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Abstract

We study the problem of designing a mechanism that allocates firms into

search pools, when consumers can only give a noisy signal of what they are look-

ing for. Under random sequential search, we show that it is always possible to

design a mechanism that incentivizes firms to behave in a way that maximizes

consumer surplus (taking their search costs into account). We then establish a

necessary and sufficient condition - in terms of the joint distribution of consumer

tastes and signals - for the existence of consumer-optimal mechanisms that also

extract the entire surplus of firms. The condition is a simple set of inequalities

that involve the relative fractions of consumers who like different products, and

the Bhattacharyya coefficient of similarity between their conditional signal dis-

tributions. When the condition holds, the twin objectives are implementable by

an auction that sells (for a price per-impression) "tickets" to consumers’ signals,

and is augmented by a “broad match” function that links different signals. Under

broad matching, a consumer who submits one signal gets a mixed search pool

consisting of firms that submitted a winning bid for other signals.
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1 Introduction

Consider the following basic situation. A consumer has a certain need and looks for a

product that will satisfy it. If the consumer were confronted with a particular product,

he would be able to identify whether he wants it or not. However, the consumer is

unable to provide an exact description ex-ante. Therefore, he submits a "query" that

gives a rough idea of what he is looking for. The consumer’s coarse description fits

several types of products (and many individual products within each category, each

provided by a different supplier). If a consumer’s query is sent to a central planner,

what should the planner do, if he aims to maximize consumer surplus? If he gives

the consumer a single item, it may be a poor match. Hence, he may try to provide

the consumer with a set of options to browse. However, if search is time-consuming,

the planner should design the set in order to balance two considerations: maximizing

the probability that the consumer will find what he is looking for, and the amount of

time it will take him to find it. In other words, the planner’s problem is to design the

consumer’s "search environment".

The consumer’s predicament is prevalent in other environments. When an employer

approaches a Human Resource agency with an intention to hire a new worker, he is

unable to rank all potential employees on the other side of the market; instead, he

provides a few desirable characteristics (which are often quite vague) that describe

the kind of worker he is looking for. Likewise, when we approach a real-estate agent

with an intention to rent an apartment, we are typically able to provide only broad

characteristics (location, size, existence of an elevator, etc.). When we look for products

on internet platforms, we submit keyword-based queries, which are often vague and

imprecise. For instance, suppose that you are looking for a specific piece of instrumental

music on YouTube, but you forgot its name and the name of its composer. You would

recognize it instantaneously if you heard it, but the only information you can provide

in a YouTube search is the genre to which the piece belongs. In all these examples, the

consumer submits a signal through a deliberate query. In other cases, the consumer

passively conveys information when he accesses the intermediary. For instance, in

contemporary online platforms, the "cookies" on users’ computers contain information

about their navigation history and past transactions, and these may be correlated with

their current needs.

We are interested in the design of search environments that maximize consumer

surplus. We are motivated by two considerations. First, given the consumers’ limita-

tion, it is interesting to speculate what would happen if they collectively designed an
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institution that addresses it. Second, real-life search platforms (classified directories,

online search engines) try to stand out by building a reputation for helping consumers

find what they are looking for, because they compete for "single homing" consumers

(in contrast, suppliers tend to be "multi-homers" - they offer their merchandise at sev-

eral platforms). Although we do not explicitly model this competitive force, it is in

the background of our analysis.

In our framework, attaining a consumer-optimal allocation of suppliers into search

pools requires the provision of appropriate incentives for suppliers to self-select into the

right search pools. This follows from our assumption that it is prohibitively costly for a

planner to verify whether a firm’s reported type fits the signal provided by a consumer.

Since consumers’ signals are noisy, suppliers have an incentive to present themselves as

being relevant to many signals (since there is some chance that the supplier is indeed

offering what the consumer is looking for). This may clutter the set of options browsed

by the consumer, who may consequently spend too much time searching. We therefore

ask, can consumer-optimal search design be decentralized via some mechanism that

will shape the search environment according to the suppliers’ individual incentives? In

particular, can this mechanism take the form of a "competitive market", in which firms

bid for inclusion in the consumer’s search environment?

To address these questions, we study the following simple model. There is a finite

set of product types  and a finite set of signals  , | | ≥ ||. Each type of product
is offered by a measure one of firms. There is a continuum of consumers - each char-

acterized by a pair (), where  ∈  is the only type of product the consumer is

willing to consume and  ∈ is the signal he is able to convey. The value of a product

of any type  6=  for this consumer is 0, and the value of any  product is 1 with inde-

pendent probability  (and 0 with probability 1− ). The signal  can be interpreted

as an active query - e.g., a collection of keywords that the consumer can use to de-

scribe what he is looking for. In this sense, the signal captures the consumer’s "limited

vocabulary". The signal can also represent information that the consumer passively

conveys, as in the "cookie" example. The distribution of consumer types is ().

When signals are imperfectly informative of consumer preferences, two consumers who

submit a given signal  may be interested in different product types.

To model the consumer’s search environment, we need to make an assumption

about the available search technology. As a first step, we focus on the most basic and

familiar search technology in the literature, namely random sequential search. This

means that the central planner is unable to control the order in which the consumer

inspects individual products in his search pool (in Section 5, we consider the opposite
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extreme, where the planner can determine the order of inspection). Thus, we assume

that when a consumer of type () chooses to search and provides the signal , he

is assigned a "search pool" characterized by its composition of firm types: the fraction

of  products in the pool is (). The consumer repeatedly decides whether to take

a random independent draw from the pool, at a constant cost per draw   0. When

the consumer finds a product he likes, he transacts with the firm. The value of the

transaction for the firm is 1 (we abstract from pricing between the consumer and the

firm).

The planner’s first-best outcome associates with every signal  a probability dis-

tribution (∗())∈ that represents the optimal composition of firm types in the

search pool of consumers who send the signal . This can be viewed as an optimal

allocation of the "search pool" associated with each  to a heterogeneous population

of firms. In basic textbook object-allocation problems, it is efficient to allocate the

object to a single type - the one with the highest willingness to pay. By comparison,

in our model the search pool is allocated to a mixture of firms; the optimal mixture

is monotone in the sense that ∗() increases with (), but multiple firm types

will be present in the pool as long as  is not too high.

We first consider anonymous direct mechanisms, in which firms report their type

(an element in ), and consequently they are admitted probabilistically into a col-

lection of search pools and pay a lump-sum transfer to the planner.1 We then show

that if participation constraints are ignored (because, say, the planner has an unlimited

budget), the first-best is always implementable in symmetric pure-strategy Nash equi-

librium by some anonymous direct mechanism. The mechanism we construct applies

Vohra’s (2011) flow-network representation of IC constraints.

Next, we consider the possibility of maximizing consumer surplus with mechanisms

that impose some natural requirements on the transfers that firms pay. One natural

requirement is that the transfers extract the firms’ entire surplus. Another natural

requirement is to use a uniform-price mechanism, namely “simple”, constant transfers

that do not depend on the firm’s report. In particular, is it possible to maximize

consumer surplus without any transfers?

Remarkably, the same necessary and sufficient condition applies to all these restric-

tions on transfers. For the sake of its presentation here, suppose that  is small enough

such that all consumer types are served in the first-best. Let () be the proportion

of consumers who want a product of type  and let (|) be the probability that a
consumer submits a signal  conditional on wanting  The first-best is implementable

1We discuss the monitoring assumptions buried in this restriction in Section 3.
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(in symmetric pure-strategy Nash equilibrium) by a mechanism that extracts the entire

surplus from firms (or, equivalently, uses a constant transfer) if, and only if, for every

pair of product types   the following inequality holds:2

()

()
·
ÃX



p
( | )( | )

!2
≤ 1 (1)

The L.H.S. of this inequality is a product of two terms. The first term measures the

"popularity gap" between the two product types  and  in the consumer population.

The second term is a measure of the similarity of the conditional signal distributions

that characterize the preference types  and . In fact, it is a conventional measure of

similarity of probability distributions, known as the "Bhattacharyya coefficient" (after

Bhattacharyya (1943)). This measure is commonly used by recommender systems and

other machine-learning applications. In our context, it captures the informativeness of

consumers’ signals, because the Bhattacharyya coefficient is increasing with Blackwell

garbling of the system of conditional probabilities ( | ).
Thus, the necessary and sufficient condition captures succinctly two obstacles in

attaining the joint objectives of maximizing consumer surplus and extracting firms’

surplus: a large popularity gap between two product types, and similar conditional

signal distributions of two product types. Although our model is highly stylized and

obviously cannot be considered as a faithful description of any concrete setting, we

believe that the tension identified by (1) is robust and would survive realistic elabora-

tions.

Is there a natural indirect mechanism that attains the planner’s twin objectives?

We propose an auction format, in which each firm submits a "bid-per-impression"

for each signal  independently. The highest bidders for each signal  are allocated

(uniformly and at random) a number ( | ) of "tickets" to the search pool associated
with . We refer to  as a "broad-match function", hijacking search-engine jargon.

Consumers who submit the signal  search by sequential random draws of "tickets"

from their pool; when a ticket is drawn, the firm that holds it pays the planner an

amount equal to the bid that entitled it to the ticket. Thus, broad matching allows

consumers who send the signal  to encounter firms that submitted a winning bid for

some other signal .

Our notion of broad matching captures an intuitive function of real-life institutions

2When  is larger such that some consumer types are not served in the first-best, we need to

replace  with the conditional distribution over served types, and the inequality must hold for all pair

of product types that are not excluded by the first-best.
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that match agents in two-sided markets, which can be described as "vocabulary ex-

pansion". When a prospective buyer looks up “road bikes” in a classified directory,

he may see items listed by sellers under “racing bikes”, “hybrid bikes” or “fixed gear

bikes”. Although the buyer and seller used different terms, the directory bridges the

gap between their vocabularies in the interests of a potentially good match. Likewise,

"organic" online search engines respond to keyword-based queries by taking into ac-

count synonyms, typos, and logically or semantically related terms. The broad-match

function  plays a similar role in our indirect mechanism. Although the term "broad

matching" is derived from search-engine jargon, its role in our model is subtly different

from the industry practice, as we explain in Section 4.

We show that when inequality (1) holds, a simple specification of  induces a mech-

anism that maximizes consumer surplus and fully extracts the firms’ surplus in some

symmetric pure-strategy Nash equilibrium. The set of signals is partitioned into two:

a set of “working” signals with as many signals as there are product types, and a set

of “dummy” signals. Each working signal  is assigned a distinct product type ().

The strength of the broad-match link from each working signal  to every  ∈  is

given by (|) =
p
( ). If  is a dummy signal, then (|) = 0 for every .

In the symmetric equilibrium, firms of type  bid only for the working signal  for

which () = . The winning bid for each working signal , which is its "equilibrium

price-per-impression", has a simple functional form that incorporates a weighted sum

of Bhattacharyya coefficients of similarity between () and all relevant product types.

Indeed, as signals become less informative of consumer preferences, the equilibrium

prices of signals decrease.

2 The Environment

Let  be a finite set of product types, || ≥ 2. For every  ∈ , there is a measure

one of firms that offer only that product type (as many units as required, at zero cost).

We refer to them as "-firms". A firm gets a fixed payoff of 1 from any unit it sells (we

abstract from product prices). Let be a finite set of signals, where | | ≥ ||. There
is a measure one of consumers. A consumer type is defined by the pair (), where

 is the (only) type of product he is interested in, and  is the signal he can convey

regarding his wants. In line with some of the potential applications we have in mind,

we will often refer to  as a "query", a "keyword" or "the consumer’s vocabulary". Let

 ∈ ∆( × ) be the distribution of consumer types in the population. We assume

the marginals of  on  and have full support. As usual, denote () =
P

 ()
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and (·|) = ((|))∈ . The latter is referred to as the conditional signal/query
distribution that characterizes the preference type .

When a consumer of type () consumes a product of type  6= , he gets a sure

payoff of 0. When he consumes a particular product of type , he gets a payoff of 1

(0) with independent probability  (1− ).3 Thus, each consumer is interested in one

type of product, but the (independent) probability he likes any individual product of

this type is . The parameter  captures idiosyncratic heterogeneity among consumers

and firms. This dimension of differentiated taste also justifies why many firms offer the

same type of product. Products are "inspection goods": when a consumer encounters a

particular product, he immediately recognizes the payoff it generates. However, all he

can communicate ex-ante about what he is looking for is encapsulated in the signal .

Note that  does not represent the consumer’s information about his own preferences,

but the information he can provide to others. Thus, when the consumer inspects a

particular product, this does not cause him to revise his beliefs.

Example: Mozart vs. Stravinsky

The following specification illustrates the primitives of our model and serves as a run-

ning example throughout the paper. Consumers are interested in classical music. There

are two types of products: musical pieces by Mozart and by Stravinsky. Accordingly,

let  = { }. The set of signals consists of three keywords, “Mozart”, “Stravin-
sky” and “Classical Music”, denoted ,  and  respectively. A consumer

type () (respectively, ( )) is interpreted as someone who likes the

music of Mozart (Stravinsky) and knows how to describe this taste. In contrast, the

type () (respectively, ( )) is interpreted as someone who likes the music

of Mozart (Stravinsky) without realizing that this is his favorite composer, and all

he can say ex-ante is that he is interested in classical music. While he can identify

whether he likes an individual piece of music when he hears it, the inspection never

reveals the identity of the piece’s composer, and the consumer is unable to revise his

query. Assume ( ) = () = 0 - that is, when a consumer can name

a composer, then he must like his music.

Consumers search for a product they like (i.e., a product that gives them a payoff

of 1) according to the following process. Let () ∈ {0 1} represent the decision of a
consumer of type () whether to enter the search process, where () = 0 means

that the consumer refrains from searching, and () = 1 means that he engages

in search by providing the signal/query . In the latter case, the consumer is given

3The assumption that consumers and firms have the same transaction payoff is merely to save

unnecessary notation, and plays no role in our analysis.
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access to a set of products. We refer to this set as the search pool associated with ,

and define it formally as a probability distribution (())∈ , where () is the

fraction of products of type  in the pool. The consumer repeatedly draws independent

random samples from this pool (with replacement), where each draw carries a fixed

cost   0. As soon as the consumer finds a product he likes, he transacts with its

seller and terminates his search. Denote  = ((· ))∈ and  = ((· ))∈ .
We wish to make a few comments regarding the search process. First, in the equi-

libria of the models we analyze, there will always be infinitely many firms in consumers’

search pools. This means that our sampling-with-replacement assumption is w.l.o.g.

It also ensure that if ()  0, a searching consumer will find a product he likes

in finite time with probability one. Second, we describe the consumer’s behavior as a

once-and-for-all decision whether to enter the search pool, rather than as a sequential

decision problem. This is a formal simplification that carries no loss of generality for

our purposes - see Section 3.

Finally, our assumption of a random sequential search technology means that the

search designer is unable to control the order by which consumers inspect products in

their search pool. This is a reasonable assumption for search environments in which

inspection is done "offline". For instance, when a consumer obtains a list of specialists

from a "Yellow Pages" directory, he can verify whether a specialist is a good match only

by physically contacting him. The order in which he will examine the specialists will

depend on factors such as their availability and physical locations, which are beyond

the control of the directory’s designer.

Even in the case of online search - where search pools are ordered by the search

engine - Athey and Ellison (2011) list a number of reasons why web users may disobey

the order in which links appear on their computer screen: advertisers may attract the

user’s attention away from more prominent links; some links may be slow or broken;

and the user may distrust the search engine’s suggested order. From this point of

view, our random-search assumption fits a worst-case analysis for the design of search

environments (it is also computationally cheaper than complete ordering of all the firms

in the consumer’s search pool according to some given characteristics). At any rate, in

Section 5 we examine the diametrically opposed case, in which the search designer can

perfectly control the consumer’s order of inspection. The intermediate cases, which are

more realistic for contemporary online search, are left for future research.

8



2.1 The Bhattacharyya Coefficient

A key issue in this paper will be the distinctiveness of the signal distributions that

characterize consumer preference groups. In particular, we are interested in measuring

the closeness of the conditional query distributions (·|) and (·|), for any given 

and . Of course, there are multiple ways to measure similarity between probability

distributions. However, one particular measure turns out to be relevant for the present

model. For any pair of products   ∈ , define

( ) ≡
ÃX

∈

p
(|)(|)

!2

In the statistics literature,
p
( ) is known as the Bhattacharyya coefficient that

characterizes the distributions (·|) and (·|).4 From a spatial point of view, this is

an appropriate similarity measure, because
p
( ) is the direction cosine between

two unit vectors in R| |, (
p
(|))∈ and (

p
(|))∈ . The value of ( )

increases as the angle between these two vectors becomes narrower; ( ) = 1 if

and only if (·|) = (·|); and ( ) = 0 if the two vectors are orthogonal. More

importantly, ( ) is an appropriate similarity measure given our interpretation of

(·|) and (·|) as conditional signal functions. The stochastic matrix ((·|))∈ is
an information system in Blackwell’s sense. This leads to the following observation.

(The proofs of all results in this section are relegated to the appendix.)

Remark 1 When ((·|))∈ is subjected to Blackwell garbling, () weakly in-

creases for all  .

Thus, Bhattacharyya similarity is increasing as signals become less informative

in Blackwell’s sense. This is consistent with the intuition that similarity between

conditional query distributions captures consumers’ limited ability to describe what

they are looking for. In our "classical music" example, the assumptions we imposed

on  means that ( ) = (|)(|).
4See Basu, Shioya and Park (2011) and Theodoris and Koutroumbas (2008). A related concept is

the Hellinger distance between distributions, given by 2( ) = 1 −
p
( ). In the concluding

section we describe practical applications of these measures in recommender systems, and explain how

these are related to our model.
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2.2 Consumer-Optimal Search Pools

We consider a central planner whose object of design is the composition of search pools.

Therefore, it is apt to call him a "search designer". The search designer’s objective is

to maximize consumer surplus, defined as follows:

( ) ≡
X


X


()(), (2)

where

() =

⎧⎪⎨⎪⎩
0  () = 0

−∞  () = 1 and () = 0

1− 
·()  () = 1 and ()  0

(3)

is the net surplus of consumer type () under ( ). In particular, when ()  0

, a searching consumer of type () will eventually find a product he likes, after an

expected search time of 1(). Let (∗ ∗) = argmax ( ) be the consumer-

optimal outcome, defined by the collection of search pools associated with each signal

and the consumers’ search decisions.

We characterize (∗ ∗) in a sequence of steps. First, it is clear from (3) that

∗()  0 if and only if ∗() = 1. Therefore, from now on we analyze the

problem as if we only need to find ∗. Note that we can calculate ∗(· ) independently
for each .

Second, observe that if ∗()  0, then 1−∗()  0. To see why, imagine
that 1 − () ≤ 0, and suppose that we deviate by removing all  products

from the pool associated with  (and accordingly switch to () = 0). This would

weakly increase the net surplus of () consumers. In addition, it would eliminate

the negative search externality that  products in the pool exert on consumers who

like other types of products. We conclude that if ∗ maximizes total consumer surplus,

then ∗() is also individually rational for every consumer type ().

Third, first-order conditions imply that whenever ∗()∗()  0,

∗()
∗( )

=

s
()

( )
(4)

Since
P

∈ ∗() = 1, we obtain that whenever ∗()  0
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∗() =

p
()P

|∗()0
p
()

(5)

The fourth and last step characterizes the set of product types  for which ∗() 

0. We begin by noting the following property of efficient search pools.

Lemma 1 If ∗() = 0 and ( )  (), then ∗() = 0.

This lemma has the following implication. For each , order product types in

decreasing order of popularity, and denote  = ( ), such that 1 ≥ 2 ≥ · · · ≥ ||.

(Accordingly, denote ∗( ) = ∗ .) Then, for each , there exists a cutoff type ∗

such that ∗  0 for  ≤ ∗ and ∗ = 0 for   ∗. The optimal cutoff type is

characterized as follows.

Proposition 1 The cutoff ∗ is the highest  ∈ {1  ||} for which

√
 

2

 − 

−1X
=1

√
 (6)

We introduce a few useful pieces of notation. First, let

 =
X

()|∗()=1
() (7)

be the total measure of consumers who search under (∗ ∗). Second, let ∗ be the

consumer type distribution conditional on not being excluded by ∗. That is,

∗() =
()


(8)

We say that a product type  is excluded by ∗ if ∗() = 0 for all  ∈  . Let

∗ be the set of product types that are not excluded by ∗. When  is small enough,

 = ∗ and  = 1, such that ∗ = .

In our "classical music" example, ∗( ) = ∗() = 1, because the

signals  and  are perfectly informative of the consumer’s preferences. In

addition, when  is small, all  consumers engage in search (recall that this is also

individually rational for them), and the fraction of  products in the search pool

associated with the query  is

∗() =

p
()p

() +
p
( )

(9)
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3 Mechanism Design

We are interested in situations where only a consumer can verify whether he likes a

particular product. Moreover, the only means of verification is personal inspection

via sequential search. The search designer cannot monitor the composition of product

types in a search pool (or it is prohibitively costly for him to do so). Thus, in order

to design search pools with a particular composition, firms need to be incentivized to

enter the appropriate search pools via some mechanism.

A mechanism requires each firm to submit a message that belongs to some message

space (the firm can also choose not to participate, in which case it earns 0). For every

profile of messages, the mechanism allocates each firm (probabilistically) to some subset

of the search pools associated with each  ∈  , and specifies a (possibly negative)

transfer that the firm pays to the search designer. In principle, the transfer could

depend on consumers’ behavior, but as we will soon see, this feature will be redundant

for our purposes.

Consumers are not players in the mechanism - they decide, simultaneously with

the firms’ moves, whether to enter the search pool. Their decision is based on rational

expectations: they know the search-pool composition  that is induced by the mech-

anism and the firms’ equilibrium behavior, and a consumer of type () chooses to

search if and only if 1− ()  0. Note that this decision rule is also sequentially

rational - i.e., the same inequality would govern the consumer’s decision whether to

continue searching after any number of unsuccessful draws. This justifies our static

treatment of consumer choice.

Given that we are interested in implementing the consumer-optimal outcome, we

can impose a simplification that carries no loss of generality. We will take it as given

that for every consumer type (), () = 1 if and only if ∗()  0. We already

saw that this behavior is individually rational for consumers given ∗. This allows us

to focus entirely on firms’ behavior.

The assumption that consumers have rational expectations can be objected to on

the following grounds: if a consumer is unable to provide an exact description of what

he is looking for, can he figure out how long it will take to find it? One justification is

that consumers often use the same generic query for many search problems. Imagine

that you heard a nice song on the radio, and all you can say about the song is that

it is an R&B piece by an unknown female singer. Therefore, when you look it up on

TouTube, you may enter the string of keywords "R&B female singer". Previous cases

in which you submitted this query enable you to estimate its effectiveness.
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We could relax the rational-expectations assumption altogether, and simply assume

that a consumer type () submits the query  automatically, without performing

any cost-benefit analysis. From a descriptive point of view, this would be equivalent to

the case of a sufficiently small  in our model. For the normative analysis, however, this

alternative assumption raises the concern whether minimizing expected search time is

a "legitimate" welfare criterion, from a revealed-preference point of view.

In the rest of this section, we focus on direct mechanisms - i.e. the firms’ message

space is . We also restrict attention to anonymous mechanisms, in the sense that the

outcome for each firm only depends on its own report and the overall distribution of

reports. The solution concept we will use is symmetric pure-strategy Nash equilibrium.

Symmetry means that all firms of a given type behave identically. The revelation

principle applies, hence we will assume that firms report truthfully w.l.o.g. (Symmetry

or purity of the participation decision is not w.l.o.g - see our discussion at the end of

this section.)

Let the mechanism assign a non-negative transfer to any firm that reports  ∈ ∗.

This specification, coupled with consumers’ behavior, ensures that a firm of type  ∈
∗ will indeed find it optimal not to participate. This enables us to focus exclusively

on the behavior of firm types in ∗, and ignore all other agents. From now on, we will

take it for granted that all firms whose type is in ∗ participate and report truthfully.

It remains to check their participation and IC constraints.

Given the strategy profile, each -firm pays a transfer denoted  to the search de-

signer; and for any given set of signals  , a fraction ( ) of -firms enters the collection

of search pools associated with  . Anonymity means that given this strategy profile,

for any individual firm that reports ̂, the probability that it enters the collection of

search pools associated with  is ̂( ), and the transfer it will pay is ̂. We can thus

reduce any anonymous direct mechanism to the collection (  ) = (()∈  ()∈).

The allocation rule  induces the marginal probability that a firm reporting  will

enter the search pool associated with any signal  :

() ≡
X

⊆ |∈
( ) (10)

We can now establish a simple condition on the function  in order for the induced

collection of search pools to coincide with the first-best:

∗() =
()P
 ()

(11)
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Comment: What can the search designer monitor?

Our formal definition of direct mechanisms specifies lump-sum transfers that are inde-

pendent of events that unfold inside each search pool. Taken literally, this fits situations

in which the search designer can only monitor whether agents access search pools. This

is the case of a "Yellow Pages" directory, for example. However, the definition also fits

situations in which the designer can monitor "impressions" - i.e., he can condition the

firm’s transfer on the number of draws it receives in each search pool. Online search

engines fall into this category. Since in our model firms are risk-neutral and make

single decisions, all they care about is the total number of transactions minus the total

payment induced by any message they submit. Therefore, our reduction to lump-sum

transfers is a mere simplification that carries no loss of generality - we could formu-

late the mechanism equivalently in terms of transfers that condition on the number of

draws.

Things are different when the designer can monitor transactions. This assump-

tion is sensible in environments like real-estate intermediation, where transactions are

verifiable and exclusive-dealership arrangements enable real-estate agents to prevent

the transacting parties from "cutting the middleman" after they are matched. In our

context, this assumption would completely trivialize the search designer’s problem.

By assumption, all firms earn a payoff of 1 conditional on a transaction, regardless of

the types of the transacting parties. Therefore, the designer could simply set a uni-

form price-per-transaction of 1, and thus implement any outcome he wishes. It follows

that the interest in our problem arises only when the designer is unable to monitor

transactions.

3.1 Implementing Consumer-Optimal Search Pools

Let us first assume that the search designer is only interested in maximizing consumer

welfare. Assume in addition that the designer has no budget constraint, hence the firms’

participation constraint can always be satisfied. The designer’s problem is to find an

anonymous direct mechanism that sustains the consumer-optimal collection of search

pools ∗ in some Nash equilibrium in which all firms participate and report truthfully.

The problem can be stated as follows: find a collection ( )∈ that induces ∗

according to (10)-(11), subject to the firms’ incentive compatibility constraint - for

every   ∈ ∗,

X
⊆

( )
X
∈

()∗()P
⊆ |∈ ( )

−  ≥
X
⊆

( )
X
∈

()∗()P
⊆ |∈ ( )

−  (12)
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This inequality represents the condition that an -firm prefers reporting truthfully

to pretending to be a -firm. To understand this IC constraint, recall that by con-

struction, we are considering strategy profiles in which all firms whose type is in ∗

participate and report truthfully. The allocation rule ̂ is a probability distribution

over subsets of , induced by the firm’s report ̂. Consider a realization  of ̂, and let

us calculate the number of transactions that an -firm makes in the search pool associ-

ated with some  ∈  . The total measure of consumers at the pool who are interested

in the firm’s type of product is ()∗(). Each of these consumers eventually

finds a product that he likes in the pool, and therefore they are equally shared by all

the -firms in the pool. The total measure of these firms is
P

⊆ |∈ ( ). The

total number of transactions that an -firm thus expects to get in the pool associated

with  is ()∗()
P

⊆ |∈ ( ). Summing over all  ∈  , we obtain the

total number of transactions that the firm gets when the realization of ̂ is  . The

ex-ante expected number of transactions is then calculated w.r.t. ̂. The firm’s net

payoff is the expected number of transactions minus the transfer ̂ induced by the

firm’s report.

Let us introduce a few substitutions that simplify the IC constraint. First, recall

that ∗() = 1 if and only if ∗()  0. Second, plug the definition (10). Finally,

we can use the definitions (7)-(8). Then, we can rewrite (12) as follows:

X


() · ∗()
()

−  ≥
X


( ) · ∗()
()

−  (13)

Recall the notation
P

 
∗() = ∗(). The L.H.S of (13) is thus

∗()−  (14)

which represents the net equilibrium payoff of -firms. This expression is intuitive: in

equilibrium, all searching consumers who like  products eventually transact, and they

are equally shared by a measure 1 of -firms. Thus, the number of transactions that

each -firm gets is ∗().

The following lemma provides a useful characterization of the IC constraints at

the first-best. Let ∗( ) be the Bhattacharyya coefficient for the conditional signal

distributions ∗(·|) and ∗(·|).

Lemma 2 An anonymous direct mechanism defined by (  ) implements ∗ in sym-
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metric pure-strategy Nash equilibrium if and only if


h
∗()−

p
∗()∗()∗( )

i
≥  −  (15)

for every distinct   ∈ ∗.

Proof. Plug (11) into (13) and obtain yet another way of writing the IC constraint:



"
∗()−

X


∗()
∗()

∗()

#
≥  −  (16)

By (4), whenever ∗()∗()  0, we have

∗()
∗()

=

p
∗()p
∗()

This means that (16) is satisfied if and only if

∗() ≥  − 


+
X


p
∗()p
∗()

· ∗()

=
 − 


+
X


p
∗( )∗()

=
 − 


+
p
∗()∗()

X


p
∗(|)∗(|)

=
 − 


+
p
∗()∗()∗( )

Rearranging, we obtain (15).

The next result establishes that the consumer-optimal outcome is always imple-

mentable by some anonymous direct mechanism.

Proposition 2 There is an anonymous direct mechanism that implements ∗ in sym-

metric pure-strategy Nash equilibrium.

Proof. We prove a stronger result: the first-best is implementable signal-by-signal.

That is, we can design independent mechanisms for each , as if the entire set of signals

consisted of  alone. This result is stronger because we continue to assume the same

equilibrium behavior by firms (participation and truthful revelation) and the same

implemented outcome, but there are more constraints to satisfy in the signal-by-signal
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implementation problem (a separate participation and IC constraint for each signal,

compared with a single participation and IC constraint in the grand mechanism).

Note that when the relevant set of signals is a singleton, ∗( ) = 1 for every  .

Consider some  ∈  and   for which ∗()∗( )  0. By Lemma , the IC

constraint that prevents type  from pretending to be , denoted ( ), is given by

the inequality,


h
∗()−

p
∗()∗()

i
≥  −  (17)

Let ( ) denote the L.H.S. of (17), and rewrite the constraint ( ) as ( ) ≥
 − . For any cycle of products (1 2     1),

(1 2) + · · ·+ ( 1) = 

X
=1

³
()−

q
()((+1)mod)

´
≥ 

X
=1

µ
()−

() + ((+1)mod)

2

¶
= 0

Thus, by Rochet (1987), there exist transfers ()∈ that satisfy ( ) for all

  ∈ . We now explicitly derive these transfers, using Vohra’s (2011) flow-network

technique.

Consider a complete weighted directed graph, whose set of nodes is ∗, and the

weight on the link  →  is ( ). Add a link from any  to itself, whose weight

is ( ) = 0. A path from  to  is a sequence of nodes that begins with  and

ends with  Define the length of a path to be the sum of the weights on the links

along the path. Let ( ) be the distance from  to , namely the length of the

shortest path from  to  Since the sum of weights along any cycle is non-negative,

the distance is always well-defined and non-negative, and by definition it satisfies the

triangle inequality: for any   , ( ) ≤ ( ) + ( ). Fix some ∗ ∈ . For

any  ∈ ∗, define  = ( ∗) − , where   0 is large enough to ensure that all

participation constraints hold. By the triangle inequality, ( ) + ( ∗) ≥ ( ∗)

for any   ∈ ∗. This implies that for any pair of distinct products   in ∗,

( ) ≥  −  hence ( ) is satisfied.

Let us apply the explicit mechanism derived in the proof of Proposition 2 to our

"classical music" example (given the first-best outcome given at the end of Section

2.2 for small ). The proof established that we can implement the first-best signal

by signal, treating each signal as an independent mechanism-design problem. The

problem for the signal  is trivial, because all consumers who submit this sig-
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nal want . Thus, the designer can prescribe  =   0 = , and if  is

small enough, no firm would have any incentive not to participate or to misreport

its type. An analogous argument holds for . Let us turn to the mechanism as-

sociated with . The quantities ( ) and () defined in the proof

are ()−
p
()( ) and ( )−

p
()( ),

respectively. Following the procedure in the proof, we can set  = 0 and  =

( ), and all participation and IC constraints will hold.

3.2 Full Surplus Extraction and Uniform-Price Mechanisms

In this sub-section we assume that the search designer has additional objectives, apart

from implementing consumer-optimality. First, suppose that he wishes to implement

∗ and at the same time extract the firms’ entire surplus. Our next result establishes

a necessary and sufficient condition for the implementability of these twin objectives.

Proposition 3 There exists an anonymous direct mechanism that implements ∗ in a

symmetric pure-strategy Nash equilibrium in which all firms earn zero payoffs, if and

only if
∗()
∗()

∗( ) ≤ 1 (18)

for every   ∈ ∗.

Proof. Let   ∈ ∗. In order for -firms and -firms to earn zero profits in equilib-

rium, we must have∗()− = ∗()− = 0, according to (14). Thus, ( ),
as given by (15), is reduced to ∗() ≥

p
∗()∗()∗( ), which is equivalent to

(18).

Thus, the forces that obstruct implementability of consumer-optimal search pools

and full extraction of firms’ surplus are large popularity gaps between products and

uninformative signals. Consider two preference types  and . If  is significantly more

common than  in the consumer population, and the conditional signal distributions

that characterize  and  are relatively similar, ( ) will fail to hold. In our

"classical music" example, ( ) is violated when () and () are large

- i.e., when there are many  fans and many consumers who submit the generic

query .

A few comments about this result are in order. First, when ∗ is the uniform

distribution over ∗, the twin objectives are implementable, because by definition,

∗( ) ≤ 1 for every  . Second, when  is large enough, the consumer-optimal
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search pools are all homogenous, such that ∗( ) = 0 for all  , and therefore the

twin objectives are implementable. Finally, for generic  and small , signal-by-signal

implementation is impossible - unlike the case where the only objective is maximizing

consumer welfare - because when we restrict ourselves to an environment with one

signal, ∗( ) = 1 for all  .

Next, suppose that the designer wishes to implement ∗ using a mechanism in

which transfers are independent of the firms’ reports - i.e.,  =  for all   ∈ ∗.

In particular, the mechanism may be required to involve no transfers at all. We refer to

anonymous direct mechanisms that satisfy this additional requirement as uniform-price

mechanisms. It turns out that the condition for implementability of the first-best by a

uniform-price mechanism is the same as under the full-surplus-extraction objective.

Proposition 4 There exists a uniform-price mechanism that implements ∗ in sym-

metric equilibrium, if and only if (18) holds for every   ∈ ∗.

Proof. Let   ∈ ∗. Impose the uniform-price requirement  = . Then, ( ),

as given by (15), is reduced to ∗() ≥
p
∗()∗()∗( ), which is equivalent to

(18). (Note that the result follows from examining ( ), whereas in the proof of

Proposition (3) it followed from examining ( ).)

To appreciate this coincidence, consider an abstract single-agent mechanism-design

setting with two agent types, 1 and 2, and two possible outcomes, 1 and 2. Suppose

that the mechanism designer’s objective is to assign the outcome  to type . The

types’ gross payoff from each outcome is given by the following matrix:

1 2

1 11 12

2 21 22

Let  denote the transfer the agent pays when he reports his type to be . The IC

constraints that ensure truthful reporting are:

11 − 1 ≥ 12 − 2

22 − 2 ≥ 21 − 1

Full surplus extraction implies  = , and the IC constraints are reduced to 22 ≥ 12

and 11 ≥ 21. Alternatively, uniform prices mean 1 = 2, and the IC constraints are

reduced to 11 ≥ 21 and 22 ≥ 21. Obviously, these systems of inequalities need not
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coincide. And indeed, in general settings, the conditions for implementing an outcome

with full surplus extraction and with a uniform-price mechanism are different. However,

if 12 and 21 happen to be the same, the two systems do coincide.

This is precisely what happens in our setting. Under ∗, the number of transactions

that an -firm expects when it pretends to be  is

X


( ) · ∗()
()

= 
X


∗( )
∗()

∗() = 
X


p
∗()∗()

This is exactly the same as the number of transactions that a -firm expects when it

pretends to be :

X


() · ∗()
( )

= 
X


∗()
∗()

∗( ) = 
X


p
∗()∗( )

This coincidence is a consequence of the first-order conditions that characterize consumer-

optimal search pools.

Comment: Asymmetric/Mixed equilibria

Our analysis was based on the restriction that firms play a symmetric pure-strategy

Nash equilibrium - which involved, w.l.o.g., truthful reporting. It turns out that if

we relax the symmetry or purity of firms’ participation decision, the twin objectives

of consumer-optimality and full extraction of firms’ surplus are always implementable.

To see why, note that when firms’ surplus is fully extracted, they are indifferent to

participation. Suppose that for every , a fraction () of -firms participate. Let us

continue to use (̂ ) to denote the probability that an individual firm reporting ̂

enters the search pool associated with , given the firms’ equilibrium behavior. Then,

the total measure of -firms in that pool is no longer (), but ()(). If we

select () = (∗), we mimic an environment in which ∗ is uniform, where - as we

saw - the twin objectives are implementable.

However, this construction relies on an arbitrary selection among a continuum of

asymmetric/mixed equilibria, and on taking very literally the bindingness of firms’

participation constraint. It is doubtful that this selection can be justified by convinc-

ing purification or dynamic stability arguments. Note that we cannot use a similar

construction for uniform-price mechanisms, where participation constraints are not

binding.
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4 Competitive Bidding and Broad Matching

In the previous section, we analyzed the joint implementability of consumer-optimality

and full extraction of firms’ surplus, focusing on anonymous direct mechanisms. Is

there a plausible indirect mechanism that mimics the optimal direct mechanism when

condition (18) holds? In particular, we are interested in mechanisms based on com-

petitive bidding, because they are natural benchmarks in object-allocation mechanisms

and commonly used by real-life search platforms (notably online search engines).

We introduce a mechanism referred to as a "broad-match auction". As before,

we take it as given that every consumer type () plays () = 1 if and only

if ∗()  0, such that our mechanism focuses on firms’ behavior. Each firm si-

multaneously chooses which signals in  to bid for and how much. Bids are "per

impression", according to a rule we explain below. We introduce a broad-match func-

tion  : × → [0 1], which is a weighted directed graph over the set of signals. The

broad-match function assigns to each signal  ∈  an endowment of “( )-tickets”

for every , the measure of which is denoted (|). Each of these ( )-tickets is
uniformly assigned among the firms that submitted the highest bid for .

When a consumer of type () chooses to search and thus submits the query 

he gets access to a search pool consisting of a measure
P

∈ (|) of ( ·) tickets,
originating from all the signals  via the broad-match link to . The consumer then

sequentially samples at random tickets from this pool (with replacement). Each time

a consumer draws a ( ) ticket, he incurs a search cost  and inspects the firm that

holds the ticket. For this draw, the firm pays to the search designer the (winning)

bid-per-impression it submitted for . Thus, when ticket that a firm holds is sampled

in the search pool associated with  the "price per impression" it pays depends on

the signal  from which the firm’s ticket originated.

Note that there are strategy profiles in the game for which the set of highest-

bidders for some signal will have a measure zero. In this case, the payoff of these firms,

as described above, is ill-defined. All we will need to assume in this case is that if the

net profit per ticket that a firm holds, thanks to submitting a winning bid for some

signal, is negative, then the firm derives a negative payoff from this signal (and would

therefore prefer not to bid for it).

This completes the description of the broad-match auction. We discuss the inter-

pretation of our notion of broad matching, and how it is related to the term’s usage

in the search-engine industry, in Section 4.3. As a benchmark for our analysis, let us

consider two extreme specifications of .
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Exact matching

Suppose that  is the degenerate graph - i.e., (|) = 1 and (|) = 0 for all  6= .

In this case, we have an "exact-match auction": consumers who submit the query  are

brought into contact only with firms that submitted a winning bid for . This reduces

our mechanism to a signal-by-signal first-price auction. If the set { | ∗()  0} is
a singleton for every  (either because consumers’ signals are perfectly informative, or

because  is large), the exact-match auction can implement both consumer-optimality

and full extraction of firms’ surplus in symmetric pure-strategy Nash equilibrium.

The difficulty with exact matching arises precisely when optimal search pools are

required to be diverse. Consider the "classical music" example. If we restrict atten-

tion to symmetric pure-strategy profiles, (· ) can only take the values 0 1
2
 1, and

therefore it is mechanically unable to generate ∗(· ). We later show that the exact-
match auction fails to implement the designer’s twin objectives, even when we relax

symmetry or purity.

Fully broad matching

Suppose that  is the complete graph - i.e., (|) = 1 for all  . This reduces

our mechanism to exact matching, defined for a fictitious environment that consists of

one signal ∗, such that the fraction of (∗) consumers is (). In this case, the

mechanism does worse than the above exact-match auction, in the sense that there

are  for which the former fails to implement the twin objectives while the latter

succeeds. The reason is that the fully-broad-match function effectively eliminates all

the information contained in consumers’ signals.

Is there a broad-match function  for which the broad-match auction gives rise

to a symmetric pure-strategy Nash equilibrium in which firms earn zero profits and

the induced collection of search pools is ∗? Proposition 3 implies that a necessary

condition is that inequality (18) holds for every   ∈ ∗. However, it is not obvious

a priori that the same condition is also sufficient when we restrict ourselves to broad-

match auctions.

4.1 Mozart vs. Stravinsky Revisited

We illustrate the broad-match auction with our "classical music" example. First, we

prune the broad-match graph by setting (|) = 0 for all . This ensures that

 has no value for firms. Accordingly, we construct symmetric pure-strategy Nash

equilibria in which no firm bids for . Suppose that  () firms bid exclusively

for  (). Denote their bids by () and (), respectively. These
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are of course the winning bids for the two keywords; we defer their exact specification.

Since consumers who submit the query  () are not interested in  (),

it makes sense to sever additional links: (|) = (|) = 0. Next,

we normalize (|) = (|) = 1. The only values of  that are left
to be specified are (|) and (|).
Given the firms’ assumed behavior and the structure we imposed on , the search

pool associated with  () is homogenous and consists of a measure one of

 () firms, as demanded by ∗. As to the search pool associated with , we

have

() =
(|)

(|) + (|)

Recall that the consumer-optimal outcome requires

∗() =

p
()p

() +
p
( )

(19)

Equating the two terms, we obtain the following condition that  must satisfy:

(|)
(|)

=

p
( )p
()

(20)

Are the firm’s individual incentives consistent with this restriction? It turns out

that broad matching creates a new incentive problem that would not exist under exact

matching. The broad-match link  →  means that if an individual  firm

deviates by submitting the bid (), it gains access to consumers who submit the

query . If  is a popular product among this group, the deviating firm can get

many transactions from () consumers, and as a result its deviation may be

profitable.5 This is the incentive problem due to broad matching: sellers of popular

product types may bid for keywords they would avoid under exact matching.

In order to prevent this deviation by a  firm, the probability that a consumer

transacts with the firm, thanks to drawing any () ticket, cannot exceed ().

In other words, the  firm’s average "conversion rate" associated with the tickets

available at  must be weakly lower than the equilibrium price-per-impression of

, which in turn must be weakly lower than the conversion rate of  firms. Be-

cause ( ) and () tickets are allocated uniformly among all firms that

submit the winning bid for ,  and  firms experience the same number of

5Since individual firms are non-atomic, the deviating firm will receive a negligible fraction of the

available tickets at , and therefore the deviation will not affect the composition of any search

pool.
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impressions thanks to submitting this bid. Therefore, as far as the deviation in ques-

tion is concerned, we only need to check whether, given the firms’ putative equilibrium

behavior, (· ) tickets do not generate on average a larger number of transactions
for an individual  firm than for an individual  firm.

Let us first calculate the number of transactions an individual  firm expects

if it is among the highest bidders for . First, the firm would get access to the

 search pool, where a measure () of consumers demand  This de-

mand is uniformly distributed over all the tickets in the pool that are held by 

firms. Both before and after the deviation, this measure is 1 · (|). Thus,

the number of transactions per ticket held by a  firm in the  search pool is

()(|). The total number of ( ) tickets is (|),
uniformly allocated among a measure-one set of firms (both before and after the de-

viation). The  firm will obtain no transactions in the  pool. Therefore, the

number of transactions that a single  firm expects from paying the winning bid for

 is
(|)

1
· ()

(|)

A similar calculation establishes that the number of transactions that a single 

firm expects from paying the winning bid for  is

(|)
1

· ( )

(|) +
(|)

1
· ( )

(|) = ()

There are two terms on the L.H.S because  firms will obtain transactions at both

 and  pools. It follows that the deviation will be unprofitable if and only if

() ≥ (|) · ()

(|)

Inserting (20), this inequality can be rewritten ass
()

()
· (|) · (|) ≤ 1

Since (|) = (|) = 0, this is equivalent to

()

()
( ) ≤ 1

A similar calculation needs to be carried out to ensure that an individual  would not
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want to deviate by submitting the bid () for . The condition that would

prevent this deviation is
()

()
( ) ≤ 1

But these two inequalities constitute precisely the condition (18)!

We need to check two other types of deviations. First, suppose that a  firm

bids above () for . Then, the firm will get all ( ) tickets, thus

crowding all  firms out of the pool associated with . Because consumers adhere

to their equilibrium strategy, ( ) consumers will keep searching but they will

never find a product they like in their pool. As a result, every ( ) ticket will

receive infinitely many impressions, and the average conversion rate experienced by

the deviating  firm would drop to zero, hence the deviation is unprofitable. This

is a consideration that restrains overbidding and thus competitive pressures - it is an

unusual feature that does not exist in conventional object-allocation problems.

The last type of deviation we need to address is when a  () firm bids above

() (()). Note that this deviation does not change the firm’s conversion rate,

because all (· ) and (·) tickets are held by the same type of firms before

and after the deviation. Therefore, a necessary and sufficient condition for ruling out

this deviation is that () and () are equal to the conversion rates that 

and  firms experience from  and , respectively.

Consider the case of . The conversion rate is equal to the number of transac-

tions that an individual  firm obtains from  divided by the number of impres-

sions it obtains from . We saw that the former term is (). The latter term

is

(|) ·
"

()

·∗()
+

()

·∗()
(|) + (|)

#
+ (|) ·

"
()

·∗()
(|)

#
(21)

To understand this expression, note that the impressions that an individual firm

gets from the signal  originate from two search pools:  and  The first term

in 21 accounts for the impressions from the  pool. There are (|) "tickets"
to this pool, and they are uniformly allocated to a measure one of firms (since in

equilibrium only the  firms submit the winning bid for ). In the  pool,

there are consumers of two type, () and ( ). Each consumer of type

() (( )) draws 1∗() (1∗( )) tickets on average until

he finds a product he likes. Hence, the total number of draws from all consumers in

the  pool is equal to the numerator of the bracketed expression in the first term of
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(21). These draws are equally shared by all the tickets in the  pool, the measure

of which is (|) + (|). It follows that the expected number of draws
from the  pool, received by any firm that submits a winning bid for , is given

by the first term of 21. By a similar reasoning, the second term of 21 represents the

expected number of draws from the  pool.

Substituting (19)-(20) into (21) yields

() =


1 +
q

()

()

A similar calculation would establish that

() =


1 +
q

()

()

To conclude, in the "classical music" example, our specification of  (which is

not uniquely pinned down, because equation (20) only determines the ratio between

(|) and (|)) ensures that the broad-match auction implements the
twin objectives of consumer-optimality and full extraction of firms’ surplus in sym-

metric pure-strategy Nash equilibrium, as long as the general necessary and sufficient

condition for their implementability is satisfied.

Comment: The limits of exact matching

The need for a suitably designed broad-match function arises not only because of our

restriction to symmetric pure-strategy Nash equilibria. To see why, imagine that the

designer employs the exact-match auction. Let () denote the measure of  firms in

the  search pool that is induced by some (potentially asymmetric or mixed) Nash

equilibrium. Clearly,
()

()
=

()

( )
(22)

In order for  to coincide with ∗, it must be the case that()  0 and()  0.

Therefore, both  and  firms submit the winning bid for . In order for the

firms’ surplus to be fully extracted, the winning bid must be equal to the conversion

rate they expect at . Therefore, they must expect the same number of transactions

in the pool associated with . This number for an individual  firm is ()(),

because all consumers of type () search and eventually find a product they like,
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and all  firms equally share this clientele. Plugging (22), we obtain

()

()
=

()

( )
=

()

( )
(23)

which contradicts the condition for consumer-optimality (19). Thus, for generic , the

planner’s twin objectives cannot be implemented by an exact-match auction.

4.2 A "Canonical" Broad Match Function

We now construct a "canonical" broad-match function ∗ that ensures that whenever

condition (18) holds, the broad-match auction can implement the twin objectives of

consumer-optimality and full extraction of firms’ surplus in symmetric pure-strategy

Nash equilibrium. Select an arbitrary subset  ∗ ⊆ such that | ∗| = |∗|, and let
 : ∗ → ∗ be an arbitrary one-to-one function. Now define ∗ as follows. For every

 ∈ ,

∗(|) =
(

0   ∈ ∗p
∗(() )   ∈ ∗

The canonical broad-match function has a natural interpretation. The signals out-

side ∗ are "dummy keywords" with no value for bidders, because they grant no tickets

to any search pool. The signals in ∗ are "working keywords" worth bidding for. The

function  assigns meaning to every such query; () is the product type associated

with the keyword . The strength of the broad-match link from  to  increases with

the fraction of (() ) types among searching consumers. As we explain below, it is

important that ∗(|) is proportional to
p
∗(() ).

Proposition 5 Consider the following strategy profile. For every  ∈ ∗, all -firms

bid

() =
P



q
∗()

∗(())
∗(() )

for the signal  = −1(), and do not bid for any other signal. If  ∈ ∗ then -

firms do not bid for any signal. This strategy profile constitutes a Nash equilibrium

in the broad-match auction defined by ∗. In this equilibrium, each firm earns zero

profits (such that the firms’ entire surplus is surrendered to the search designer) and

the induced collection of search pools is ∗. (The proof appears in the appendix.)

Thus, the canonical broad-match function addresses the incentive problem due to

broad matching, to the extent possible given Proposition 3. On one hand, allocation of
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signals to firms is based on competitive bidding. There is a symmetric Nash equilibrium

in which every "working keyword" is allocated to a distinct firm type in ∗, and firms’

bid-per-impression is equal to their average conversion rate, such that their surplus is

fully extracted. On the other hand, the canonical broad-match function ensures that

the consumers’ search pools are diversified as mandated by the first-best. For this, it is

crucial that when  is won by -firms, (|) is proportional to
p
(). The relation

between the broad-match auction and the direct mechanism is quite transparent: when

a firm submits the winning bid for  ∈  ∗, it effectively reports that its type is

(), and the allocation rule is determined by the broad-match function. As usual,

the indirect mechanism generates more potential deviations, and therefore verifying

equilibrium is more intricate.

The function  effectively assigns a market equilibrium price to every "working

keyword". The Bhattacharyya coefficient plays an important role in the price function:

as consumers’ signals become less informative, the price-per-impression of all keywords

in  ∗ weakly decreases. To illustrate the comparative statics, suppose  =  , the

marginal of  over  is uniform, and  is small such that ∗ = . Consider two

extreme cases. First, suppose that (|) = 1 for all  - i.e., consumers can perfectly
describe their wants. Then, () =  for every . Second, suppose that  is uniform

over  ×. In this case, consumers’ signals are entirely uninformative, and we have

() =  || for every .
In general, the broad-match auction may give rise to symmetric pure-strategy

Nash equilibria in which firms earn positive profits. The reason is the unusual non-

competitive force that operates under this mechanism, noted in our discussion of the

"classical music" example. Suppose that -firms submit a winning bid for  only,

whereas -firms submit a winning bid for both  and 0. It is possible that -firms will

earn positive profits at , and nevertheless refrain from raising their bid for . The

reason is that this deviation will crowd out -firms from every search pool, and as a

result consumers who search for  (and found a product they like in finite time prior to

the deviation) will search indefinitely and bring the deviating firm’s average conversion

rate from  down to zero. The deviation will thus be unprofitable.

4.3 Discussion

From the consumers’ point of view, the broad-match function plays the role of "vocab-

ulary expansion". When a consumer submits the query , he receives a search pool

consisting of "tickets" that originate from various keywords. Therefore, the broad-
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match function mimics an environment in which the consumer has a richer vocabulary.

This feature was vividly demonstrated by our "classical music" example, where con-

sumers who submit the generic query  are linked (via the broad-match function)

with the concrete keywords  and , which in turn represent consumers who

are able to give a precise description of their wants.

Real-life intermediaries regularly fulfill this vocabulary-expansion role, in order to

generate matches that otherwise would not occur due to miscoordination in the lan-

guage that parties on the two sides of the market use to describe themselves or what

they are looking for. Our innovation is to show that when this role is explicitly integrated

into the design of the search platform, it can augment a conventional (exact-match)

competitive-bidding mechanism and go beyond its limitations.

Although our model borrows the term "broad matching" from the search-engine

industry, it does not mean quite the same thing, and we believe that the differences

are instructive.6 Historically, broad matching was introduced in pursuit of two goals:

(1) simplifying advertisers’ bidding task, because under exact matching they need

to bid for many queries (involving typos, synonyms or semantically related terms);

(2) thickening markets that could be quite thin, thus raising the platform’s auction

revenues. Both goals are supply-side oriented - broad matching was not designed to

fulfill the vocabulary-expansion role (although it effectively did). In practice, sponsored

search coexists with "organic search"; the vocabulary-expansion role does not rely solely

on broad matching in sponsored search, but on explicit attempts by the organic search

engine to help the user refine and correct his query.

In our model, goals (1) and (2) are irrelevant: firms have unlimited ability to bid for

as many keywords as they wish, and since there are infinitely many firms of each type,

the markets would be thick even in the absence of broad matching. And of course, in

our model the design of consumers’ search environment is entirely decentralized, hence

there is no "organic search engine" that can help consumers refine their queries. Thus,

broad matching in our model is an exclusive and crucial instrument of vocabulary

expansion.

As to the way broad matching interacts with the auction design, our "tickets"

mechanism differs from current practice in two important qualitative dimensions. First,

in our mechanism broad matching is not optional but forced upon bidders. In industry

practice, broad matching is optional: bidders can choose to stick with exact matching.

6The following discussion is informed by discussions with David Pennock (a pioneer of sponsored-

link auction formats, which employed broad matching) and Justin Rao. We are grateful to them for

sharing their knowledge and insights, and apologize for any imprecision in our own description.
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Second, in our model the winners in the auction for  are broad-matched with other

queries . In practice, broad matching means that whenever a firm bids for  and

selects broad matching, the firm’s bid for  enters as a bid in the auction for other

queries  - thus contributing to the market-thickening objective. (Of course, there

are other obvious differences: our model assumes unordered search; firms in our model

know  whereas in practice the broad-match function is opaque; etc.)

Our motivation in this paper was emphatically not to provide an accurate model

of how broad matching is implemented in the search-engine industry. Nevertheless, we

believe that the perspective we provide - in particular, the idea that broad matching

mimics the vocabulary-expansion role of search intermediaries (including "organic"

online search engines) - may be relevant for future work on keyword auctions with

broad matching (the current literature is small - see Section 6).

5 Ordered Search Pools

In this section we consider a search-design problem in which the designer can perfectly

control the order by which consumers inspect search results. Thus, instead of having the

consumer draw firms at random from a search pool, the designer now chooses which

type of firm the consumer will encounter at each draw, as a function of his search

history. For expositional simplicity, we assume in this section that  is sufficiently low,

such that consumer surplus is maximized when all consumer types engage in search.

Consider an omniscient planner who can verify firms’ product types. Such a planner

would use its direct knowledge of firms’ types to fix the exact order. The sequence of

product types that maximizes the surplus of (· ) consumers would be determined
according to a simple maximum-likelihood calculation. The first type of product to be

displayed, denoted 1(), would most likely be the consumer’s favorite conditional on

his signal  - i.e., 1 ∈ argmax∈ () (when some consumer types do not search,

the likelihood is calculated for the set of participating consumer types). In general,

the product type displayed in the -th position of a  consumer’s list, denoted (),

would be a product type most likely to be preferred by such a consumer, conditional

on him not transacting with any of the − 1 firms whose types are 1()     −1()
(when  tends to zero, the -th product type on the list would simply be the -th most

popular product among  consumers). To simplify the exposition, assume that for

each  there is a unique product type (). An omniscient planner can also extract

the entire surplus of firms by simply charging each firm a price per-impression that

equals its conversion rate.
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Consider now a search designer who cannot verify the firms’ types. We argue

that for any distribution of consumer types, the designer can implement the efficient

sequence of firm types for every , as well as fully extract firms’ surplus, using the

following anonymous direct mechanism. Each firm independently reports his type to

the planner (it can also opt out from the mechanism and earn zero). As in Section

3 consumers do not participate in the mechanism but decide (on the basis of rational

expectations) whether to search at the same time that firms report to the mechanism.

For every profile of reports, the mechanism allocates each firm (probabilistically) to

positions in each search pool, and specifies a (possibly negative) transfer that the firm

pays to the search designer. As before, we take it for granted that all consumers search,

as mandated by the first-best when  is small.

The mechanism’s allocation rule is as follows. For each signal , and for each posi-

tion  in the list shown to a consumer who submits , an individual firm is randomly

drawn from those whose reported type is () (as defined above). The consumer will

inspect a firm in the -th position if and only if he does not transact with any of the

first  − 1 firms on his list. A firm that reports a type  pays a transfer equal to

the expected number of transactions it will make, given the allocation rule and the

assumption that all firms participate and report truthfully.

Let us now show that universal participation and truth-telling constitutes a Nash

equilibrium. First, the transfer scheme means that all firms earn zero profits. Second,

suppose that an individual -firm considers reporting that its type is . This will give

the firm access to positions on various lists, which are meant to be allocated to -firms.

By construction, the consumer is more likely to want  rather than , conditional

on reaching each of those positions. Moreover, for each list that is displayed to a

consumer, and for each position on that list, there is a measure 1 of firms from which

the mechanism randomly draws one. It follows that an individual -firm will obtain a

lower expected number of transactions from the positions that are meant for -firms.

Therefore, no individual firm has any incentive to pretend to be a different type.

It follows that consumer-optimality and full extraction of firms’ surplus are imple-

mentable in symmetric pure-strategy Nash equilibrium, under this mechanism. There

is also an indirect mechanism that achieves these twin objectives. For every signal

and for every position in the pool associated with that signal, the designer can run

an independent first-price auction, where firms submit bids-per-impression, and the

position is randomly allocated to one of the highest bidders.

The lesson from this section is perhaps that our search design problem is somewhat

trivial when the planner can fully determine the order in which consumers inspect
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alternatives. The problem appears to be more interesting when the planner has only

an imperfect ability to control the order of inspection (for reasons that were listed in

Section 2), or when the distribution of consumer preferences is richer.

6 Related Literature

We are not aware of precedent for our formulation of the "search design" problem. One

related body of work is the literature on mechanisms for allocating sponsored links by

online search engines. This literature (e.g. Edelman, Ostrovsky and Schwarz (2007))

mostly focuses on the mechanism-design problem of auctioning multiple "sponsored

links". Typically, links are assumed to have exogenous values to advertisers. Athey

and Ellison (2011) explicitly model how these values are determined by consumers’ en-

dogenous search decisions. Chen and He (2011) and Eliaz and Spiegler (2011) model ex-

plicitly the interaction between keyword and product prices (ignoring auction-theoretic

considerations). Again, this literature almost invariably assumes exact matching.7 An-

other important difference is that we assume a competitive environment with many

firms of each type, whereas most of the literature on search engine pricing assumes

small numbers of firms, such that auction-theoretic considerations become relevant.

Our discussion of competitive indirect mechanisms relates the paper to the liter-

ature on intermediation in two-sided markets (see Armstrong (2006), Caillaud and

Jullien (2001,2003) and Rochet and Tirole (2003)). Some works within this tradition

(e.g. Hagiu and Jullien (2011)) explicitly address search platforms. One can view the

consumer’s signal in our model as a (sole) platform to which he has access. In this

sense, consumers are "single-homing" whereas firms are "multi-homing". Our key in-

novation in relation to this literature is the introduction of broad matching, which is

essentially formalized as a "directed network of platforms". The papers we are aware of

implicitly assume exact matching; multiple platforms are considered only in the con-

text of competition among platforms, and interaction between a consumer and a firm

invariably requires that they are both attached to the same platform.8

7Two exceptions are Dhangwatnotai (2011) and Chen et al. (2014). The first study uses the "price

of anarchy" framework to analyze the performance of a mechanism in which advertisers can submit

a bid to multiple generalized second-price auctions at once. The second paper analyzes the worst

equilibrium of a mechanism that randomly samples a keyword according to a predefined probability

distribution and only runs the generalized second-price auction for this sampled keyword.
8Some papers in the literature on two-sided markets have taken a mechanism-design approach. For

instance, Spiegler (2000) examines contract design by an intermediary who aims to match agents who

could interact elsewhere, and extract their joint surplus. Gomes and Pavan (2014) study mechanisms

for implementing efficient many-to-many matching when agents are privately informed about their

"vertical" characteristics.
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Finally, in the last decade there has been much writing, both academic and popular,

about the "long tail" phenomenon (see Brynjolfsson et al. (2006) or Anderson (2007)).

This refers to the fact that tastes for many kinds of products are highly differentiated,

such that a large segment of the consumer population belongs to a large number of small

taste niches. The literature makes the observation that online commerce facilitates the

flourishing of firms that serve the "long tail" because it lowers barriers that characterize

brick-and-mortar commerce (such as storage costs). The key friction that remains (and

possibly gets magnified) in such environments seems to be consumers’ limited awareness

of products that cater to their particular tastes, and limited ability to describe these

tastes in order to locate relevant products on the internet. The "long tail" phenomenon

means that the welfare implications of well-designed search environments can be large.

7 Conclusion

This paper addressed the following general question: under what conditions can a

decentralized mechanism be efficient in helping individuals find what they want? In

our leading example and in many of our discussions, we interpreted consumers’ signals

as keyword-based queries, and this linked our model to the problem of search-engine

design. In this context, our question could be rephrased as follows: suppose that a search

intermediary who wishes to maximize the effectiveness of consumer search switches from

a centralized matching algorithm to a decentralized mechanism (in particular, one based

on competitive bidding for keywords); will search quality deteriorate as a result?

However, our framework accommodates a wider range of environments, including

ones which have yet to establish an organized marketplace for allocating firms to search

pools. For example, online recommender systems give individuals access to search

pools according to their past online activities, which serve as imperfect signals of their

current needs. In contrast to search engines, recommender systems no not purely

rely on queries initiated by the web user. For instance, Netflix automatically displays

movie recommendations for its subscribers on its homepage; when a consumer buys a

particular product on Amazon, the checkout screen displays recommended products,

even though the consumer was not actively searching for these products; and when a

researcher views a scholarly article on ScienceDirect, the side panel displays links to

other recommended articles.

To see how our broad-match auction accommodates the recommendation-system

interpretation, suppose that represents a set of possible past purchase profiles of the

consumer. In particular, we can set =  , where  is the number of past purchase
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opportunities the consumer had. A profile of past purchases serves as a platform for

"personalized advertising", which is augmented by our notion of broad matching. Thus,

when an advertiser pays for a particular profile of past purchases, he gets access to some

set of profiles. In this context, our question can be rephrased as follows: suppose that

a recommender system abandons its centralized recommendation algorithm in favor of

a "market for sponsored recommendations"; will the quality of its recommendations

necessarily deteriorate as a result? Our main result means that in the presence of

small popularity gaps or strong correlation between past purchases and present tastes,

a market-based recommendation system can theoretically mimic an ideal centralized

recommendation algorithm. The same insight holds for the interpretation of  as a set

of "cookies", namely passive indicators of the consumer’s preferences (e.g. navigation

history).9

The algorithms used by centralized recommender systems often rely on so-called

"topic models", which are statistical tools employed by machine-learning specialists for

inferring a latent abstract “topic” or “theme” that characterizes objects in a certain

class (for a survey of these models see Blei and Lafferty (2009)).10 For instance, suppose

that an object is a scientific paper, the description of which is reduced to its frequency

distribution of words. The idea is that different topics tend to generate different word

distributions - e.g., a decision-theory paper will tend to have a greater frequency of

the cluster of terms "utility", “Independence” and “Hausdorff”. The machine-learning

problem is to estimate a joint distribution  over × , where  is the set of papers

(reduced to their word frequencies) and is a set of latent topics whose size is fixed a

priori, where | | ¿ ||. After estimating the distribution, the recommender system
often applies Bhattacharyya similarity to evaluate whether two papers have similar

conditional topic distributions, and uses this judgment to make recommendations ("if

you were interested in paper , you might also be interested in paper "). We find it in-

teresting that the same measure of similarity arises in our models from entirely different

considerations: minimizing consumers’ search costs and satisfying firms’ incentives.

9For a model of cookie pricing, see Bergemann and Bonatti (2013).
10We thank Stephen Hansen for pointing out the connection to topic models.
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Appendix: Proofs
Remark 1

Denote (|) = , such that () is a stochastic matrix with Σ = 1 for every .

Let

 =
X




where () is a | | × | | bi-stochastic matrix. Thus, () is a Blackwell garbling of
(). Fix  . Then,

X


p
 =

X


vuutÃX




!ÃX
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By the Cauchy-Schwarz inequality, this expression is weakly greater thanX


X


q
 =

X


q


X


 =
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Since this inequality holds for every  , it follows thatX


X


p
 ≥

X


X


q


which completes the proof.

Lemma 1

Assume the contrary, namely that there exist    such that ()  () but

∗()  ∗() = 0 Consider switching from ∗ to 0, where the only difference

is that 0( ) = 0 and 0() = ∗(). This changes consumer surplus by the

following amount

[()− ( )][1− 

 · ∗()]

Since ∗( )  , the change is positive, a contradiction.

Proposition 1

The surplus of consumers whose signal is  can be written as follows:

 () ≡
X
=1

(1−



·
P

=1

√
√


)
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For any  ∈ {1     ||}

 ()−  (− 1) = (1−



)− 2



√


−1X
=1

√
 (24)

This equation illustrates the negative search externality that consumer types exert on

each other. The first term on the R.H.S represents the welfare gain when consumers

who like product type  are added to the search pool. The second term represents the

welfare loss due to the search costs incurred by the marginal consumer as well as the

added search costs that he inflicts on other consumers (they now search longer since

sometimes they draw  products).

Type is the cutoff type if  ()− (−1)  0 for every  ≤  and  ()− (−1) 
0 for every   . Notice that as  increases,  decreases while

P−1
=1

√
 increases.

Hence, if the R.H.S. is negative for some, it is also negative for any0 ≥ . It follows

that there exists a maximal index  ∈ {1     ||} for which  ()−  (− 1)  0
By (24), this index, denoted ∗, satisfies that for any consumer type with  ≥ ∗

√
 

2

 − 

−1X
=1

√


while this inequality is reversed for any consumer type with   ∗.

Proposition 5

Let us first verify that the strategy profile induces ∗. Recall there is a measure one

of every firm type  ∈ ∗. Since all -firms bid exclusively for −1(), the measure

of tickets held by -firms in the search pool associated with any  is ∗(|−1()).
Therefore, for every  ∈ ,

() =
∗(|−1())P

∈∗ 
∗(|−1())

Plugging the definition of ∗, we obtain

() =

p
∗()P

∈∗
p
∗()

= ∗()

Our task now is the check that there are no profitable deviations. First, it is

clear that no firm would want to bid for any  ∈  ∗, because the assumption that

(|) = 0 for every such  and every  ∈ means that bidding for  would generate

no transactions. Second, the strategy profile implies that if a consumer who submits
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the query  draws a ticket held by an -firm, then the ticket must be a ( −1())

ticket. In other words, all the tickets held by -firms in the search pool associated with

 originate from the signal  = −1(), via the broad match link (|). This means
that if a firm of type  6=  deviates by bidding   (−1()) for −1(), it would

hold all the ( −1()) tickets in some search pool  for which ∗()  0. But this

means that consumers of type () will search indefinitely without finding a product

they like, and therefore the -firm will get infinitely many impressions at the search

pool associated with . As a result, the average conversion rate that the -firm will

experience thanks to winning −1() will drop to zero, and the firm’s deviation will be

unprofitable.

It follows that the only deviations we need to examine are of two types: () a firm

of some type  ∈ ∗ submits () for some  ∈  ∗ for which () =  6= ; () a

firm of some type  ∈ ∗ changes its bid for  = −1() to   ().

Consider type- deviations. Because the deviation is by a non-atomic firm that

joins a measure-one set of highest bidders for , there is a measure one of firms that

hold all ( ) tickets both before and after the deviation. Therefore, all we need to do

is verify that the deviating -firm generates fewer transactions than -firms thanks to

submitting the winning bid for . The number of transactions for the deviating -firm

is X


∗(|)
1

· ∗( )
∗(|−1()) (25)

because the firm gets (|)1 tickets to any pool . In every such pool, there is
a measure ∗() of consumers who are interested in . Every such consumer

eventually finds a product he likes, and this clientele is shared equally by all -firms in

the pool, the measure of which is ∗(|−1()). By a similar calculation, the number
of transactions for an -firm isX



∗(|)
1

· ∗()
∗(|) (26)

Note that the last expression is equal to ∗(). We need this quantity to be weakly

greater than (25). Plugging the definition of ∗, we obtain

∗() ≥
X


p
∗()∗( )

which is equivalent to the inequality (18). Thus, the condition that prevents type-

 deviations coincides with the condition for general implementability of our twin
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objectives, which was assumed to hold at the outset.

Before we check type II deviations, let us first check that all firms earn zero profits in

equilibrium. Equivalently, we need to check that for every  ∈ ∗, () is equal to the

average conversion rate experienced by an individual () firm thanks to submitting

a winning bid for . We saw that the number of transactions such a firm expects is

∗(()). The number of draws it obtains is

X


∗(|)
X

|∗()0

∗( )
 · ∗() ·

1P
0 

∗(|0)

After substituting the expressions for ∗ and ∗ and simplifying, this expression becomes





X


p
∗(())∗()∗(() )

The ratio between the number of transactions and the number of draws, which is equal

to (). Hence, the average conversion rate is equal to the price per impression, which

means that the firm earns zero profits.

let () =  for some  ∈  ∗, and suppose that an -firm deviates by submitting

a bid   (). The firm receives all the ( ) tickets. However, both before and

after the deviation, all ( ) tickets are held by -firms. Therefore, the composition of

all the search pools remains intact, and therefore the number of transactions and the

number of draws per every ( ) ticket remains unchanged. It follows that the average

conversion rate associated with  remains (), which is below the price per impression

that the deviating firm pays. Therefore, the firm’s deviation is unprofitable.
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