreover, a major challenge to448

estimation is the unobservability of the exact timing of the breakthrough.449

4.2 Model Setup450

In what follows, we provide a more technical account of our model. In t = 0,451

a team of risk neutral agents initiates a project of type θ ∈ {good, bad}. We452

assume this initial version of the project comes at zero costs; we therefore453

ignore the team’s entry decision. The team initially does not know the type of454

the process, but has prior beliefs p = Pr(θ = good) that the project is good,455

with 0 < p < 1 and Pr(θ = bad) = 1− p.456

The project type is payoff-relevant insofar as only good projects whose type457

has been realized generate value. The good type is realized when the team458

learns that the project is good, that means, when a breakthrough occurs. Let459

b denote the per-period probability of a breakthrough. Given a breakthrough460
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has not occurred in any t′ < t, a breakthrough can occur in t only if the461

following two conditions hold:462

1. The project is of the good type. This implies Pr(breakthrough in t|θ =463

good) = b and Pr(breakthrough in t|θ = bad) = 0.464

2. The team has submitted a version of the project. This implies that learn-465

ing requires experimentation in the form of a revision (a new status).466

Once a breakthrough occurs in τ , the good type is realized. In the con-467

text of the IETF this means that the content of the version is endorsed and468

eventually published. Any additional version at this point will improve the469

content of the project but will not affect the status of the project. We use σt470

to denote this status in t:471

σt =

 0 for t ≤ τ [“pre-breakthrough phase”]

1 for t > τ [“post-breakthrough phase”]
(1)

In each t, the team forms beliefs p̂(t|σt) about the type of the project.472

When a breakthrough has occurred and the status is σt = 1, then p̂(t|1) = 1473

for all t > τ . If, instead, in a given t a breakthrough has not yet occurred,474

then posterior beliefs are formed by Bayes’ rule:475

p̂(t|0) =
p (1− b)t

(1− p) + p (1− b)t
(2)

with the prior p = p̂(0|0). With probability 1 − b this first experiment fails476

and the team updates beliefs to p(1|0) < p for its decision in t = 1.20 As long477

20We provide below a more detailed description of the sequence of events within each
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as experimentation fails and breakthrough does not occur, we have p̂(t|0) < p478

for all t ≤ τ .479

We use π(t|σt) to denote the ex-post realized value of a successful project as480

function of the number of versions, t, and the status of the process, σt. Recall481

that unless the good type of the project has been realized (and the status of482

the process is σt = 1), the project generates no value. The ex-post value of a483

project can thus be summarized as484

π(t|σt) =

 π̂(t) if σt = 1

0 if otherwise
(3)

and we assume that π̂(t) is non-decreasing in t.485

In each t ≥ 1, the team cooperatively decides to continue or stop. We486

assume the team does not discount future payoffs. The sequence of steps in487

each period t is as follows:488

t.1: Given the outcome of previous rounds’ experimentations, the team up-489

dates its beliefs about the type of the project. If t > τ and σt = 1, pos-490

terior beliefs that the project is good are p̂(t|1) = 1. If a breakthrough491

has not been observed in a previous round and σt = 0, the posterior492

beliefs that the project is good are p̂(t|0) according to the expression in493

equation (2).494

t.2: The team observes a cost shock εt. The incremental cost of a new version495

t are F (t) + εt with F (0) = 0 = ε0 for the initial version. We assume496

period t.
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that the non-stochastic cost component is strictly positive, F (t) > 0 for497

all t > 0. Upon observing the cost shock εt, the team decides to continue498

by submitting a new version of the project.499

t.3: If in t.2, for σt = 0, the team decides to continue, it observes the outcome500

from experimentation. If experimentation is successful (a breakthrough501

occurs), then τ = t so that σt+1 = 1, and the team moves to the post-502

breakthrough phase; otherwise, σt+1 = 0 and the team stays on the503

pre-breakthrough phase.504

If the team stops, the project is abandoned. In the model, abandonment505

is an absorbing state. This assumption reflects the institutional features of506

the IETF, which imposes a six-month rule after which, if no new version is507

submitted, projects expire. Alternatively, this assumption reflects the presence508

of depreciation of knowledge in the development of a project.509

When the team decides in t.2 whether to continue or stop, it compares the510

payoffs from stopping in t with the expected value of another version, net of the511

costs. Let EV (t|σt) = E(V (t+ 1)|σt)− π(t|σt) be the expected (option) value512

of continue relative to stop, where π(t|σt) denotes the value when the team513

stops and E(V (t+ 1)|σt) denotes the expected value of another version given514

the current status σt of the project. We characterize these value functions in515

greater detail below. The team continues in t if EV (t|σt) ≥ F (t) + εt and516

stops otherwise. We assume that F (t) > 0 for all t > 0. The continuation517
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decision can be rewritten as:518

εt ≤ ε̄σtt := EV (t|σt)− F (t)

= E(V (t+ 1)|σt)− π(t|σt)− F (t). (4)

The team continues in t as long as the cost shock does not exceed the criti-519

cal threshold ε̄σtt . From an ex-ante point of view, this means that the team520

continues in period t with status σt with probability521

Gσt(t) = Pr(εt ≤ ε̄σtt ). (5)

4.3 Expected Payoffs522

The goal of the team is to formulate a contingent plan of actions that max-523

imizes its expected payoffs. To characterize these payoffs, it helps to first524

characterize the probabilities of the two possible outcomes, given that the525

team stops in a period T . This T is the final number of versions.21 If, in526

this final period T , the good type has been realized so that σT = 1, then the527

project is a success and published with a value of π(T |1) = π̂(T ). If, in T , the528

good type has not been realized (either because the project is of the bad type529

or a breakthrough has not occurred for a good project), then the project is a530

failure and abandoned with value π(T |0) = 0.531

In Figure 3, we illustrate the decision trees for a good and a bad project,532

21At the outside of the game, there is one initial version. Once the team stops in t = 1,
it stops with one version but has not occurred any costs. If it stops in t = 2, there are two
versions (after continuing in t = 1), it incurs costs of continuing in t = 1.
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as determined in t = 0. The branch for the good type (in panel 3a) is reached533

with probability p, the branch for the bad type (in panel 3b) is reached with534

probability 1− p.535

Consider the timeline of good projects in Figure 3a. We assume an initial536

version (first experimentation) exists in t = 0. The phase is then such that σ0 =537

0. With probability b, this experimentation is successful, and the project is in538

the post-breakthrough phase (with status σ1 = 1) in t = 1. With probability539

1−b, experimentation in t = 0 is not successful and the status remains σ1 = 0.540

Moving forward, in t = 1 with status σ1, the team now decides to continue541

or stop. From the viewpoint of t = 0, the team continues with probability542

Gσ1(1) and stops with probability 1−Gσ1(1). If the team stop, the project is543

published (when in the post-breakthrough phase) or abandoned (otherwise).544

If the team continues, the post-breakthrough phase moves to t = 2. The pre-545

breakthrough phase moves to t = 2 (with σ2 = 0) with probability 1 − b; it546

moves to the post-breakthrough phase (with σ2 = 1) with probability b. The547

game proceeds until the team decides to stop. We denote this last period in548

which decisions are made by T .549

Consider the timeline for bad projects in Figure 3b. Because a break-550

through cannot occur for bad projects, the status of the project is σt = 0 for551

all t.22 In t = 1, the team continues with probability G0(1) and stops with552

probability 1− G0(1). If the team stops, the project is abandoned. If it con-553

tinues, the pre-breakthrough phase moves to t = 2. The game proceeds until554

the the team decides to stop.555

22To be precise, there is a post-breakthrough phase with σt = 1 in this timeline, but it is
reached with probability zero in each t.
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Figure 3: Timeline for Project Types
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We denote the probability that a project is abandoned in T by ΦA(T ).556

The project is abandoned in T if it is bad or a breakthrough has not occurred557

for a good project, and the team has continued until T , with sufficiently low558

cost shocks εt in all t ≤ T − 1 and a sufficiently high cost shock in t = T .559

The respective critical thresholds for the costs shocks are ε̄0
t as defined in560
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equation (4) and continuation probabilities areG0(t) as defined in equation (5).561

The probability of abandonment in T is:562

ΦA(T ) ≡
[
(1− p) + p (1− b)T

] (
1−G0(T )

) T−1∏
k=0

G0(k). (6)

The expected sum of the incurred cost shocks for an abandoned project is:563

EA(T ) ≡
T−1∑
k=0

E(εk|εk ≤ ε̄0
k). (7)

We further denote the probability that a project is published in T by564

ΦP (T ). A project is published only if it has a breakthrough, and a break-565

through can occur only for good projects (with probability p). The team566

stops the process in T when the cost shock εT is too high (with ex-ante567

probability 1 − G1(T )). The probability that the project reaches this fi-568

nal T depends on the continuation decisions in t = 1, . . . , T − 1, which are569

conditional on the phase. Suppose the breakthrough occurs in some period570

0 ≤ τ ≤ T − 1. This implies period τ is reached without a breakthrough with571

probability (1− b)τ and a breakthrough occurs with probability b.23 More-572

over, period τ is reached if all cost shocks are sufficiently low, with probability573 ∏τ
j=0G

0(j). With τ = t, the decisions in t ≥ τ+1 are in the post-breakthrough574

phase. Once a breakthrough has occurred, the team continues in a given t > τ575

with probability G1(t). The final period T is thus reached with probability576

b (1− b)τ
∏τ

j=0G
0(j)

∏T−1
k=τ+1G

1(k) for a given τ . Summing up over all possible577

23To see this, t = 1 = τ is reached without a breakthrough if the initial version does
realize the good type, with probability 1− b. See Figure 3a.
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τ < T , we obtain the expression for ΦP (T ):578

ΦP (T ) ≡ p
(
1−G1(T )

) T−1∑
τ=0

(
b (1− b)τ

τ∏
j=0

G0(j)
T−1∏
k=τ+1

G1(k)

)
. (8)

The expected sum of incurred cost shocks for a published project is:579

EP (T ) ≡
T−1∑
τ=0

b (1− b)τ
(

τ∑
j=0

E(εj|εj ≤ ε̄0
j) +

T−1∑
k=τ+1

E(εk|εk ≤ ε̄1
k)

)
. (9)

For the expected net value of a project, we obtain:580

∞∑
T=1

(
ΦP (T ) [π̂(T )− FT − EP (T )]− ΦA(T ) [FT + EA(T )]

)
(10)

with
∑∞

T=1 (ΦA(T ) + ΦP (T )) = 1 and FT =
∑T−1

k=0 F (k). The team’s objective581

is to choose a contingent plan of actions (continue vs. stop) that maximizes582

this expression.583

4.4 Recursive Characterization584

We solve for the team’s decision problem recursively, under the assumption585

that the team’s horizon is finite. Specifically, we assume that T is the maxi-586

mum number of version after which the market value of the potential standard587

is zero. We then characterize the team’s value function V (·) in more detail.588

In a period t, if the team decides to stop, its payoffs are π(t|σt). Alterna-589

tively, the team can decide to run a new experiment, pay the cost and submit590

a new version. The value of this option is equal to the expected value of the591
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project in t + 1, conditional on the current information. Formally, the team592

value function is593

V (t) = max{π(t|σt), E(V (t+ 1)|σt)− F (t)− εt}, (11)

for all t = 1, ..., T (with no decision t = 0). The team’s choice variable is the594

decision to continue. The observable state variable is given by the number595

of versions, t; the unobservable state variable is given by the posterior beliefs596

p̂(t|0) in t, which evolve according to a first-order Markov process.24
597

This property has two implications. First, the team’s decision problem598

is non-stationary: The problem in (11) depends on whether t > τ (post-599

breakthrough phase) or t ≤ τ (pre-breakthrough phase). Second, as we600

shall see when deriving the likelihood function implied by our model, non-601

stationarity introduces serial correlation in the controlled stochastic process602

generating the value functions {V (t)}Tt=1.25
603

Before proceeding with the characterization of the team’s dynamic opti-604

mization problem in the two phases, recall that the team solves the stopping605

problem under the assumption that stop is an absorbing state (so that, if a606

new version of the project is not submitted, it is understood that the project607

is terminated). Thus, the goal is to determine the version T ≤ T in which the608

team decides to stop the revision process. In what follows, we begin with the609

post-breakthrough phase.610

24Conditional on σt = 0, the probability that the project is good in t depends on the
status in t− 1.

25We refer to the stochastic process generating {V (t)}Tt=1 as “controlled” because, al-
though it is inherently random, it is also affected by the team’s decision to continue.
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Post-Breakthrough Phase Assume a breakthrough has taken place in a611

τ < t, so that σt = 1. In a stage t of the post-breakthrough phase, the value612

function is613

V (t) = max{π̂(t), V (t+ 1)− F (t)− εt}, (12)

for all t = 1, ..., T . Given σt = 1, we have π(t|0) = π̂(t) and E(V (t + 1)|1) =614

V (t+ 1). The solution for the sequence of {V (t)}Tt=1 in the post-breakthrough615

phase can be obtained starting with the terminal period, T . The team stops616

and obtains payoffs of π(T |1) = π̂(T ) > 0. In T − 1, value function becomes617

V (T − 1) = max{π̂(T − 1), π̂(T )− F (T − 1)− εT−1} and the team continues618

if π̂(T ) − F (T − 1) − εT−1 ≥ π̂(T − 1) and stops otherwise. The team then619

solves this problem backwards through t = 1.620

Pre-Breakthrough Phase Assume a breakthrough has not taken place in621

any t′ < t, so that σt = 0. In a stage t of the pre-breakthrough phase, the622

value function is623

V (t) = max{0, E(V (t+ 1)|0)− F (t)− εt}, (13)

for all t = 1, ..., T . Given σt = 0, we have π(t|0) = 0 and624

E(V (t+ 1)|0) = bp̂(t|0)E(V (t+ 2)|1) + (1− bp̂(t|0))E(V (t+ 2)|0) (14)
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When the team continues in t, it incurs costs F (t)+εt and expects continuation625

payoffs E(V (t+1)|0) as in (14), where a breakthrough occurs with probability626

bp̂(t|0) and does not occur with probability 1− bp̂(t|0).627

We solve for the sequence of {V (t)}Tt=1 in the pre-breakthrough phase by

starting with the terminal period, T . The process ends and the team’s are

π(T |0) = 0. In T − 1, the value function becomes

V (T − 1) = max{0, bp̂(T − 1|0)π̂(T )− F (T − 1)− εT−1},

and the team continues if the expected payoffs are nonnegative. The team628

then solves this problem backwards through t = 1.629

4.5 Likelihood Function630

For the likelihood function, we begin with the likelihood of publication. Be-631

cause the project stops in T , the last period in which a breakthrough can occur632

is T−1. For projects (with T versions) published as RFCs, we know that there633

was a breakthrough but do not know for which version t. This implies that634

the likelihood of publication in T depends on the status of the project in T ,635

σT , but also on the status of the project in all t < T (and, in particular,636

on the value of τ). This property of the model introduces a simple form of637

serial correlation across the team’s continuation decisions into our likelihood638

function.639

In order to account for the fact that the breakthrough might occur at640

any τ = 0, ..., T − 1 (and is observed by the team at the beginning of any641

35



τ + 1), it is helpful to define a function ρ(τ, T ) as the probability of observing642

a breakthrough in period t = τ and publishing an RFC in t = T . This643

probability is equal to644

ρ(τ, T ) = b (1− b)τ
(
1−G1(T )

) τ∏
j=0

G0(j)
T−1∏
k=τ+1

G1(k). (15)

Summing over all possible periods in which a breakthrough can occur, we can645

write the likelihood of publication in T as646

p
T−1∑
τ=0

ρ(τ, T ).

The log-likelihood for publication in a given T is equal to647

LLpublish(T |σT , b, p,F ) = log(p) + log

(
T−1∑
τ=0

ρ(τ, T )

)
, (16)

with σT = (σ0, σ1, . . . , σT ), and F denotes a vector of cost parameters.648

The likelihood of abandonment in T is649

(1− p)
T−1∏
k=0

G0(k)
(
1−G0(T )

)
+ p (1− b)T

T−1∏
k=0

G0(k)
(
1−G0(T )

)
.

The first term refers to bad projects for which a breakthrough is not possible650

(status σt = 0 for all t), whereas the second term refers to good projects that651

do not get a breakthrough (status σt = 0 for all t ≤ T ). The log-likelihood for652
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abandonment in a given T is equal to653

LLabandon(T |σT , b, p,F ) =
T−1∑
k=0

log(G0(k)) + log(1−G0(T ))

+ log
(

(1− p) + p (1− b)T
)
. (17)

We can now write the log-likelihood of the data. Let i denote a project and654

I the set of all projects in our sample. Project i ends in t = T̃i with outcome655

ai ∈ {abandon, publish}. The log-likelihood of the data (given our parameters656

and the vector of past statuses) is equal to:657

LL(σ, b, p,F ) =
∑
i∈I

LLai(T̃i|σT̃i
, b, p,F ). (18)

5 Estimation658

5.1 Empirical Approach659

We estimate the described dynamic decision problem in discrete time, were660

time is in version-time, t. This means, the duration of a project is equal to661

the number of versions, T . We maximize the likelihood function LL(σ, b, p,F )662

over (b, p,F ).663

For the non-stochastic cost component, we assume that F (t) is quadratic664

in version-time with F (t) = C0 + C1t + C2t
2 and F = (C0, C1, C2). For the665

stochastic cost component we assume that the cost shocks εt are independent666

draws from a Type I logistic distribution, εt ∼ Logistic(0, 1), t ≥ 1. We denote667
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the CDF of this distribution by G, with668

G(ε) =
1

1 + exp(−ε)
. (19)

We solve the maximization of the log-likelihood function LL(σ, b, p,F )669

in three steps. In Step 1, we solve for the team’s decision recursively for a670

given (b, p,F ), as described in the previous section. For the terminal version,671

we assume T = 25. If, by this last period, a breakthrough has occurred672

and σT = 1, then the project is successful and published in t = 25 = T .673

If a breakthrough has not been observed and σT = 0, then the project has674

failed and is abandoned. In this first step, we obtain critical values ε̄σtt for675

all t = 1, . . . 24 for the pre-breakthrough phase (with σt = 0) and the post-676

breakthrough phase (with σt = 1). In t = 25 = T no decision is taken. In677

the post-breakthrough phase, the critical value ε̄1
t is such that V (t + 1) −678

F (t) − ε̄1
t = π̂(t) and V (t) = π̂(t) in equation (12). In the pre-breakthrough679

phase, this critical value ε̄0
t is such that E(V (t + 1)|0) − F (t) − ε̄0

t = 0 and680

V (t) = 0 in equation (13). Through the recursive characterization of the681

team’s optimization problem, we obtain a sequence {ε̄σtt }T−1
t=1 and, using the682

CDF in equation (19), a sequence {Gσt(t)}T−1
t=1 with683

Gσt(t) = G(ε̄σtt ). (20)

Note that G0(0) = 1 and G1(0) is not defined. These Gσt(t) are the continua-684

tion probabilities in a given t with status σt.685

In Step 2, we use the sequence of continuation probabilities, {Gσt(t)}T−1
t=1686
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with G0(0) = 1, to calculate the log-likelihood LL(σ, b, p,F ) in equation (18)687

for a vector of parameters (b, p,F ). Step 3 runs optimization routines to688

find the vector (b∗, p∗,F ∗) with parameters that maximize the log-likelihood689

function,690

(b∗, p∗,F ∗) ∈ arg max
(b,p,F )∈Ω

LL(σ, b, p,F ) (21)

with Ω = [0, 1]2 × R3 and F such that F (t) ≥ 0 for all t = 1, . . . , 24.691

5.2 Identification692

Our model is based on a mixture of two optimal stopping problems, corre-693

sponding to the pre and post-breakthrough status of a given project. The694

breakthrough itself is an unobserved (to the econometrician) state variable695

until the time of publication. At that point, we can infer that a breakthrough696

occurred for each project that gets published as an RFC. However, we cannot697

infer that all abandoned projects are “bad” – some simply receive a large un-698

observed cost shock and exit before achieving a breakthrough. Intuitively, for699

each stopping problem, the share of projects that exit, either through publi-700

cation or abandonment, identify whether the net benefits of continuation are701

positive. After a breakthrough, those net benefits consist of an observable702

marginal benefit π̂(t+ 1)− π̂(t) that is identified by the relationship between703

t and expected citations, as well as the “option value” associated with fur-704

ther improvements, less a marginal cost. Before a breakthrough occurs, all705

of the net benefits come in the form of option value, since the only reason706
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to continue is in the hope of experiencing a breakthrough that would lead to707

publication and payoffs. The Bayesian learning process causes projects on the708

pre-breakthrough path to become more pessimistic about their option value709

over time, as the posterior belief that they are “bad” project increases.710

In our preferred specification of the model, we assume that there is no711

learning (b = 1) and certain publication (p = 1) for nonstandards-track712

projects. Standards-track RFCs receive the IETF’s formal endorsement, while713

nonstandards do not. Thus, while standards provide a commercially rele-714

vant focal point for implementation, which can produce winners and losers,715

there is no comparable incentive to prevent or delay the publication of non-716

standards. Working groups use the nonstandards-track in two ways. First,717

a nonstandards-track RFC may describe ideas that are too preliminary or718

controversial to become a standard.26 The second use of nonstandards is to719

provide information that complements a standard, such as guidelines for im-720

plementation and deployment.27 Nonstandards-track RFCs require very little721

community agreement given their purely informational role.722

We identify the payoffs in our model by estimating expected citations as723

a function of t. Although this could be done non-parametrically, in practice,724

we estimate a log-linear function, and let the payoffs vary for standards and725

nonstandards. Because there is no learning and no abandonment for nonstan-726

26For example, the Experimental RFC 2582 suggests changes to TCP to help manage
network congestion. While the IETF did not initially endorse the proposal, it was published
as a nonstandard to encourage further experimentation, and the underlying ideas were later
re-submitted for standards-track publication.

27For example, Informational RFCs have been used to catalog the negative externalities
that occur when vendors fail to comply with a protocol (RFC 2525), and to propose a
network architecture based on protocols defined in a set of related standards (RFC 2475).
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dards, those projects can be used to identify all of the cost parameters in our727

empirical model by choosing an F (t) such that the share of nonstandards pub-728

lished after t equals 1 − G(V (t + 1) − π̂(t) − F ), i.e. the actual and implied729

probability of stopping are equal.730

Given estimates of the payoffs and costs of continuation, the two parame-731

ters associated with the Bayesian learning process, p and b are identified by the732

rates of publication and abandonment. Intuitively, they are chosen to make733

the implied hazard rates line up with the empirical hazards depicted in the734

bottom left panel of Figure 1.735

6 Results736

We present our results for the estimated parameters b∗, p∗, and F ∗ that max-737

imize the log-likelihood LL(σ, b, p,F ). We fist consider our baseline model,738

assuming that all projects are ex ante identical. We then extend our preferred739

specification of the model by introducing project heterogeneity and estimate740

multiple values for b, p, and F for different project categories.741

6.1 Baseline742

Table 4 presents the estimated parameters for four different versions of our743

baseline model. We estimate our model on the full sample and the WG sample.744

For each of these samples, we present results for the estimation using the745

identification strategy based on standards-track and nonstandards-track RFCs746

splits as well as results without this identification strategy. We report the747
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former in columns “Tracks” and the latter in columns “No Tracks”.28
748

The full sample estimates are consistent with the presence of a majority749

of good projects, and a relatively small probability of breakthrough. These750

results suggest that IETF members enter the process believing that consensus751

is possible, as witnessed by an estimated value of good projects, p, hovering752

above 1/2. However, they also expect that it will take them a relatively long753

time to achieve consensus, as reflected by an estimated value of the rate of754

learning, b, of about 1/4.755

6.1.1 Rate of Learning756

In the pre-breakthrough phase in the full sample, one out of five good projects757

experiences a breakthrough in any given t, whereas it is one out of four for758

the WG sample. The rate of learning is higher for projects that are initiated759

within working groups relative to projects in the full sample. More specif-760

ically, projects sanctioned by working groups observe a breakthrough faster761

than individual projects. One possible explanation for this results is that the762

additional attention and feedback from the working group results in a higher763

rate of learning. We will provide some support for this in the section when we764

consider project heterogeneity.765

6.1.2 Prior of Project Type766

In the full sample, a bit less than 50% of projects are good and can, if a767

breakthrough occurs, generate value. The fraction of good projects is higher768

28The reported parameters in column “Tracks” version are for standard-track projects.
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Table 4: Baseline Results for Structural Model

Full Sample Working Group Sample

No Tracks Tracks No Tracks Tracks

Learning (b) 0.27 0.18 0.37 0.28
(0.004) (0.004) (0.007) (0.007)

Priors (p) 0.56 0.45 0.68 0.55
(0.003) (0.004) (0.004) (0.005)

Costs F (1) 2.83 2.09 3.47 2.47
(0.025) (0.022) (0.045) (0.038)

Costs F (10) 0.85 0.86 0.81 0.89
(0.005) (0.006) (0.007) (0.008)

Costs F (25) 0.54 0.57 0.95 0.72
(0.025) (0.026) (0.061) (0.047)

Projects 16,268 3982
(on/off standard track) 14,549/1719 3201/781
Versions 59,713 22,580
(on/off standard track) 48,009/11,704 17,351/5229
Log-Likelihood -39,128.6 -33,817.6 -12,521.6 -11,086.6
AIC 78,267.1 67,645.3 25,053.2 22,183.2

Standard errors in parentheses. “Tracks” indicate results using the standard-
nonstandards-track approach with b = 1 = p for nonstandards track projects; “No
Tracks” estimates all five parameters for projects both on and off the standard track.
F (1), F (10), and F (25) are the estimated non-stochastic costs in t = 1, t = 10, and
t = 25.

in the WG sample. A likely explanation for these differences is self-selection:769

while any individual can start a project outside a working group, the project770

threshold value for the WG to facilitate a project is higher. Also, working771

groups are formed to solve identified problems, and working group projects772

are more likely than individual or outside projects to relate to these problems,773

thus receiving more attention and ultimately support.774
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6.1.3 Costs of a Revision775

Table 4 presents the per-period costs for t = 1, t = 10, and the final period776

t = 25 = T .29 Costs are strictly positive, decreasing and convex for both777

the full sample and the WG sample, as shown in Figure 4 that plots F (t)778

for t = 1, . . . , 25. The monotonic decrease in incremental costs may capture779

learning-by-doing effects. Alternatively, this cost pattern could be linked to780

the decreasing rate of textual change, as depicted in Figure 1. Smaller textual781

changes for later versions come at lower cost. Of course, the reverse is possible,782

too. Because less effort or time is spent on later versions (i.e., lower costs),783

later versions exhibit smaller textual changes.784

6.1.4 Payoffs, Beliefs and Hazard Rates785

The upper-left panel in Figure 5 illustrates the empirical pattern of poste-786

rior beliefs in the pre-breakthrough phase. Moreover, the upper-right panel787

presents the expected value of a project conditional on t, E(V (t + 1)|σt), in788

the two phases. Finally, in the lower-left panel in Figure 5, we plot the crit-789

ical values ε̄σtt (as defined in (4)) for the pre-breakthrough phase (σt = 0)790

and the post-breakthrough phase (σt = 1), with the respective continuation791

probabilities Gσt(t) (as defined in (5)) in the lower-right panel.792

In the pre-breakthrough phase, both E(V (t+ 1)|0) and the critical values793

ε̄0
t follow a non-monotonic pattern. The non-monotonic values of E(V (t+1)|0)794

are the result of a combination of three forces. First, the team knows that,795

29Note, final period costs F (25) never materialize because there is, by assumption, no
decision in t = 25 = T .
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Figure 4: Cost Estimates (Baseline Models)

The four panels plot the cost estimates for the four versions of our baseline model in
Table 4. Dotted lines are 95%-confidence bounds.

conditional on the realization of the breakthrough, the profits from publica-796

tion increase in the number of versions. Second, the team anticipates that it797

will be paying lower values of the non-stochastic costs as the number of ver-798

sions increases. Finally, the publication value is discounted by a value of the799

posterior beliefs that decreases with the version number.800

Thus, as long as the increase in the expected value from publication, to-801

gether with the reduction in the non-stochastic costs, compensate for the de-802

crease in the posterior beliefs, the expected payoffs from continue increase803

with the version number. The expected values in E(V (t+ 1)|0) decrease once804
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the team becomes sufficiently pessimistic about the probability of the break-805

through and relative cost-savings, associated with higher versions, diminish.806

The same intuition explains the non-monotonic pattern of the critical values807

ε̄0
t and the corresponding continuation probabilities, as depicted in the bottom808

panels of Figure 5.809

In the post-breakthrough phase, beliefs do not play any role (as the team810

updates its posterior to p̂(t|1) = 1 after the breakthrough). In this phase, ex-811

ante payoffs increase, tracking the increasing values of the publication payoffs,812

π̂(t), and the decrease in the value of non-stochastic costs, F (t). The critical813

values ε̄1
t monotonically decrease, which is explained by the fall in the option814

value of continuing. This follows the decreasing and convex pattern of the815

fixed costs, and the increasing and concave values of the payoffs π̂(t).816

Finally, in Figure 6 we plot the conditional probabilities of outcomes. The817

panels on the left depict the hazards of the IETF data (full sample and WG818

sample); the panels on the right depict the hazards of simulated data using819

the estimated parameters in Table 4.30 Our simulated hazard rates track both820

pattern and magnitude for the full sample. For the WG sample, the hazard821

rates for the simulated data track well the hazard rates for the IETF data.822

However, our estimates are not able to match the magnitude of the IETF data823

hazard rates.824

30We simulate 20,000 on-track projects.

46



Figure 5: Decisions (Baseline Models)

Estimated parameters for the baseline model in Table 4. Top-left: the team’s poste-
rior beliefs during the pre-breakthrough phase. Top-right: continuation values (pre-
breakthrough and post-breakthrough) over ID Version Number. Bottom-left: the cutoff
values for cost shocks, ε̄σt

t . Bottom-right: the continuation probabilities in t.1, before
the team observes its cost shock εt.

6.2 Heterogeneity825

For the baseline results, we have assumed that all IETF projects are ex ante826

identical. For the results below, we introduce ex-ante project heterogeneity827

and estimate different values for our model parameters. We focus on the WG828

sample with standard-track splits (“Tracks”). We summarize the results in829

Table 5. The first column reproduces the results from Table 4.830
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Figure 6: Hazard Rates (Data and Simulations)

The four panels plot the hazard rates for published (solid) and abandoned (dashed)
projects for the four versions of our baseline model in Table 4.

6.2.1 Rate of Learning831

For the first model extension, we ask how project-related communication drives832

learning. We let b vary with the amount of attention and feedback a project833

receives. We hypothesize that more attention (via more project-related com-834

munication) is associated with a higher learning rate. We measure commu-835

nication (or attention) using the number of e-mail messages per version sent836

during the revision process. Each project is assigned the mean of e-mail mes-837

sages per version for each of the four quartiles. This gives us four categories:838

low, low-high, high-low, and high. For this exercise, we assume that neither the839
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Table 5: Heterogeneity Results for Structural Model

Baseline Emails (b) Years (p) Authors (F )

Learning (b) 0.278 0.278 0.315
(0.007) (0.008) (0.007)

Priors (p) 0.553 0.560 0.630
(0.005) (0.005) (0.005)

Costs, F (1) 2.473 2.323 2.450
(0.038) (0.038) (0.038)

Costs, F (10) 0.888 0.913 0.891
(0.008) (0.008) (0.008)

Costs, F (25) 0.719 0.617 0.706
(0.047) (0.041) (0.047)

Learning (b): low 0.189
(0.007)

Learning (b): low-high 0.209
(0.007)

Learning (b): high-low 0.246
(0.007)

Learning (b): high 0.365
(0.015)

Prior (p): 1996–2000 0.520
(0.006)

Prior (p): 2001–2005 0.570
(0.006)

Prior (p): 2006–2009 0.616
(0.008)

Costs, F (1): 1 author 3.156
(0.054)

Costs, F (1): 2 authors 3.118
(0.054)

Costs, F (1): 3–4 authors 3.023
(0.054)

Costs, F (1): 5+ authors 2.741
(0.052)

Projects (on/off standard track) 3201/781
Versions (on/off standard track) 17,351/5229
Log-Likelihood -11,086.6 -11,016.5 -11,011.4 -9,873.0
AIC 22,183.2 22,045.0 22,036.8 19,762.1

Standard errors in parentheses. Estimates for WG sample with standard-
track splits.
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prior p nor the non-stochastic cost component F depend on communication.840

We find that more attention increases the estimated value for b; it thus in-841

creases the rate of learning. This in return implies that more attention induces842

faster updating of beliefs. Players thus become pessimistic more rapidly. At843

the same time, a breakthrough, if it does occur, arrives faster which results844

in higher continuation value in the pre-breakthrough phase. In the first row845

in Figure 7, we plot the continuation probabilities G(ε̄σtt ) for three estimated846

values of b (low, high-low, and high) to capture this compound effect. A lower847

probability of continuation implies faster or earlier stopping. We can see that848

a higher value of b does not affect the continuation probabilities in the post-849

breakthrough phase. In the pre-breakthrough phase, except for the first few850

versions, a faster rate of learning induces faster rate of quitting.851

6.2.2 Prior of Project Type852

In Table 2, we see a varying number of projects per year for different periods.853

Moreover, projects initiated in earlier years receive more patent citations per854

year than younger projects. This suggests circumstances at the IETF that855

change over time. We consider three different periods (1996–2000, 2001–2005,856

and 2006–2009) and estimate the prior probability p for each of these periods.857

For this exercise, we assume that neither b nor F change over time.858

The results in Table 5 illustrate that, over the years, the prior probability859

that a project is good has increased. There are at least two competing ex-860

planations for this. First, projects may have become inherently better, lifting861

the prior. Alternatively, the IETF may have become more lenient, endorsing862
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Figure 7: Continuation Probabilities

We plot continuation probabilities for the pre-breakthrough phase (dashed) and the
post-breakthrough phase (solid) for three different values of b (first row: low, high-low,
and high), p (second row: 1996–2000, 2001–2005, and 2006–2009), and C0 (third row: 1
author, 3–4 authors, and 5+ authors). Estimated parameter values in Table 5.

more projects as RFCs. This in return increases the prior p because only863

good projects can be published. Note that a higher value of p induces less864

pessimistic teams in the pre-breakthrough phase. In addition, a higher value865

of p implies higher continuation values. In the second row of Figure 7, we see866

the compound effect. Again, in the post-breakthrough phase, the continuation867

probabilities are not driven by p, because posteriors are p̂(t|1) = 1 for all t.868

In the pre-breakthrough phase, however, continuation probabilities are higher869

for higher values of p. As teams expect projects to be better, they continue to870
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submit new versions and quit later.871

6.2.3 Costs of a Revision872

We see in Table 2 that projects by teams with more authors receive more patent873

citations. This is partly because larger teams have longer projects. Moreover,874

the graphs in Figure 1 suggest that projects with more versions receive more875

patent citations. One possible explanation for the positive relationship be-876

tween team size and version is that larger teams have lower costs. We find877

weak support for this. The costs of a first revision are lower when the team878

has more authors. In Figure 8, we plot the costs against ID Version Number;879

for later versions there is no statistical difference; author team size matters880

for costs only early in the revision process. Albeit small, the differences in881

the cost-intercept C0 do matter for the team’s continuation probabilities. The882

third row of Figure 7 plots the continuation probabilties for three different883

cost intercepts. As the non-stochastic costs of another version increase, the884

continuation probabilities (before teams observe their costs shocks) decrease.885

7 Counterfactual Analysis886

For our first counterfactual analysis, we vary the IETF’s quality standards887

(with respect to endorsed projects) by varying the value for p. We use the888

estimated parameters for the WG sample from our preferred model (using the889

standards-nonstandards track approach) as presented in the last column in890

Table 4. We consider two different approaches. First, we vary p while keeping891
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Figure 8: Cost Estimates (Heterogeneity Results)

The four panels plot the cost estimates for our baseline model and three heterogeneity
extensions in Table 5. In the lower-right panel, we plot the costs for two different team
sizes. Dotted lines are 95%-confidence bounds.

the number of projects constant. For the results reported below, we simulate892

data for 20,000 projects. This approach allows for both varying number of893

overall versions and of the total costs incurred by the author teams. For894

the second approach, we vary p while keeping the total realized costs of all895

projects constant.31 This implies a varying number of projects and versions896

but accounts for possible cost budget. Note that we do not keep the number897

of versions constant, because, as depicted in Figures 4 and 8, versions come at898

31The total realized costs of 20,000 projects, given the estimated parameters, is 95,619.
For this second approach, we round up and assume a total cost budget of 100,000. The
actual number of projects is such that total costs do not exceed the cost budget.
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Figure 9: Counterfactuals (Prior p)

Panels depict results from the first counterfactual exercise. We vary p from 1/10 to 9/10.

varying cost where earlier versions are more expensive than later version.899

In Figure 9, we illustrate the results from our first set of counterfactuals.900

Varying the prior probability p reflects varyings degree of leniency by the901

IETF. In the top-left panel, we plot the average number of versions per project902

separately for all (solid), good (dashed), and bad (projects). As the prior p903

increases and the IETF becomes more lenient, accepting more projects as904

good projects, the average number increases. Observe that good projects905

undergo more versions than bad projects when p is low but fewer version906

when p is high. Bad projects do not experience a breakthrough; but with high907

values of p, the continuation value is high relative to costs (which are relatively908
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low at high version numbers). This is because of the discontinuity in values909

at a breakthrough—implying high costs of stopping. Good projects, after a910

breakthrough, have a lower continuation value because patent citations are911

concave in version number (and flatten out). Teams continue to submit new912

versions longer for projects that have not yet experienced a breakthrough.913

The bottom-left panel plots falsely published and unpublished projects914

(for both constant project numbers and costs). Recall, we treat the estimated915

parameter p∗ as the true value. If, as in our counterfactuals, the IETF chooses916

a value p < p∗ [p > p∗] it is stricter [more lenient] than under this true917

value. All projects p′ ∈ [p, p∗) [p′ ∈ (p∗, p]] are treated projects that are falsely918

considered bad [good]. Falsely bad projects are not published when they would919

otherwise potentially be published under p = p∗. For all p < p∗, we plot the920

thus unpublished projects as a share of the falsely bad projects. Falsely good921

projects may be published when they would otherwise not be published under922

p = p∗. For p > p∗, we plot the thus published projects as a share of the923

falsely good projects. We can see that for treated projects, the fraction of924

falsely (un)published projects is constant when p is low but increasing when p925

is high. In fact, for p = 0.9 almost all treated projects (falsely good projects)926

are published. This means that the errors stemming from too strict an IETF927

(for p < p∗) are mitigated by shorter processes so that not all treated projects928

are published. The same errors stemming from too lenient an IETF (for p > p∗)929

are all materialized as a projects are longer and the error rate (unpublished930

good projects) goes to zero.931

In the center column of Figure 9, we plot ex-ante values (average and932
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total) for constant project numbers (top) and constant costs (bottom). For933

both constant project numbers and constant costs, the average ex-ante value934

(a team’s continuation value in t = 0, before the first version is submitted)935

is increasing in p. For the constant cost numbers, the total ex-ante value is936

U-shaped. This is a result of the assumption that the number of projects is937

chosen to keep the total costs constant. For low values of p with few version,938

the number of projects is high (with low ex-ante value per project) where the939

number of projects is low (with high ex-ante value per project) otherwise. The940

final result is a picture that suggests (as institutional choice) either a relatively941

strict or relatively lenient IETF, with the estimated parameter of p∗ generating942

low total ex-ante values.943

In the right column of Figure 9, we plot ex-post values (average and total)944

for constant project numbers (top) and constant costs (bottom). The picture945

for constant project numbers is analogous to the one for ex-ante values. We946

also find a U-shaped relationship between total ex-post costs and the prior947

p. Unlike for ex-ante values, however, lower values of p now dominate higher948

values of p.949

8 Concluding Remarks950

We propose a model of research and development as a process of experimen-951

tation in which researchers repeatedly revise specifications of a project and952

update their beliefs about the project’s type. Only a good project whose953

type is learned by researchers can generate value. Researchers abandon a954
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project when the opportunity costs of continuing exceed the expected benefits.955

We estimate the structural parameters of this dynamic optimization problem956

using a novel data set with information on both successful and abandoned957

projects from the Internet Engineering Task Force (IETF), a standard devel-958

opment organization that creates and maintains standards necessary for the959

functioning of the internet. The structural approach allows us to recover the960

researchers’ unobserved beliefs and opportunity costs, and answer questions961

about whether specific rules and institutions encourage “efficient abandon-962

ment” by researchers. We find that opportunity costs are decreasing over time963

and feedback and comments from the IETF community at large increase the964

speed at which developers learn the type and potential of a project. A higher965

rate of learning reduces the costs of extensive and fruitless development of bad966

projects (without value).967
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