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Abstract

Why might �rms borrow largely against near-term revenues? Does
this mean they are unable to raise much funding against the long-
term horizon? In this paper, we develop a model of credit horizons.
We use our framework to examine how credit horizons interact with
�rm dynamics and the evolution of productivities. For an open set of
parameters, we �nd that even though all �rms start o¤ identical, their
owners may plan di¤erent paths for future productivity: some choose
to improve and continue for the long haul, others choose to deteriorate
and subsequently shut down. A question of particular concern to us is
whether persistently low interest rates can sti�e aggregate investment
and growth. With this in mind, our model is of a small open economy
where the world interest rate is taken to be exogenous. We show that
a permanent fall in the interest rate can reduce aggregate investment
and growth, and even lead to a drop in the welfare of everyone: a
Pareto deterioration.

�This was �rst presented as the keynote lecture by John Moore at the CESifo Area
Conference on Macro, Money and International Finance in Munich on July 23, 2020.
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1 Introduction

When �nancing long-term capital investment, entrepreneurs raise external
funds either against collateral assets such as plant and buildings, or against
future revenues. If the latter, lending is typically supported by near-term
revenues: entrepreneurs borrow largely against, say, the �rst few years of their
future income stream, even though investment may be of longer duration.
Why? Is it that they are unable to borrow much against the long-term
horizon?
In this paper, we develop a model of credit horizons. We use our frame-

work to examine how credit horizons interact with �rm dynamics �more
speci�cally, plant dynamics �and the evolution of productivities.
A question of particular concern to us is whether persistently low real

interest rates can sti�e aggregate investment and growth. The question is
motivated by Japan, where the economy struggles to regain robust growth
despite interest rates having been close to zero for over two decades. More
recently, this has become a concern for many other developed economies too.
With this in mind, we model a small open economy where the world

interest rate R is exogenous. To get a �avour of our model, think of an
engineer-cum-entrepreneur, Emma, raising funds to invest in plant within a
building. For our purposes, it does not matter if the building is leased long-
term or purchased outright: the critical thing is that there will be an ongoing
�ow of �xed costs that will have to be paid to maintain production in the
long run. The �xed cost may be rent on the building or the opportunity cost
of owning the building. There is no obstacle to Emma raising funds against
the plant: this can be sold at the time of investment. What cannot be sold
is Emma�s engineering expertise, her human capital, which we take to be
proportional to the scale of investment.
A saver, Sam, who buys the plant, together with an obligation to pay the

�ow of �xed costs, will subsequently need engineers�expertise to help run and
maintain the enterprise. Without adequate maintenance from an engineer,
the productivity (or quality) of his plant would slowly deteriorate and output
would commensurately fall. We assume a form of �roundabout�technology,
inspired by the Austrian School of Böhm-Bawerk (1889): we suppose that
tomorrow�s plant quality is a function of both today�s quality and today�s
engineering input.
We allow for an ex post competitive market in which plant owners hire
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the maintenance services of engineers. Thus Emma�s share of ex post surplus
is determined through competition (alternatively, Emma and Sam might en-
gage in bilateral bargaining ex post �our �ndings would be broadly similar).1

For Sam, Emma�s share of surplus re�ects her forward-looking marginal prod-
uct: not only her immediate contribution to output but also her contribution
to future quality and output.
Having bought the new plant, Sam has to decide on a maintenance plan.

It turns out he has a clear-cut long-term choice. Either he curbs maintenance
costs and allows quality to deteriorate slowly, to some point when he decides
it is no longer worth paying the �xed costs and exits �call this his �stop-
ping strategy.�Or he pays the costs needed to maintain, or even improve,
quality with a view to staying in production over the long haul �call this his
�continuing strategy.�
This dichotomous decision �either planning to stop within a �nite hori-

zon, or planning to continue for the long haul �reveals an intriguing feature
of equilibrium. For an open set of parameters, even though all plant starts o¤
identical in quality, their qualities diverge over time: some plant improves in
quality and other plant deteriorates and eventually shuts down.2 We think
this may be a rich new vein for research into �rm/plant dynamics, which
should inform the study of how aggregate productivity evolves.
In the complementary part of the parameter space, all owners of new

plant choose the continuing strategy and their qualities do not diverge.
A primary concern for Emma is: How much funding can she raise from

savers like Sam at the time of investment? That is, her borrowing capacity is
the amount Sam is willing pay per unit of new plant, which in turn depends
on Sam�s assessment of his share of the future surplus from that plant, net
of the �xed costs. The scale of Emma�s investment will be given by a critical
ratio (familiar from many models of investment under �nancing constraints):
namely, her net worth divided by the downpayment needed �unit investment
cost minus borrowing capacity.

1Emma cannot commit ex ante to supply her maintenance services for less than the ex
post market rate. This form of constraint �our sole departure from the Arrow-Debreu
model �is sometimes called a "non-exclusivity constraint." See, for example, Allen (1985),
Townsend (1989), Cole and Kocherlakota (2001) and Attar, Mariotti and Salanie (2011).

2Allowing for initial heterogeneity would purify (Aumann et al. (1983)) this mixed-
strategy equilibrium so that plant owners would, more realistically, follow pure strategies.
Introducing uncertainty at the individual level would greatly enrich the model, but this is
for future research.
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Of particular interest to us is how a lower interest rateRmight impinge on
Emma�s investment and, ultimately, on aggregate output and growth. The
key insight is that a lower R raises Emma�s ex post share of surplus, insofar as
her marginal product is forward-looking. This is tantamount to saying that
with lower R Emma cannot, at the time of investment, credibly pledge to
Sam as much of the long-term gross revenue from the project (albeit that the
pledgeable revenues are discounted by Sam at the lower interest rate). But,
crucially, Sam�s long-run obligation to pay the �xed costs is undiminished
(indeed its present value rises as R falls). Accordingly, Sam�s willingness to
pay for new plant can be lower when R is lower. This means that Emma�s
borrowing capacity is lower �overturning the usual notion that lower interest
rates bene�t borrowers.
Notice the driver here: the denominator �investment cost minus borrow-

ing capacity per unit of investment �of the critical ratio (net worth/downpayment)
rises as R falls, owing to the fall in the borrowing capacity. In the macro-
�nance literature, the focus has been on how the numerator �credit-constrained
agents�net worth �might move in perverse ways following shocks to an econ-
omy. In the present model, the numerator behaves as might be expected �a
fall in R raises net worth �but this can be more than o¤set by the rise in the
denominator. Overall, aggregate investment can fall with a fall in interest
rates, as can the growth rate of the economy. We show numerically that
these e¤ects may reduce the welfare of everyone in the domestic economy: a
fall in R may lead to a Pareto deterioration.

2 Model

We consider a small open economy with an exogenous world real interest
rate R. There is no aggregate uncertainty and, for the moment, we focus
on steady state equilibrium (later, we will examine the e¤ects of an unan-
ticipated persistent drop in R). There is a homogeneous perishable con-
sumption/investment good at each date t = 0; 1; 2; :.. We use this good as
numeraire as we consider a non-monetary economy.
There is a continuum of domestic agents, each maximizing utility of con-

sumption ct from the present to the in�nite future:

E0

" 1X
t=0

�t ln ct

#
; (1)
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where � 2 (0; 1) is the utility discount factor and ln c is the natural logarithm
of c. We assume that the exogenous world interest rate is nonnegative in net
terms and lower than the subjective interest rate:

1 � R < 1

�
: (2)

Each agent sometimes has an investment opportunity (being an entre-
preneur or simply "engineer"), and sometimes not ("saver"). The transition
probabilities of being an engineer conditional on being an engineer or a saver
in the previous period are given by

Prob (engineer at t j engineer at t-1) = �E

Prob (engineer at t j saver at t-1) = �S:

We assume the arrival of an investment opportunity is persistent to a limited
degree so that 0 � �S < �E < 1:
At each date t, an engineer, say E, can jointly produce plant and tools

from goods: within the period, per unit of plant,

x goods
	
!
�
plant of quality 1

E-tool
: (3)

The investment technology is constant returns to scale and scalable by any
positive number i. Plant and tools are ready for use from date t+1.
Each tool is speci�c to the engineer ("E-tool") in that only she knows how

to use it �unless she sells it to another engineer and teaches him. Because
the engineer cannot sell her tools to savers, she raises funds by selling all she
can sell - the plant - to savers.
The plant owner has a constant returns to scale production technology.

At each date, the owner of one unit of plant of quality z can hire any number
h � 0 of tools (hiring each tool along with the engineer who knows how to use
it) at a competitive rental price w ("wage") to produce goods and maintain
plant quality: within the period, per unit of plant,

plant of quality z
h tools
f goods

9=;!

8<:
y = az goods

� plant of quality z0 = z�h�

�h tools
. (4)

a > 0 is the common productivity of all plant and z0 is plant quality after
maintenance. f is a �xed cost per unit of plant, and � < 1 re�ects depre-
ciation, by which a fraction 1� � of plant and tools are destroyed after use.

5



The �xed cost can be thought of as the rental price or the opportunity cost
of the building in which plant is located. The parameter � is the share of
initial plant quality and � is the share of engineers�tools in maintaining plant
quality. We assume �; � > 0, and � + � � 1: Although we assume output
is proportional to plant quality here, Appendix A shows this formulation is
justi�ed when output is a general decreasing returns to scale function of plant
quality and unskilled labor and unskilled labor is hired by plant owners in a
competitive market.
The plant owner always has the option to stop, so his value of a unit of

plant of quality z at the end of the period is given by

V (z;w;R) =
1

R

n
0; Max

h

�
az � wh� f + �V

�
z�h�;w;R

��o
: (5)

The �rst term in curly bracket is the value of stopping, while the second term
is the value of continuing - the sum of net cash �ow (gross revenue minus
wage and �xed costs) and the capital value of the remaining � units of plant
with quality z0 = z�h�.
Knowing that the return from maintaining plant quality depends upon

future production, the plant owner must devise a long-term plan: either stop
after a �nite number of periods T , or continue forever (T = 1)? For each
T = 0; 1; 2; : : :, de�ne recursively the owner�s value of a unit of plant of
current quality z stopping in T periods:

S0(z;w;R) = 0

S1(z;w;R) =
1

R
(az � f)

S2(z;w;R) =
1

R
Max
h

�
az � wh� f + �

R
(az�h� � f)

�
:::

ST (z;w;R) =
1

R
Max
h

�
az � wh� f + �ST�1

�
z�h�;w;R

��
: (6)

If the plant is shut down tonight, the value S0(z;w;R) is zero. If the plant
owner shuts down tomorrow night, he will not hire tools tomorrow and the
value S1(z;w;R) equals the present value of tomorrow�s revenue minus �xed
cost. If the plant owner shuts down in two nights�time, he hires tomorrow�s
tools to balance the cost and bene�t of maintaining plant quality for produc-
tion two days later. Generally the owner�s value of a unit of plant of current
quality z stopping in T periods, ST (z;w;R) ; equals present value of sum of
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tomorrow�s net cash �ow and the value of � units of plant of quality z�h�

stopping in T � 1 periods.
Now, for all value of z, the plant owner chooses the optimal stopping time

so that
V (z;w;R) � sup

T�0
ST (z;w;R) : (7)

It turns out there is a clear dichotomy between stopping after a �nite num-
ber of periods and continuing forever, as is shown in the following Lemma.
(All proofs and details of derivations are in the Appendix.)

Lemma:
(i) If the current plant quality z is below some cuto¤ value, zy, it is optimal
for the plant owner to stop after, say, Tmax(z) <1 periods.
(ii) If z is above zy, it is optimal to continue forever.
(iii) The cuto¤ value zy increases with the �xed cost f . It is also a function
of the wage rate and the interest rate.

In Figure 1, we plot the plant value as a function of plant quality z
for a given wage and interest rate for di¤erent horizons of stopping T . The
function S1 (z;w;R) is the value when the plant owner chooses to maintain
production forever. The upper envelope of all these functions is the value
function of plant V (z;w;R) with an optimal choice of stopping (including
non-stopping). If the plant quality is very low as

z <
f

a
,

then it is optimal for the owner to shut down the plant immediately because
output does not cover �xed cost. If the plant quality z is higher than f

a
but

lower than zy, then it is optimal to shut down the plant in a �nite horizon,
where the horizon is an increasing function of z. At z = zy, the plant owner
is indi¤erent between continuing forever and shutting down in a �nite time
(in this numerical example, it is 20 periods). If plant quality is higher than
zy, the plant owner will continue forever until plant dies exogenously.
In Figure 2, we plot ST (z;w;R) as a function of horizon T for three

di¤erent levels of plant quality, z = 9
10
zy, zy, and 11

10
zy. If plant quality is

relatively low at z = 9
10
zy, then the value reaches a maximum with �nite

horizon: in our example, around T = 15 so that the owner will shut down
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in 15 periods. If plant quality is exactly equal to zy, then the plant owner is
indi¤erent between shutting down at T = 20 and continuing forever (asymp-
totically as T !1). If plant quality is higher than zy, at z = 11

10
zy, then the

owner �nds that S1 (z;w;R) > ST (z;w;R) for any �nite T so that he will
continue forever.
We can use the value function to express the value as the present value

of net cash �ow:

V (z;w;R)

=
1

R
(yt � wht � f) +

�

R2
(yt+1 � wht+1 � f) +

�2

R3
(yt+2 � wht+2 � f)

+:::+
�T�2

RT�1
(yt+T�1 � wht+T�1 � f) +

�T�1

RT
(yt+T � f): (8)

Figure 3 describes the division of gross output fytgt=1;2;3;:::between engineers
fwhtg and plant owner fyt � whtg for the cases of stopping in 20 periods
and continuing forever when initial plant quality is z = zy. For stopping
plant, as one gets closer to the stopping time, plant quality and gross output
decrease with smaller maintenance work and wage bill fwhtg of engineers.
For continuing plant, plant quality and gross output increase with age until
they converge to a certain level. During this transition, both engineers�
income fwhtg and plant owner�s gross pro�t fyt � whtg increase.
Alternatively we can look into the division of gross revenues, using the

plant owner�s choice of hiring tools and engineers. At each date t, whether the
current zt lies above or below the cuto¤zy, an optimal sequence fht; zt+1; ht+1; zt+2,
ht+2; : : :g equates the discounted sum of marginal product to the wage (see
the Appendix for the derivation):

w =
�

R
a�
zt+1
ht

+

�
�

R

�2
a�
zt+1
ht
�
zt+2
zt+1

+

�
�

R

�3
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

+:::+

�
�

R

�T�t
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

� : : :� � zt+T
zt+T�1

: (9)

The �rst term on the right hand side (RHS) is the marginal product of a
date-t tool on output yt+1 through its impact on plant quality zt+1. The
second term is the marginal impact of the date-t tool on yt+2 through its
impact on zt+1 which increases zt+2. The third term is the marginal impact
of the date-t tool on yt+3 through its impact on zt+1 which increases zt+2
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which in turn increases zt+3. The �nal term is the marginal impact of the
date-t tool on yt+T when the plant is shut down at t+ T .
Multiplying through by ht, and simplifying, we get

wht =
�

R
�yt+1 +

�2

R2
��yt+2 +

�3

R3
��2yt+3 + : : :+

�T

RT
��T�1yT : (10)

The present wage bill for engineers equals the present discounted value of a
fraction � of tomorrow�s output, plus a fraction �� of output two period�s
later, plus a fraction �2� of output three period later, etc., until the plant is
shut down in T periods.
An engineer raises funds by selling new plant (quality 1) at price

b = V (1;w;R)

=
1

R
(a� f) + �

R2
[yt+1(1� �)� f ] +

�2

R3
[yt+2(1� � � ��)� f ]

+:::+
�T�1

RT
[yt+T (1� � � �� � : : :� ��T�1)� f ]: (11)

b can be thought of as the engineer�s borrowing capacity per unit of invest-
ment. Figure 4 shows the division of gross output between engineers and
plant owner, taking into account the plant owner�s optimization. Notice
that the plant owner�s share of output declines through time. Intuitively,
the cumulative contribution of engineers�human capital to plant quality and
output increases through time, because more and more of the plant quality
depends on cumulative engineers�human capital rather than on the initial
plant quality. Through time, the engineers�share increases while the plant
owner�s share of revenue decreases. This gives us a clue to understand why
an engineer borrows largely against near-term revenues.
When �xed cost is subtracted, the plant owner�s net share can become

negative through time. In Figure 5, the owner�s net share becomes negative
after period 11 before shutting down in period 20 (see the left hand side),
while it becomes negative after 19 periods even if the plant continues forever
(the right hand side).
This begs the question: why doesn�t the plant owner shut down as soon as

his net share turns negative? The reason is that, while the present wage bill
equals the present value of engineers�current contribution to future revenues,
past wage bills are sunk costs for the plant owner. See Figure 6, which is
Figure 3 after subtracting �xed cost: as long as the present value of future
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net cash �ow is positive, the plant owner wants to continue with maintenance
and production.
The required own-funds (downpayment) per unit of investment equals

x� b.

We assume that a new saver �an engineer yesterday who switched to being
a saver today �sells her tools (after use today) to an engineer, and teaches
him how to use them, at a competitive price x� b.
The budget constraint of an agent at date t who has ht tools and dt

�nancial assets is

ct + (x� b)it +
dt+1
R

= wht + dt,

where ht is positive if the agent was an engineer yesterday. Here, �nancial
assets consist of returns to plant ownership as well as maturing one-period
discount bonds. The discount bond is traded internationally at the interest
rate R. If the agent is an engineer today, investment it can be positive and
her tools tomorrow will be

ht+1 = �ht + it.

The budget constraint can be rewritten as

ct + (x� b)ht+1 +
dt+1
R

= [w + �(x� b)]ht + dt = nt,

where nt is net worth - sum of �ow return (wage) and capital value (replace-
ment cost or resale value) of tools, and �nancial assets.
The rate of return for an engineer investing with maximal borrowing is

given by

RE =
w + �(x� b)

x� b ; (12)

the ratio of total returns of one tool to the downpayment of investment.
(Remember she sells plant to a saver at the time of investment and so does
not receive the return on plant). If the return on investment RE exceeds the
interest rate R, the engineer�s consumption and investment are

ct = (1� �)nt; (13a)

(x� b)ht+1 = �nt: (13b)
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A saver�s consumption and asset holdings are

ct = (1� �)nt (14a)
dt+1
R

= �nt: (14b)

Notice that individual consumption only depends on present net worth
and not on whether having investment opportunity today. Because marginal
utility does not depend upon present investment opportunity, there is no
gains from insurance against having the investment opportunity (such as the
agent receives a bonus if she has an investment opportunity while paying a
premium if not).
A steady state equilibrium of our small open economy is characterized

by the wage w and new plant price b, together with the quantity choices of
savers/plant owners (c; d; h; z; y), engineers (c; h; i), and foreigners (who have
net asset holdings D�), such that the markets for goods, tools, plant, and
bonds all clear.
Aggregating across engineers and savers, we obtain aggregate tool hold-

ings Ht+1, �nancial asset holdings Dt+1=R, consumption Ct, and net worth
of engineers and savers

�
NE
t and N

S
t

�
:

(x� b)Ht+1 = �NE
t (15a)

Dt+1

R
= �NS

t (15b)

Ct = (1� �) (NE
t +N

S
t ) (15c)

NE
t = �E [w + �(x� b)]Ht + �SDt (15d)

NS
t = (1� �E) [w + �(x� b)]Ht + (1� �S)Dt: (15e)

Equation (15a) shows the aggregate capital value of tools equals the aggregate
net worth of engineers after subtracting their consumption. Equation (15b)
says the aggregate �nancial asset equals the aggregate net worth of savers
after consumption. (15c) says aggregate consumption equals a fraction 1��
of the aggregate net worth of domestic residents. Equation (15d) shows the
aggregate net worth of engineers is the sum of net worth of continuing and
new engineers. Equation (15e) shows the aggregate net worth of savers is
sum of net worth of new and continuing savers.
The economy exhibits endogenous growth G: along a steady state path,

Ht+1
Ht

=
Dt+1

Dt

=
Ct+1
Ct

= G
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GNE
t = NE

t+1 = �
ERE�NE

t + �
SR�NS

t

GNS
t = NS

t+1 = (1� �E)RE�NE
t + (1� �S)R�NS

t .

See Figure 7.
Substituting out Ns

t

NE
t
, we �nd that G solves

G = �ERE� + �SR�
(1� �E)RE�
G� (1� �S)R� : (16)

Notice that the growth rate depends on the rates of return for engineers and
savers as well as on the wealth distribution between them.

In general equilibrium, the fraction of plant that is shut down after a
�nite number of periods depends on the �xed cost as:

Proposition 1: There exists a critical value f critical of the �xed cost such
that

P-Region (Pure equilibrium with no stopping; low �xed cost):
f < f critical

(i) No plant owner stops: zy < 1;
(ii) Aggregate ratio of tools-to-plant stays one-to-one: h = 1;
(iii) All plant is maintained at initial quality: z = z� = 1.

M-Region (Mixed equilibrium; high �xed cost): f > f critical

(i) Plant owners are initially indi¤erent between stopping after some �nite
time T and continuing forever: zy = 1;
(ii) Aggregate ratio of tools-to-plant is larger than one-to-one for contin-

uing plant: h > 1;
(iii) With decreasing returns to scale, � + � < 1, quality of continuing

plant increases over time, converging to some z� 2 (1;1);
With constant returns to scale, �+ � = 1, continuing plant quality grows

at some constant rate g > 1;
(iv) Stopping plant decreases in quality over time; Stop occurs just before

z falls below f=a.

There is no equilibrium with all plant stopping in �nite time.
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Remember that in our model, all plant starts with quality z = 1: If the
�xed cost is smaller than f critical, the initial quality (z = 1) is higher than the
threshold quality zy for shutting down (see Lemma), and so no plant owner
stops in the steady state equilibrium. Hence the Pure equilibrium with no
stopping is the unique steady state. Moreover, investment generates an equal
number of plant and tools, which have the same technological depreciation
rate 1��. If no plant is stopped, the ratio of tools to plant stays one-to-one.
Then because

z0 = z�h� = 1;when z = h = 1,

all plant is maintained at initial quality z = z� = 1 until exogenous death of
plant through depreciation.
If the �xed cost is larger than the critical value f critical, not all plant

continues forever in equilibrium. The Mixed equilibrium is the unique steady
state. The initial quality is exactly equal to the critical quality zy for shutting
down, so that some plant is stopped and some continues forever (modulo
depreciation). Because some plant is stopped before exogenous death and
the owners of stopping plant do not hire many tools, the aggregate ratio of
tools-to-plant is larger than one-to-one for continuing plant, h > 1. With
abundant supply of tools per plant, continuing plant keeps improving in
quality. If the maintenance technology has decreasing returns to scale �+� <
1, the quality of continuing plant converges to a steady state level z�. If the
maintenance technology has constant returns to scale � + � = 1, the quality
of continuing plant grows at some rate g > 1. Therefore, even though all
plant is homogeneous when new, some plant improves in productivity while
the other plant fails to maintain productivity and eventually exits. That is,
�rms evolve heterogeneously in their productivity and output even though
they start o¤ homogenous and face no idiosyncratic shocks.3

If all plant were to stop in �nite time, the market for tools (and engineers)
would be in excess supply. The quantity of active plant would be smaller
than tools; moreover the demand for tools by plant owners who plan to close
eventually is limited. In equilibrium, wage rate of tools and engineers would
fall so that at least some plant owners would switch strategy and continue
forever. Thus there is no equilibrium with all plant stopping in �nite time.

3This is di¤erent from the standard approach taken by Jovanovic (1981) and Hopenhayn
(1992) which emphasize heterogeneity and idiosyncratic shocks. Even if we do not deny the
importance of heterogeneity and idiosyncratic shocks, our approach may provide a di¤erent
perspective to �rm dynamics. Perhaps ours is closer to Ericson and Pakes (1995) which
emphasize the interaction between heterogeneity, idiosyncratic shock and investment.
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Proposition 2P (P-Region):
(i) For an open set of parameter space (in particular for R and � not

too far from unity), there is an equilibrium with no stopping such that an
unexpected permanent drop in the interest rate R leads to a lower steady
state growth.
(ii) We show numerically that, immediately following the drop in R, all

agents (engineers and savers) can be strictly worse o¤.

In the Appendix, we derive a su¢ cient (but not necessary) condition for
the existence of equilibrium with no stopping:

f < a
R(1� � � �)
�(1� �)

"
1� R� �

R

�
R� ��
R

� �
1����

#
: (17)

In an equilibrium with no stopping, an unexpected permanent drop in the
interest rate R leads to a lower steady state growth rate G if

f > a
R� �(� + �)
R� �� � aG� �R�

E

G� ���E
��(R� �)
(R� ��)2

; (18)

and �S = 0: These inequalities are mutually consistent if R and � are not
too far from unity.4

Why can a permanent fall in the real interest rate sti�e investment and
growth? In the P-Region where all plant is continued forever until exoge-
nous death, the wage in (9) becomes simply

w = a
��

R� �� ; (19)

because zt = ht = 1 for all t. The wage rate rises signi�cantly with a fall
in R because the engineer�s marginal product has a long horizon through
maintaining plant quality.

4If some savers may become engineers with �S > 0, then a su¢ cient condition for the
growth rate to fall with an unexpected permanent drop in interest rate is that

� (1� �) f > (R� �)2x+ �(1� � � �)a.

This condition guarantees that the rate of return for the engineer to invest is an increasing
function of the interest rate. See Appendix B.
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The engineer�s borrowing capacity per unit of investment (the price of
new plant) is

b = V (1) =
a� w � f
R� � : (20)

In particular, under constant returns to scale, � + � = 1, we have

b =
a

R� �� �
f

R� � .

Notice that the plant owner�s share decreases with the horizon by factor ��,
because the owner in e¤ect has to pay to engineers an increasing fraction of
future output for their maintenance work. In contrast, �xed cost decreases
with horizon by factor �. Because � > ��, the �xed cost has a longer horizon
than the owner�s share of gross output. Thus a fall in R increases the present
value of �xed costs proportionately more than the present value of the plant
owner�s share of gross revenues. Therefore a fall in the interest rate can
reduce the initial value of plant to its owner and thereby also reduce the
engineer�s borrowing capacity per unit of investment.
Overall, a fall in R can sti�e investment and growth:

gross investment(Ht+1) # =

saving rate(�)�
net worth of engineers

�
NE
t

�
"

investment cost (x) � borrowing capacity (b) #
Although engineers�net worth increases with a fall of interest rate, a fall
in borrowing capacity may have a larger negative e¤ect on investment and
growth. Much of the macro �nance literature (including Bernanke and
Gertler (1989) and Kiyotaki and Moore (1997)) emphasizes a large e¤ect
on net worth in the numerator, especially when investing agents have out-
standing debt. Here we emphasize the e¤ect on borrowing capacity in the
denominator.
Under these conditions, immediately following the drop in R, all agents

(engineers and savers) can be strictly worse o¤. It is not surprising that
savers may be worse o¤ with a lower rate of return on �nancial assets. The
reason engineers may be worse o¤ is that their leveraged rate of return

RE =
w + �(x� b)

x� b

15



can fall with lower borrowing capacity b. The Appendix derives the welfare
of engineers and savers immediately after an unanticipated and permanent
fall in real interest rate, taking into account the stochastic arrival of future
investment opportunities.
For the mixed equilibrium in M-Region, we have limited analytical re-

sults. Thus we derive our �ndings mostly by numerical simulations.

Proposition 2M (M-Region):
In a mixed equilibrium, we demonstrate numerically that an unexpected

permanent drop in the interest rate R can lead to a lower steady state growth
rate G:

For Figure 8, we numerically illustrate how nine endogenous variables
depend on the real interest rate for the range between 1 and 1:03 (between
0 and 3% net real interest rate) in steady state equilibrium. We choose the
parameters so that the threshold plant quality for continuing or stopping
exactly equals initial quality

�
zy = 1

�
when R = 1:015. Thus the economy

is in the pure no-stopping region (P-Region) for R 2 [1:015; 1:03] and in the
mixed equilibrium region (M-Region) for R 2 [1; 1:015).

� share of past productivity in maintenance 0:9
� share of engineer in maintenance 0:09
� one minus depreciation rate 0:98
a productivity 1
f �xed cost 0:2091
x investment cost per plant 6:127
� utility discount factor 0:92
�E probability of staying to be engineer 0:7
�S probability of saver to become engineer 0:1

In the top-left panel of Figure 8, observe the wage rate is a decreasing
function of the interest rate because the wage equals the present value of an
engineer�s contribution to future output through maintenance work, which
has a long horizon. In the top-middle panel, the engineer�s borrowing ca-
pacity increases with the interest rate because the plant owner�s share has
a shorter time horizon than �xed cost. Notice that this e¤ect is smaller in
the M-Region, with endogenous adjustment of the fraction of stopping plant
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(extensive margin) and of the stopping time (intensive margin). In the top-
right panel, we observe that economic growth rate is an increasing function
of interest rate, despite the sensitivity being weaker in M-Region.
In the middle-left panel, we show the plant quality in steady state equals

z� = 1 in the P-Region and is a decreasing function of R in the M-Region.
The threshold plant quality for continuing and stopping zy equals 1 (ini-
tial quality) in the M-Region (consistent with plant owners being indi¤erent
between stopping and continuing) and is a decreasing function of R in the P-
Region (consistent with plant owners gaining more indirectly from the lower
wage rate than hurting directly from the higher interest rate). In the middle-
middle panel, the number of periods before stopping (Tmax) is �nite and is
an increasing function of R for those who choose to stop in the M-Region.
In the P-Region, no-one stops and Tmax =1. In the middle-right panel, the
fraction of stopping plant is zero in the P-Region and is a decreasing function
of R in the M-Region.
In the bottom-left panel, we see that the net �nancial asset holdings of

foreigners is negative, i.e., domestic residents lend to foreigners in net terms.
Despite the foreign interest rate being lower than the subjective interest
rate (R < 1=�) , the domestic economy has a shortage of means of saving
due to the �nancial friction and thus holds positive foreign bonds. With a
lower interest rate, the �nancing constraint is tighter and domestic resident
have a yet larger position in foreign bonds. In the bottom-middle panel, we
observe that the welfare of a representative engineer (who holds the average
net worth of engineers) is an increasing function of R in the P-Region, i.e.,
welfare is lower with lower R. In our example, when R falls from 1:03 to 1:015
unexpectedly and permanently, the welfare of a representative engineer falls
by the equivalent of a 0:12% permanent fall in consumption. We do not have
comparable results for the M-Region, because one cannot simply de�ne a
representative engineer. In the bottom-right panel, we see that the welfare
of savers is an increasing function of R in P-Region. The e¤ect on savers is
larger: when R falls from 1:03 to 1:015 unexpectedly and permanently, their
welfare falls by the equivalent of a 1:2% permanent fall in consumption.

3 Extensions

Heterogeneity across plants about initial z and/or idiosyncratic shocks to
subsequent z0; z00; : : :

17



Heterogeneity across engineers concerning investment cost x
Choice of technique by engineers
Land model
Bargaining model
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5 Appendix

5.1 Appendix A:

In text, we assume output is proportional to plant quality. More generally
suppose that gross output by depends upon plant quality bz and unskilled laborbh as by = babz�1bh�2 ; where �1 + �2 � 1:
Suppose there is a competitive labor market for unskilled worker at wage
rate bw: Then we can de�ne the gross pro�t of plant owner as

y = Maxeh
�babz�1bh�2 � bwbh�

= az (21)

where

z = bz �1
1��2 ;

a = (1� �2)
��2bw �

�2
1��2 ba:

If supply of unskilled labor is perfectly elastic, we can treat a as exogenous
- this is the case of our model. (Otherwise, we need to take into account the
general equilibrium e¤ect on a through bw:)
If plant quality depends upon initial plant quality and human capital of

engineer h as bz0 = bz�hb�; where � + b� � 1:
we can rewrite this as

z0 = z�h�; where � =
�1

1� �2
b�: (22)

Thus we obtain the formulation in the text as (21; 22) :

5.2 Appendix B

5.2.1 Individual Choice

Individual agent takes wage, plant price and interest rate fw; b; Rg as given.
Engineer chooses consumption, gross investment on tool and �nancial assets
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(c; h0; d0) as a function of the net worth n to maximize

V E(n;w; b; R) = Max
c;h0;d0

�
ln c+ �

�
�EV E(n0;w; b; R) + (1� �E)V S(n0;w; b; R)

�	
(23)

subject to the budget constraint

c+ (x� b)h0 + d
0

R
= n; and n0 = [w + � (x� b)]h0 + d0:

De�ning the leveraged rate of return on investment as

RE =
w + � (x� b)

x� b ;

the �rst order conditions are

1

c
� RE

�

c0
; where = holds if h0 > 0;

1

c
� R

�

c0
; where = holds if d0 > 0:

Thus if RE > R; we have d0 = 0; (13a; 13b) and

n0 = RE�n: (24)

Saver chooses consumption and �nancial assets (c; d0) as a function of the
net worth n to maximize

V S(n;w; b; R) = Max
c;h0;d0

�
ln c+ �

�
�SV E(n0;w; b; R) + (1� �S)V S(n0;w; b; R)

�	
(25)

subject to the budget constraint

c+
d0

R
= n; and n0 = d0:

Using the �rst order condition

1

c
= R

�

c0
;

we get (14a; 14b) and
n0 = R�n: (26)
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From these, we conjecture that the value functions of engineer and saver
are given by

V E(n;w; b; R) = �E (w; b; R) +
1

1� � lnn; (27a)

V S(n;w; b; R) = �S (w; b; R) +
1

1� � lnn: (27b)

From (13b; 24; 14b; 26) ; conjecture is veri�ed if and only if

�E (w; b; R) = ��E�E (w; b; R) + �(1� �E)�S (w; b; R) + �

1� �R
E (w; b; R) + ln(1� �);

�E (w; b; R) = ��E�E (w; b; R) + �(1� �E)�S (w; b; R) + �

1� �R + ln(1� �);

when there is no change of (w; b; R) in future. Then we get

�E (w; b; R) = �
(1� � + ��S) ln

�
RE (w; b; R)

�
+ �(1� �E) lnR

(1� �)2(1 + ��S � ��E) +
ln(1� �)
1� � ;

(28)

�S (w; b; R) = �
��S ln

�
RE (w; b; R)

�
+ (1� ��E) lnR

(1� �)2(1 + ��S � ��E) +
ln(1� �)
1� � : (29)

Plant owner/saver�s choice is given by their value function (5) in the text.
The �rst order condition for those who choose to continue tonight is

w � �z�h��1�V 0 (z0;w;R) ; where = holds if h > 0; (30)

V 0(z;w;R) =
1

R
[a+ �z��1h��V 0 (z0;w;R)]: (31)

From these, if ht; ht+1; :::; ht+T > 0 and ht+T+1 = ht+T+2 =; ::: = 0; we have

w =
�

R

�
�
zt+1
ht
a+ �

zt+1
ht
�
zt+2
zt+1

�V 0 (z0;w;R)

�
=

�

R
a�
zt+1
ht

+

�
�

R

�2
a�
zt+1
ht
�
zt+2
zt+1

+

�
�

R

�3
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

+:::+

�
�

R

�T�t
a�
zt+1
ht
�
zt+2
zt+1

�
zt+3
zt+2

� :::� �
zT
zT�1

:
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This is (9) in the text. Multiplying through by ht; and simplifying, we get
(10) in the text. Then we get

V (z;w;R)

=
1

R
(yt � wht � f) +

�

R2
(yt+1 � wht+1 � f) +

�2

R3
(yt+2 � wht+2 � f)

+:::
�T�2

RT�1
(yt+T�1 � wht+T�1 � f) +

�T�1

RT
(yt+T � f)

=
1

R
(yt � f) +

�

R2
[yt+1(1� �)� f ] +

�2

R3
[yt+2(1� � � ��)� f ]

+:::+
�T�1

RT
[yt+T (1� � � �� � :::� ��T�1)� f ]:

This implies (11) in the text.
If ht; ht+1 > 0; we can use (30; 31) to derive an alternative �rst order

condition as

w =
�

R
�
zt+1
ht
a+

�

R
w�
zt+1
ht

� zt+2
zt+1

� zt+2
ht+1

=
�

R
�
zt+1
ht
a+

�

R
�
ht+1
ht
w (32)

Note that the second term on RHS equals the discounted wage rate times
the marginal rate of substitution between ht and ht+1 to keep z+2 constant.
Thus equation (32) says the marginal cost of increasing ht by one unit equals
the discounted value of marginal bene�t - sum of additional output through
zt+1 and saving of wage bill keeping z+2 constant.
In case of constant returns to scale maintenance technology �+� = 1; we

conjecture

S1(z;w; r) = aA1z � f

R� �;

ST (z;w; r) = aAT z � �Tf; where

�T = f

�
1

R
+
�

R2
+ :::+

�T�1

RT

�
= f

1� �T

RT

R� � : (33)

For plant which continues forever, we conjecture

ht+1
ht

=
zt+1
zt

=

�
ht
zt

�1��
= g > 1:
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Then from (32), we get

w =
�
R
� zt+1
ht
a

1� �
R
�g
=
� (1� �) a
R� ��g g

� �
1�� : (34)

Then from (5) ; we learn Bellman equation for continuing plant holds if and
only if

A1 =
1

R� ��g : (35)

For stopping plant in �nite time, (30) implies

w = (1� �)
�
zT

hT

��
�aAT�1; (36)

where zT and hT are the quality and tools of plant which closes in T periods.
Then from (5) ; we learn Bellman equation for continuing plant holds if and
only if

AT =
1

R

"
1 + ��aAT�1

�
1� �
w

�aAT�1
� 1��

�

#
=

1

R

h
1 + ��g (R� ��g)

1��
� (AT�1)

1
�

i
; (37)

using (34) : Here A1 is given by A1 = 1
R
:

When maintenance technology is decreasing returns to scale � + � < 1;
we conjecture quality of plant which continues forever will converge to the
steady state quality

z = z�:

Thus the amount of tools employed converges to

h = h� = (z�)
1��
� :

We also conjecture

S1(z;w;R) = az�U1
� z
z�
;R
�
� f

R� �;

ST (z;w;R) = az�UT
� z
z�
;R
�
� �Tf:
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From (32) for plant to continue forever in steady state, we get

w =
��a

R� �� (z
�)�

1����
� : (38)

De�ne ez = z
z� : Using the relationship h =

�
z0

z�

� 1
� , we get

wh

az�
=

��

R� ��

� ez0ez�
� 1

�

:

Thus the guess is veri�ed if U1(ez) and UT (ez) solve
U1(ez;R) = 1

R
Maxez0

"ez � ��

R� ��

� ez0ez�
� 1

�

+ �U1(ez0;R)# ; (39)

UT (ez;R) = 1

R
Maxez0

"ez � ��

R� ��

� ez0ez�
� 1

�

+ �UT�1(ez0;R)# ; (40)

where U1(ez;R) = 1
R
ez:

5.2.2 Market Clearing

In order to describe aggregate economy, let Kt (�) be aggregate number of
age-� plant which continues forever at date t: Suppose some owners choose
to stop new plant in T periods. Let LT��t (�) be aggregate number of age-�
plant which stops in T � � periods at date t: Then we have the transition

Kt(�) = �Kt�1(� � 1)
LT��t (�) = �LT��+1t�1 (� � 1) ; for � = 1; 2; :::; T � 1: (41)

We also have
It = Kt+1(0) + L

T
t+1 (0) (42)

where It is aggregate investment at date t.
We also know

b = S1(1;w;R) = ST (1;w;R) in M-Region (43)

b = S1(1;w;R) and LTt (0) = 0 in P-Region.
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Let zT��t (�) be the quality of age-� plant which stops in T � � periods at
date t. Let hT��t (�) be tools employed by one unit of age-� plant to stop in
T � � period. Then aggregate output and demand for tools (and engineers)
are given by

Yt =

1X
�=0

[az1t (�)� f ]Kt(�) +

T�1X
�=0

�
azT��t (�)� f

�
LT��t (�) (44)

Ht =
1X
�=0

h1t (�)Kt(�) +

T�1X
�=0

hT��t (�)LT��t (�) (45)

Aggregate domestic assets at the beginning of period equals sum of gross
pro�t and value of plant from the last period minus net foreign debt as

Dt = Yt � wHt �D�
t

+
1X
�=1

V (z (�))Kt(�) +
TX
�=1

ST��
�
zT��t (�)

�
LT��t (�) : (46)

Goods market equilibrium is given by

Ct + xIt +D
�
t �

D�
t+1

R
= Yt: (47)

Output equals consumption, investment and net export (which equals net
debt repayment to foreigners). One of the market clearing conditions for
output, tools and �nancial asset is not independent by Walras Law.

5.2.3 Pure Equilibrium with No Stopping

When no plant owner stops his plant, the total number of continuing plant
equals tools as

1X
�=0

Kt(�) = Ht;

and the ratio of tools to plant remains at the initial ratio

h1t (�) = 1; for all � and t:

The plant quality remains at the initial level as

z1t (�) =
�
z1t�1 (� � 1)

�� �
h1t�1 (� � 1)

��
= 1; for all � and t:
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Thus g = 1 with constant returns to scale maintenance technology and z� = 1
with decreasing returns to scale maintenance technology, and

w =
��a

R� �� = w(R); (48a)

b =
a� w � f
R� � =

1

R� �

�
a
R� � (� + �)
R� �� � f

�
= b(R): (48b)

In order to show that non-stopping is optimal strategy for the plant owner,
we need to check

b(R) > Max
T
ST (1;w(R); R) = Max

T
[aUT (1;w(R); R)� �Tf ]; (49)

for any �nite T; where UT (1;R) is given by (40) with decreasing returns to
scale and equals AT with the constant returns to scale maintenance technol-
ogy.
Then from (44; 46), we have

Yt = (a� f)Ht;
Dt = (a� w � f)Ht + b�Ht �D�

t (50)

We also get
Ct = (1� �)[(w + �b)Ht +Dt]: (51)

From (15a; 47), we get the transition as

(x� b)Ht+1 = �
�
�E(w + �b)Ht + �

SDt

	
; (52a)

D�
t+1

R
= (a� f)Ht � Ct � x(Ht+1 � �Ht) +D�

t : (52b)

(w; b) is a function of R and the other parameters, and (Dt; Ct) is a func-
tion of (Ht; D�

t ) and R (through w and b). Then the perfect foresight equi-
librium (aside from a unanticipated permanent shock on R) is characterized
recursively by

�
Ht+1; D

�
t+1

�
as function of (Ht; D�

t ; R) :
In the steady state, we can use (16) to �nd steady state growth rate

equilibrium where

RE =
w (R) + � [x� b (R)]

x� b (R) :

27



5.2.4 Mixed Equilibrium

For mixed equilibrium, we only describe the steady state equilibrium.

Mixed equilibrium under constant returns to scale maintenance
technology From (34; 35) ; we have

w =
� (1� �) a
R� ��g g

� �
1�� = w(g;R)

b =
a

R� ��g �
f

R� � = b(g;R):

Find
�
A1; A2; A3; :::AT

	
to solve (37) with A1 = 1

R
as a function of (g;R):

Find g to solve the indi¤erence condition:

b(g;R) = Max
�nite T

�
aAT (g;R)� �Tf

�
: (53)

Equilibrium stopping time is argMax
�
aAT (g;R)� �Tf

�
for this equilibrium

g:
Then we can �nd the steady state growth rate from (16) by using

RE =
w(g;R) + �[x� b(g;R)]

x� b(g;R) :

For those continuing plant forever, because z1(0) = 1; we get z1(�) = g�

and

h1(�) =

�
z1(� + 1)

(z1(�))�

� 1
1��

= g
1

1��+� :

For those stopping in T period, we get from the �rst order condition (36) as

hT�� (�)

zT�� (�)
=

�
(1� �)�
w=a

AT���1
� 1
�

=

�
AT���1

A1

� 1
�

g
1

1�� ; (54)

for � = 0; 1; 2; :::; T � 2: Because zT (0) = 1; we get fhT�� (�); zT���1 (� + 1)g
which satis�es (54) and

zT���1 (� + 1) =

�
AT���1

A1

� 1��
�

gzT�� (�) ;

for � = 0; 1; 2; :::; T � 2:
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Mixed equilibrium under decreasing returns to scale maintenance
technology With decreasing returns, from (38), we get

w =
��a

R� �� (z
�)�

1����
� = w(z�;R):

For plant to continue forever, we have from (39) as

U1(ez) =
1

R
Maxez0

"ez � ��

R� ��

� ez0ez�
� 1

�

+ �U1(ez0)#

ez0 = argMaxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+ �U1(ez0)# � '1(ez)
Let ez1(�) and eh1(�) be quality and tools of age-� plant which continues
forever relative to the steady state. The we have

ez1(�) = ('1)� (ez1(0)) = ('1)� � 1
z�

�
eh1(�) =

�ez1(� + 1)
(ez1(�))�

� 1
�

:

For plant to stop in T periods, we have from (40) as

UT (ez) =
1

R
Maxez0

"ez � ��

R� ��

� ez0ez�
� 1

�

+ �UT�1(ez0)#

ez0 = argMaxez0
"ez � ��

R� ��

� ez0ez�
� 1

�

+ �UT�1(ez0)# � 'T (ez) ,
where U1(ez) = 1

R
ez: Let ezT�� (�) and ehT�� (�) be quality and tools of age-�

plant which stops in T �� periods relative to the steady state. Then we have

ezT�� (�) = 'T � 'T�1 � � � �'T��+1
�
1

z�

�
ehT�� (�) =

�ezT���1(� + 1)
(ezT�� (�))�

� 1
�

:
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We then �nd z� to satisfy the indi¤erence condition

az�U1
�
1

z�

�
� f

R� � = Max
�nite T

�
az�UT

�
1

z�

�
� �Tf:

�
(55a)

= b (z�;R) (55b)

This common value under equilibrium z� is the engineer�s borrowing capacity.
Equilibrium stopping time equals argMax

�
az�UT

�
1
z�

�
� �Tf;

�
:

We can �nd the steady state growth rate from (16) with

RE =
w(z�;R) + � [x� b (z�;R)]

x� b (z�;R) = RE (z�;R) :

5.2.5 Tool and goods market equilibrium in mixed equilibrium

In the steady state, we observe

G =
Ht+1
Ht

=
Kt+1(�)

Kt (�)
=
LT��t+1 (�)

LT��t (�)
:

For both constant returns to scale and decreasing returns to scale mainte-
nance technology, we have aggregate output under mixed equilibrium as (44) :
Using (41) ; we have

Yt =
1X
�=0

[az1(�)� f ] �
�

G�
Kt (0) +

T�1X
�=0

[azT�� (�)� f ] �
�

G�
LTt (0) :

Similarly aggregate demand for tools (45) becomes

Ht =
1X
�=0

h1(�)
��

G�
Kt (0) +

T�1X
�=0

hT�� (�)
��

G�
LTt (0) : (56)

Because It = (G � �)Ht = Kt+1 (0) + L
T
t+1 (0) ; dividing (56) by Ht; we get

in the steady state as

1 =
1X
�=0

h1(�)
��

G�+1
(G� �)ik +

T�1X
�=0

hT�� (�)
��

G�+1
(G� �)(1� ik); (57)
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where ik � Kt+1(0)
It

2 (0; 1) : We can solve for ik 2 (0; 1) to satisfy (57) :
Similarly, output per tool is

Yt
Ht
=

1X
�=0

[az1(�)�f ] �
�

G�+1
(G��)ik+

T�1X
�=0

[azT�� (�)�f ] �
�

G�+1
(G��)(1� ik)

(58)
Aggregate domestic �nancial asset (46) under constant returns to scale

maintenance technology is given by

Dt = Yt � wHt �D�
t

+
1X
�=1

�
a

R� ��g �
f

R� �

�
��

G�
Kt (0)+

T�1X
�=1

�
aAT��zT�� (�)� �Tf

� ��
G�
LTt (0) ;

or
Dt

Ht
=
Yt
Ht
� w � d�t

+
1X
�=1

�
a

R� ��g �
f

R� �

�
��

G�+1
(G��)ik+

T�1X
�=1

�
aAT��zT�� (�)� �Tf

� ��

G�+1
(G��)(1�ik);

where d�t = D
�
t =Ht:

Similarly domestic �nancial asset per tool under decreasing returns to
scale is

Dt

Ht
=
Yt
Ht
� w � d�t

+
1X
�=1

�
az�U (ez1(�))� f

R� �

�
��

G�+1
(G��)ik+

TX
�=1

�
az�U

�ezT�� (�)�� �Tf� ��

G�+1
(G��)(1�ik):

We also �nd

Ct
Ht
= (1� �)

�
w + �(x� b) + Dt

Ht

�
:

From (47) ; we �nd in the steady state as

Yt
Ht
=
Ct
Ht
+G� �+ d� � G

R
d�

or �
1� G

R

�
d� =

Yt
Ht
� Ct
Ht
� (G� �): (59)

From this, we �nd the ratio of net foreign debt to tools in the steady state.
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5.3 Proof for Proposition 2P

We �rst derive a su¢ cient condition for the existence of pure non-stopping
equilibrium in P-region:

V (1) =
1

R� �

�
a
R� (� + �)�
R� �� � f

�
� a

R

�
1� ��

R

� �
1���� 1� � � �

1� � +
a�

(1� �) (R� ��)�
f

R
;

(60)
We consider a su¢ cient condition of (49)

b(R) > Max
T
ST (1;w(R); R);

for the case of decreasing returns to scale maintenance technology. Consider
an optimal stopping strategy in the RHS as�

zT (0) > zT�1 (1) > ::: > z0 (T )
	
= fz0 > z1 > : : : > zTg

such that z0 = 1 and zT � z = f=a. Associated with fztg, there is ht =�
zt+1
z�t

�1=�
. Let v(hjz) denote the �ow payo¤ of owner of a plant of quality z

who hires h units of tools.

v(hjz) = az � wh� f:

Because optimal stopping strategy zt > zt+1 is better than staying at zt with

h = z
1��
�

t ; we get

v(htjzt) + �V (zt+1) � v
�
z
1��
�

t jzt
�
+ �V (zt); or

V (zt)� V (zt+1) �
1

�

�
v(htjzt)� v

�
z
1��
�

t jzt
��
: (61)

Let �(zjzt) � v
��
z=z�t

� 1
�

��� zt� = azt � w �z=z�t � 1� � f .
v(htjzt)� v(z

1��
�

t jzt) =
Z zt

zt+1

��0(zjzt)dz

where

��0(zjzt) =
w

�

z
1
�
�1

z
�
�

t

:
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Notice that because
@

@zt
[��0(zjzt)] < 0;

we have

��0(zjzt) =
w

�

z
1
�
�1

z
�
�

t

� w

�
z
1��
�
�1 = ��0(zjz); for zt+1 � z � zt:

Then,

v(htjzt)� v(z
1��
�

t jzt) =
Z zt

zt+1

��0(zjzt)dz �
Z zt

zt+1

��0(zjz)dz

Combining the inequality with inequality (61), we have

V (zt)� V (zt+1) �
1

�

�
v(htjzt)� v

�
z
1��
�

t jzt
��

� 1

�

Z zt

zt+1

w

�
z
1��
�
�1dz

V (1)� V (zT ) =
T�1X
t=0

[V (zt)� V (zt+1)] �
1

�

Z 1

zT

w

�
z
1��
�
�1dz

where we use z1 = 1 in the last inequality. Because

V (zT ) =
1

R
(azT � f)

and
1

�

Z 1

zT

w

�
z
1��
�
�1dz =

w

�(1� �)

�
1� z

1��
�

T

�
;

we have

V (1) � 1

R
(azT � f) +

w

�(1� �)

�
1� z

1��
�

T

�
� RHS (zT ) ; (62)

if we are not in region P , i.e., some plant owners stop their plant.
To derive a su¢ cient condition for Region P , we use the fact that equi-

librium wage in this region satis�es

w

a
=

��

R� ��:
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Then RHS of (62) reaches the maximum when

zT =

�
1� ��

R

� �
1����

RHS =
a

R

�
1� ��

R

� �
1���� 1� � � �

1� � +
a�

(1� �) (R� ��) �
f

R
:

A su¢ cient condition for the economy to be in Region P is

V (1) =
1

R� �

�
a
R� (� + �)�
R� �� � f

�
� a

R

�
1� ��

R

� �
1���� 1� � � �

1� � +
a�

(1� �) (R� ��) �
f

R
:

This is equivalent to which gives an upper bound on f=a,

f

a
� R (1� � � �)

�(1� �)

"
1� R� �

R

�
1� ��

R

� �
1����

#
� z(f=a);

where z(f=a) denotes an upper bound for f=a as a su¢ cient condition for
the existence of pure equilibrium with no stopping.
Now we proceed to derive a lower bound on f=a such that the growth

rate is an increasing function of real interest rate in state equilibrium. From
(16) ; we learn

0 = (G� �E�RE)[G� (1� �S)�R]� �S(1� �E)�2RRE

=

�
G� �E�

�
�+

w

x� b

��
[G� (1� �S)�R]� �S(1� �E)�2R

�
�+

w

x� b

�
� 	

�
G;R;

w

x� b

�
: (63)

Because we assume �R < 1; we restrict our attention the case

G > (1� �S)�R:

Then we learn

G � �E�
�
�+

w

x� b

�
:
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Then we learn
@

@G
	

�
G;R;

w

x� b

�
> 0;

in the neighborhood of the equilibrium G: We can easily check

@

@R
	

�
G;R;

w

x� b

�
< 0

@

@
�
w
x�b
�	�G;R; w

x� b

�
< 0:

Thus a su¢ cient condition for

dG

dR
= �

@
@G
	
�
G;R; w

x�b
�

@
@R
	
�
G;R; w

x�b
�
+ @

@( w
x�b)

	
�
G;R; w

x�b
�
d
dR

�
w
x�b
� > 0

is

0 <
d

dR

�
w

x� b

�
=

w

(x� b)2(R� �)2(R� ��)
�
� (1� �) f � (R� �)2x� � (1� � � �) a

�
;

or
� (1� �) f > (R� �)2x+ � (1� � � �) a: (64)

If �S = 0; then from (16), we have G = �E�
�
�+ w

x�b
�
; or

x = F (R;G) =
a� f � w
R� � +

��E

G� ���Ew

=
a� f
R� � �

G� �R�E
(R� �) (G� ���E)w

Because FG < 0, dG=dR > 0 if and only if FR > 0. Because

(R� �)FR = �
a� f � w
R� � +

G� �R�E
G� ���E

a��

(R� ��)2 ;

dG=dR > 0 i¤

f=a >
R� (� + �)�
R� �� � G� �R�

E

G� ���E
�� (R� �)
(R� ��)2 � z(f=a);
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when �S = 0: For the growth enhancing e¤ect of interest rate in Region P ,
we need

z(f=a)�z(f=a) > 0
or

z(f=a)�z(f=a)
R� � =

R (1� � � �)� �(1� �)(� + �)
�(1� �) (R� ��)

� 1� � � �
�(1� �)

�
1� ��

R

� �
1����

+
G� �R�E
G� ���E

��

(R� ��)2 > 0

Suppose both R and � are close to 1,

z(f=a)�z(f=a)
R� � � 1� � � � � (1� �)(� + �)

(1� �)2 � 1� � � �
(1� �) (1� �)

�
1���� +

�

(1� �)2

=
1� � � �
1� �

h
1� (1� �)

�
1����

i
> 0

This proves that for any f=a, there exists an open set of interest rate and
depreciation rate both of which are close to 1 where we have the property
that growth rate is an increasing function of interest rate in Region P .
To examine the e¤ect of unanticipated fall in real interest rate on welfare

in pure non-stopping region, we use (27a; 27b; 28; 29) : Continue to assume
�S = 0: Then we have

dV E

dR
=

1

1� �
d

dR
(lnnE)

+
�

(1� �)(1� ��E)
d

dR

�
ln

�
w + �(x� b)

x� b

��
+

�2(1� �E)
(1� �)2(1� ��E)

d

dR
lnR (65)

From (48a; 48b) ; we have

dw

dR
= � w

R� �� ;

db

dR
=

1

R� �

�
w

R� �� � b
�
:
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Then we get

d

dR
ln [w + �(x� b)] = 1

w + �(x� b)
1

(R� �)2

�
a� f � R2 � �2�

(R� ��)2�a
�
;

d

dR
ln

�
�+

w

x� b

�
=

w

[w + �(x� b)](x� b)(R� �)2(R� ��)2
�
�
��a� �(1� �)(a� f)� (R� �)2x

�
When �S = 0; then nE = [w + �(x� b)]h: Then from (65) ; we have

(1� �)(1� ��E)(R� �)2(R� ��)2 [w + �(x� b)] dV
E

dR
=�

= (1� ��E)
�
(R� ��)2(a� f)� (R2 � �2�)�a

�
+
�a�

x� b
�
��a� �(1� �)(a� f)� (R� �)2x

�
+
�2(1� �E)
1� �

(R� �)(R� ��)
R

f(R� ��) [(R� �)x� (a� f)] +R�ag:

5.4 Calibration strategy

We choose the following parameter values, �, �, �, �, �E and �S. We nor-
malize the productivity of plant quality a to be 1.
We solve for f such that the economy is at boundary between Region

P and Region M at R = 1:015. We design an algorithm to solve for the
in�mum of the set of f , which plant owner stops in �nite number of periods.
Suppose that the plant owner stops in T period at a particular value of

f . Then, St(1; f; w;R) as a function of t reaches its peak at T . De�ne a
sequence of ft such that at f = ft, for z� = 1:

St+1(1; ft; w;R) = S
t(1; ft; w;R):

Intuitively, ft tracks the movement in the peak as we vary f . If f = ft, the
peak is either t or t + 1. As t goes to in�nity, the peak shifts to in�nity.
Because

St+1(1; a; w; r) = U t+1 (1;R)�
�
1

R
+
�

R2
+ :::+

�t

Rt+1

�
f
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and

St(1; a; w; r) = U t (1;R)�
�
1

R
+
�

R2
+ :::+

�t�1

Rt

�
f;

we have

ft =
Rt+1

�t
�
U t+1 (1;R)� U t (1;R)

�
:

The calibrated value of f is equal to inft=1;2;:::ft, which we approximate
by mint=1;2;:::;T ft with T large enough. For any value of f strictly above
inft=1;2;:::at, there must exist a �nite optimal stopping time. For any value of
f strictly below inft=1;2;:::ft, there cannot exist a �nite stopping time.
After we calibrate the value of f , we solve for x to target a growth rate

of 0:5% at gross interest rate R = 1:015.

x =
a� f � w
R� � +

��

G� ���w

where w = ��
R���a and

� = �E + �S
�R(1� �E)

G� �R(1� �S) :

.
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