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Abstract

I study the labor market implications of limited information inherent in the job search pro-
cess. I build an equilibrium search model where workers have partial information regarding
the payoffs of jobs. Workers pay a cost to direct job search that is proportional to the diver-
gence between the chosen search strategy and a benchmark random search strategy. With this
cost, workers apply to every job with a positive probability, but apply to high-payoff jobs with
higher probabilities. I embed this partially directed search behavior into an equilibrium wage
posting model where firms and workers match bilaterally. Partially directed search leads to
monopsony power: firms extract a markdown due to the cost of directing search. Efficiency
of the market equilibrium depends on whether the markdowns are equally distributed across
firms. The dispersion of markdowns arises endogenously when the cost is high enough.
In these cases, the unproductive firms are bounded by workers’ outside options and extract
lower markdowns than the productive firms. Workers apply to unproductive firms too often
compared with the efficient allocation. A minimum wage redistributes from the unproductive
firms to workers, but worsens the inefficiency by further increasing the markdown dispersion;
progressive corporate income taxation redistributes from the productive firms to workers, and
restores efficiency by decreasing the markdown dispersion. I provide a micro-foundation for
the baseline model based on information acquisition with rational inattention.
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1 Introduction

Information is crucial for job search. Workers need to know the full set of relevant information in

order to find their best matches, including the wage that each job offers and the odds of getting

hired. However, assuming that workers have full access to this information is unrealistic. Only a

small fraction of job postings contain explicit information regarding wages (e.g., Marinescu and

Wolthoff, 2016; Banfi and Villena-Roldán, 2019). On the other extreme, assuming that workers

do not have any information and randomly search for jobs is also unrealistic. For example, high

wage vacancies attract more applicants1 (e.g., Belot et al., 2018). The degree to which workers

can direct their search matters for our understanding of the competition among employers for

applicants and the allocation of workers across firms with different productivities. Equilibrium

search theory assumes that workers have either full information (directed search) or no infor-

mation (random search) about the relevant characteristics of jobs. Economists lack a tractable

equilibrium framework to study job search with partial information.

This paper provides a flexible and tractable framework to study partially directed search.2

In the model, firms post wages to attract applications. Workers maximize expected payoffs by

choosing the probability of applying to different firms. When deviating from a random search

strategy, workers need to pay a cost proportional to the distance between their chosen strategy

and random search strategy, measured by the Kullback-Leibler divergence between these two

distributions. This cost is motivated by a rational-inattention model of information acquisition

since Sims (2003). Workers trade off the benefit of applying to better jobs against the cost of

directing search. Equilibrium search strategy is partially directed: workers apply to better jobs

with higher probability, but also apply to all jobs with positive probability. The per-unit cost

of directing search governs how directed job search is. This one parameter allows the model to

accommodate random search, directed search, and in-between cases.

The cost of directing search governs the competition among firms, by changing workers’

ability to compare alternatives. In an equilibrium with a positive cost of directing search, firms

have monopsony power even when they are infinitessimal relative to the market. Further, the

cost in search dampens productive firms’ incentive to differentiate themselves from unproductive

firms. With a higher cost of directing search, the dispersion of applicants declines.

This paper makes several contributions to the literature. First, I provide a tractable equilib-

rium framework to model information acquisition in search: entropic competitive search equilibrium.

I show this equilibrium is a limit of subgame perfect equilibria in wage-posting games with finite

populations. I establish existence and uniqueness of the equilibrium, and analyze the efficiency

of market equilibrium and the implications for policies. Second, this model introduces a new

1The elasticity between applicant-per-vacancy to wage is 0.7 to 0.9.
2Cheremukhin et al., 2020 uses the term targeted search for search strategy with entropy cost; I use the term partially

directed search to highlight the link between the search equilibrium in this paper and the study of partially directed
search equilibrium in literature (e.g., Menzio, 2007)
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source of monopsony power into search models. Noise in job search dampens competition be-

tween firms, which creates monopsony power for firms. As result, in a model with partially

directed search, policies such as minimum wage and profit taxation interact with productivity

and firm market power. Third, this paper incorporates rational inattention into an equilibrium

search model. In doing so, it provides a tractable method to study the interactions between

information frictions and search frictions.

I start the discussion by studying a wage-posting game with costly directed search, between

finite workers and firms. The posting game unfolds in the following order: Firms post wages

to attract applications. Workers observe the posted wages and decide where to apply for a job.

Directing search is costly. The cost of directing search is proportional to the Kullback-Leibler

divergence between the worker-chosen probability of applying and the uniform probability of

applying among all firms. After workers make their search decision, firms and workers match

through a frictional process. At last, workers decide whether to take the job offers. This simple

model extends the analytical approach of Burdett et al. (2001) to an environment with costly

directed search.

The subgame perfect equilibrium in the two-by-two game exists and there is a unique sym-

metric equilibrium. In the case with identical firms, the two firms post the same wage and work-

ers apply to firms with equal probability. Costly directed search generates monopsony power:

firms extract a markdown that is increasing in the cost of directing search. In the equilibrium

with heterogeneous firms, the more productive firm posts a higher wage and workers apply to

the high-productivity firm with a higher probability. As the cost of directing search increases,

the difference in applying probability to these two firms decreases. There are two thresholds

of the cost for any productivity combination. When the cost of directing search is higher than

the first threshold, the unproductive firm stops sharing any gains from trade with the workers

and posts workers’ outside options. When the cost of directing search is higher than the second

threshold, both the productive firm and the unproductive firm stop sharing any gains from trade

with workers. Markdowns are unevenly distributed between two firms when at least one of the

two firms posts worker’s outside option and firms are different in their productivities.

The two-by-two game highlights the role of the cost of directing search: It leads to monopsony

power and it impacts the allocation of workers across firms. I then take this intuition to study

the policy remedies to monopsony, such as the minimum wage. However, the finite games

are ill-suited for this interest. First, there also exists another force of monopsony power when

firms are large enough to internalize their impacts on the equilibrium, the traditional size-based

monopsony. Second, the strategic interactions among firms makes it nearly impossible to analyze

the equilibrium allocations and wages with heterogeneous firms beyond the two-by-two case.

These two complications motivate me to study an large economy where firms are infitesimal to

the market.

In the large limiting economy, both the number of workers and the number of firms grow
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to infinity, while the ratio of the worker population to the firm population and the firm produc-

tivity distribution stays constant. In the limiting economy, the monopsony power due to firm

sizes vanishes and the allocations and wages can be solved in closed forms. I define an entropic
competitive search equilibrium in the limiting economy: (i) firms maximize their profit given the

equilibrium market utility of workers and worker’s optimal search decision; (ii) workers make

their optimal search decision given the equilibrium wages and job finding probabilities at dif-

ferent firms; (iii) the applicants to all firms add up to the exogenous measure of workers in the

economy. This equilibrium concept generalizes the notion of a competitive search equilibrium into

richer information settings.

The analytical tractability of the competitive search equilibrium also prevails in the entropic

competitive search equilibrium. Specifically, looking for an equilibrium is equivalent to looking

for a market price that equalizes the demand and supply of applications. The firms in an entropic

competitive search equilibrium face an upward-sloping supply curve of applications, due to both

the cost of directing search and the search friction. I show the equilibrium exists and is unique.

As I hypothesized, the equilibrium outcome is the limit of finite wage-posting games when

population grows to infinity.

Next, I study whether the partially directed search model has different implications for tradi-

tional remedies to monopsony, such as the minimum wage. To do so, I first analyze the efficiency

of market equilibrium with partially directed search. A social planner that maximizes total out-

put net of the cost of directing search will value each applicant by her contribution to matches

minus the cost of directing search. The markdown due to the cost of directing search creates a

wedge between the marginal value of applying to a firm for workers in equilibrium and the cal-

culation of the social planner. Whether the market allocation aligns with the efficient allocation

depends on whether the markdowns are equalized across firms. I find the market allocation is

efficient if all firms pay wages strictly above workers’ outside option. When the cost of directing

search is high enough, the unproductive firms are bounded by the outside option of workers and

extract less markdowns than the productive firms. In this case, workers apply to the unproduc-

tive firms too often compared with the efficient allocation.

The optimal redistribution policy should balance the markdowns across firms. A minimum

wage increases the lowest wage that is feasible, and forces the unproductive firms to extract a

lower markdown. The increased markdown dispersion among firms induces workers apply to

the unproductive firms even more often than the market equilibrium. As a result, a minimum

wage hike worsens the distortion due to monopsony. Meanwhile, it increases employment by

reallocating job applicants from the firms with a lower job finding probability to the firms with

higher job finding probability. An alternative policy instrument, corporate income taxation, can

achieve the goal of redistribution and efficiency simultaneously. A progressive corporate income

tax discourages firms from posting low wages, and more so for the productive firms. In doing

so, the progressive corporate taxation decreases the markdown dispersion between firms, and
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increases the efficiency of market allocation.

The equilibrium in the baseline environment with costly directed search is equivalent to an

environment where workers do not directly observe wages, but can acquire information about

wages at a cost. The cost function with Kullback-Leibler divergence can be derived from models

of information acquisition through rational inattention (Sims, 2003). In the environment with

rational inattention, workers do not observe the wage posted by firms and need to learn about

the payoff of applying to different firms. The cost of learning is proportional to the reduction

of uncertainty from the prior distribution to the posterior distribution of payoffs. Matějka and

McKay (2015) show, in a decision theory setting, the outcome of the worker’s learning and search

problem with rational inattention is observationally equivalent to the outcome of the worker’s

search problem with observed payoffs and cost proportional to mutual information between

chosen actions and default actions. I find this equivalence also holds in a search equilibrium,

under a refinement proposed by Ravid (2019). A search equilibrium with rational inattention

is simply a collection of equilibria with observed wage profiles and the cost of directed search,

indexed by the productivity profile of firms. As a result, although the model is motivated by

limited information in job search, I can focus on costly directed search with observed wages.

This step not only provides a micro-foundation for entropic competitive search equilibrium, but also

provides a new method to study equilibrium models with rational inattention.

Before concluding, I discuss three issues around the baseline partially directed search model.

(i) I discuss the implications of the partially directed search on the labor market impacts of

the improved information technology. (ii) I discuss two approaches to identify this cost given

different datasets. (iii) I show the baseline model can be easily extended to a general class of

divergence measure called the f-divergence.

Literature and Contributions. This paper is related to research in search theory, the study

of labor market and the study of bounded rationality. In this section, I summarize the details of

related literature.

Search theory is based on the premise of the lack of information. In fact, George Stigler

begins the first paper in search theory literature by stating "one should hardly have to tell aca-

demicians that information is a valuable resource: knowledge is power." The search literature has

developed along two lines of research that assume either full information or no information. The

intermediate case with partial information is less studied.

Random search models assume searchers do not have information regarding who to meet.

Workers search, meet, and then decide whether to match (e.g., McCall, 1970). In an equilibrium

with random search (e.g., Mortensen, 1970, Mortensen and Pissarides, 1994, Shimer and Smith,

2000, Postel-Vinay and Robin, 2002, Elsby and Michaels, 2013, Bagger and Lentz, 2018), wages

are determined by an exogenous Nash bargaining block. Information, search frictions, and terms

of trade interact through outside options of agents. In these models, market power is a primitive.

Firm’s market power is their weight of Nash bargaining. Competitive search models assume
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perfect information and the ability to choose. In a competitive search equilibrium, workers

decide who to meet, search, then decide whether to trade (e.g., Montgomery, 1991, Shimer,

1996, Moen, 1997, Acemoglu and Shimer, 1999, Burdett et al., 2001, Shi, 2001, Shimer, 2005,

Eeckhout and Kircher, 2010, Menzio and Shi, 2010, Guerrieri et al., 2010, Kaas and Kircher, 2015,

Schaal, 2017). In these environments, the interaction between search friction and terms of trade

is the main focus; information does not enter this interaction. As mentioned in a summary

paper by Wright et al. (2019), search theorists have been interested in the intermediate case. This

paper provides a tractable framework to study how information, search friction, and rent sharing

interact. It captures the intuition from random search that search is noisy and people might take

sub-optimal offers due to this noise. It also captures the intuition from competitive search that

the terms of trade is a tool to alleviate friction and allocate resources. This paper highlights the

implications of this intermediate case on efficiency of a search equilibrium, and hopefully start a

new avenue for future studies of frictional markets where information friction plays a vital role.

In terms of methodology, this paper starts with a wage-posting game among finite numbers of

workers and firms and consider the limiting economy when the population grows to infinity.

This method of studying search equilibrium is related to Peters (1997), Burdett et al. (2001), and

Galenianos and Kircher (2012).

There are alternative ways to consider flexible information in a search model. This paper

starts from a learning model that has a solid micro-foundation and analytical tractability. Burdett

and Judd (1983), Burdett and Mortensen (1998), and Acemoglu and Shimer (2000) introduce a

different approach to model flexible information. In these papers, a fraction of searchers can

compare two offers. This fraction governs how directed search is in aggregate and the degree

of competition among firms. Recent work (Lester, 2011, Choi et al., 2018, Bethune et al., 2019)

builds on similar intuition. In these models, a fraction of searchers are informed and direct their

search; others are uninformed and randomly search. The fraction of directed searchers governs

how directed search is in aggregate. This paper shares some of the implications of their models:

lack of information leads to market power. This paper differs from these papers by assuming

information friction is endogenous. In the models with exogenous information, identical firms

use mixed strategy. Some firms will share less rent to attract captive searchers, while other

firms share more rent to attract informed searchers. This bifurcation complicates analysis of

equilibrium with heterogeneous firms and endogenous search frictions. As a result, most of

these models assume away either endogenous search friction (e.g., Burdett and Judd, 1983 and

Burdett and Mortensen, 1998) or firm-side heterogeneity (e.g., Lester, 2011, Choi et al., 2018). The

flexible learning process from rational inattention makes the model in this paper tractable with

endogenous search friction and with firm heterogeneity.

This paper is directly linked to the rising interest in partially directed search behavior. Men-

zio (2007) studies a cheap talk theory of partially directed search. When productivity is private

information, productive firms use noisy signal to hide their types and gain a better position in
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bargaining. Cheremukhin et al. (2020) applies the same entropy cost to a matching model where

the payoffs of matches are exogenous. They use the the entropy cost function to study how the

resulting matching decisions affect sorting between males and females. This paper differs from

their approach by studying a search equilibrium where the terms of trades are endogenous. By

doing so, this paper nests the random and the competitive search models as special cases, and

provides a tractable limiting equilibrium concept to analyze the equilibrium wages and alloca-

tions. Endogenous wage posting is crucial for the applications on issues such as wage dispersion

and monopsony power. Pilossoph (2012) and Lentz and Moen (2017) applies the reduced-form

Logit decision rule to models with Nash bargaining. In their study, wages are either exogenously

given (Cheremukhin et al., 2020) or negotiated outside of search decisions (Pilossoph, 2012 and

Lentz and Moen, 2017). This paper differs by putting price setting at the center stage. By ex-

plicitly characterizing the interaction between wages and information frictions, this model has

a solid micro-foundation based on finite games and highlights how information friction affects

rent sharing between firms and workers. Doing so also leads to tractability. The equilibrium

wages and allocations can be solved in closed form. Surprisingly, given the differences in our

assumptions, the message in this paper is similar to Menzio (2007): Worker’s lack of information

in search leads to market power of firms. This paper conveys this message not through the com-

plexity of Nash bargaining with asymmetric information, but through a competitive equilibrium.

The tractability of this paper allows for closer look at issues such as efficiency and policies.

This paper also contributes to the study of firm market power. Monopsony power has gained

significant attention in recent discussion in economics and public policy. The idea that lack of

information leads to market power traces back to the Diamond Paradox (Diamond, 1971): If all

consumers randomly search for deals, then any positive switching cost leads to monopolistic

pricing. Firms possess all the market power if search is random. Burdett and Judd (1983) and

Burdett and Mortensen (1998) introduce competition by assuming consumers (workers) can com-

pare two offers before they make decisions. They introduce a flexible monopsony parameter as

the fraction of searchers who can compare offers. This paper nests the Diamond (1971) case as a

special case when the cost of directing search is high, and also brings attention to the static com-

petition between hiring firms. Card et al. (2018), Berger et al. (2019), and Lamadon et al. (2019)

introduce firm level amenities into a standard oligopoly model. In these models, firms have

wage-setting power because they are not perfectly substitutable in worker’s utility calculation.

In this paper, the decision rule when search friction vanishes resembles the decision rules from

monopsony models with amenities. This paper provides a micro-foundation for the quantitative

models in these papers.

Lastly, this paper contributes to the study of bounded rationality. It extends the study of

rational inattention to an equilibrium with search frictions. This paper builds the literature that

study the decision implications of rational inattention (e.g., Caplin and Dean, 2015, Matějka and

McKay, 2015). There is a long literature integrating bounded rationality with macroeconomic
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models (e.g., Sims, 2003, Woodford, 2009, Abel et al., 2013, Alvarez et al., 2017, Molavi, 2019),

most of which have been focused on how information frictions lead to inertia of adjustments

and amplification of aggregate shocks. This paper focuses on a different aspect of information

friction: sparsity of information dampens competition in the market and generates rents for the

market organizers. The closest to this paper is Matéjka and McKay (2012), who study a finite

environment where producers post price to attract rational inattentive consumers. This paper

departs from their model by introducing search friction and extending the finite environment to

a limiting economy. Characterizing a finite equilibrium with rich heterogeneity and rational inat-

tention is not a trivial task, due to the strategic interaction between firms. This paper provides

a limiting equilibrium concept that captures the essential mechanism of bounded rationality, but

remains tractable. One could conjecture when search friction vanishes, the limiting equilibrium

from this paper resembles the limit of oligopoly models with rationally inattentive consumers.

Therefore, this paper also provides analytical tools for researchers interested in bounded ratio-

nality in general equilibrium without search frictions. Papers such as Ravid (2019) have provide

equilibrium refinements for games with rational inattention. The game-theoretic foundation of

the partially directed search model is rooted in these refinements.

Outline. Section 2 presents a costly directed search model in finite economy; Section 3

presents the limiting equilibrium and shows its link to the finite game; Section 4 discusses the ef-

ficiency property of equilibrium and policy implications; Section 5 provides the micro-foundation

of the costly directed search model in rational inattention; Section 6 is discussion; All proofs are

organized in Appendix.

2 Partially Directed Search in Finite Economy

To highlight the mechanisms in an equilibrium model with partially directed and make explicit

the subgame perfect equilibrium concept used throughout this paper, I present a wage posting

game with costly directed search, among a finite number of homogeneous workers and poten-

tially heterogeneous firms. This costly directed search model is equivalent to an equilibrium

search model where workers can costly acquire information regarding the payoffs of applying to

different firms. The details of this equivalence is in section 5. The two worker-two firm econ-

omy serves as a departure point, where allocations and wages can be analytically solved. There

are two main takeaways from this two-by-two game: (i) costly directed search is a source of

monopsony power and (ii) market equilibrium can be inefficient due to the monopsony power.

The general case with I workers and J firms is more complex. I establish the existence of an

equilibrium where firms adopt pure strategy.
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2.1 2 × 2 Economy

Setup. – The economy has two workers and two firms. Workers are indexed by i = 1, 2, and

firms are indexed by j = 1, 2. Each firm has one vacant job to fill. When filled, the job at firm

j produces output zj. Throughout the paper, I assume zj < ∞. All agents have linear utility. If

firm j hires a worker at wage w, the firm will receive a payoff of zj − w and the hired worker

will receive a payoff of w. Because of search friction, there might be unmatched workers and

unmatched firms at the same time. Workers that fail to find a match will receive their outside

option of b. Firms that fail to find a match will receive their outside option of 0. Throughout this

paper, I assume b < zj. This assumption ensures there are always gains from trade of matches at

every firm.

Trades unfold in four stages. In the first stage, firms simultaneously announce their wages,

taking as given the other firm’s wage and understanding the probability of hiring associated with

different wage announcements. In the second stage, workers choose the probability of applying

to firms, knowing the wage announcements from the first stage.3 In the third stage, workers and

firms are matched in a frictional process. The key assumption is that workers cannot coordinate

where to search for jobs. A firm can receive zero, one, or two applicants at the same time. If no

applicant shows up, the firm stays vacant. If one applicant shows up, the firm makes a job offer

to the only applicant. If two applicants show up, the firm randomly selects one worker to make

the job offer to. In the fourth stage, workers who get a job offer decide whether to accept or reject

it.

This trading environment is otherwise identical to the one considered in Burdett et al. (2001),

except for the cost of directing search. If workers apply to two firms with probability (q1, q2),

they need to pay a cost proportional to the Kullback-Leibler divergence (hereafter, K-L divergence)

of the chosen probability (q1, q2) from ( 1
2 , 1

2 ), a strategy that applies randomly to firms:

Cost of Directing Search = c
(

q1 log
q1

1/2
+ q2 log

q2

1/2

)
.

Specifically, the cost of directing search is a per-unit cost of search c multiplied by the expected

likelihood ratio between (q1, q2) and ( 1
2 , 1

2 ), evaluated using distribution (q1, q2). The K-L diver-

gence finds its micro-foundation in rational inattention in job searches, which I discuss in section

5.4 For now, let us focus on the implications of this cost on job search decisions and equilibrium

wages and allocation. Before proceeding to the characterization, I first define the symmetric

subgame perfect equilibrium:

Definition 1 (Symmetric Subgame Perfect Equilibrium in the 2× 2 Game)

3In section 5, I show the game with observed wages and the cost of directing search is equivalent to a game where
workers do not observe the wages and it is costly to acquire information regarding wages.

4The qualitative results also hold for a general set of divergence measure called f-divergence, which I discuss in
section 6.
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A symmetric subgame perfect equilibrium is a tuple of {qi
j(w1, w2), we

1, we
2} such that:

1. (Firms’ optimality) we
j maximizes firm j’s profit, taking as given qi

j(w1, w2) and we
−j.

2. (Worker’s optimality) qi
j(w1, w2) maximizes worker i’s payoff, taking as given (w1, w2) and q−i

j (w1, w2).
3. (No coordination) q1

j (w1, w2) = q2
j (w1, w2) for ∀w1, w2.

I restrict attention to a symmetric equilibrium.5 This equilibrium refinement is motivated

by our goal of studying a large economy that involves many workers and firms. In the non-

symmetric equilibria, workers avoid visiting the firm the other worker applies to with high

probability, which requires strong coordination between workers. This assumption is unnatural

in large economies. The symmetric equilibrium requires less information regarding the other

worker’s behavior, which is more applicable for large economies.

Worker’s Search Problem – Consider the search problem that worker i faces. She will take as

given two objects: (i) the wage announcements from firms (w1, w2) and (ii) the search strategy of

the other worker. Denote the strategy of worker i as (q1, q2) and the other worker’s strategy as

(q−i
1 , q−i

2 ). Equation (1) lays out worker i’s search problem:

max
q1,q2∈[0,1]

q1

(
1− q−i

1 +
q−i

1
2

)
max{w1 − b, 0}+ q2

(
1− q−i

2 +
q−i

2
2

)
max{w2 − b, 0}

−c
(

q1 log
q1

1/2
+ q2 log

q2

1/2

)
,

(1)

s.t.

q1 + q2 = 1.

Workers cannot coordinate their application, which generates search frictions. Therefore,

worker i faces uncertainty about which firm worker −i is applying to. In the event of worker i
applying to firm 1, with 1− q−i

1 probability the other worker does not apply to the same firm.

In this case, she gets hired for certain. With probability q−i
1 , the other worker also applies to

firm 1. In this case, the firm randomizes to hire either worker. As a result, worker i gets hired

with probability 1
2 . Together, the probability of getting hired conditional on applying to firm 1 is

1− q−i
2 +

q−i
1
2 . Similarly, I can calculate the job finding probability if worker i applies to firm 2.

Conditional on getting hired, worker i gets an offer with wage wj as promised. Worker i
has the choice of walking away from the job offer, in which event she gets her outside option b.

The offer-acceptance decision is simple: Workers accept the job if wj > b and turn down the job

offer if wj < b. When wj = b, workers are indifferent between accepting and rejecting the job,

throughout the paper I assume workers take the job offer when they are indifferent.6

5For a range of wage announcements (w1, w2), three subgame equilibria exist. Within these three equilibria, two
equilibria involve workers concentrate application to a specific firm. Burdett et al. (2001) offers detailed discussion of
this multiplicity. One equilibrium involves worker 1 applies to firm 1 with more probability and worker 2 applies to
firm 2 with more probability. Another equilibrium involves the opposite pattern.

6This assumption ensures the existence of equilibrium, by making the payoff function of firms continuous when
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The net payoff of choosing strategy (q1, q2) is the difference in expected income and the cost

of directing search. I assume workers apply for jobs for certain. This is a reasonable assumption,

because to search is always strictly better than to stay out when at least one firm posts wage

above workers’ outside options.

The worker’s problem is a strictly convex optimization problem. The first-order condition in

equation (2) characterizes the unique optimal strategy:

c log
qi

1

qi
2
=

(
1− q−i

1 +
q−i

1
2

)
(w1 − b)+ −

(
1− q−i

2 +
q−i

2
2

)
(w2 − b)+, (2)

qi
1 + qi

2 = 1.

The optimal strategy balances the income-maximizing motive and cost-minimizing motive. It

states that the marginal benefit of applying to the first firm must equal the marginal benefit of

applying to the second firm at the optimum.

Here, I link the optimal search strategy to the notions of random search, directed search, and

partially directed search. In the limit of c → 0, workers will only apply to the firm with the

highest expected payoff. In this case, search is directed. In the limit of c→ ∞, the optimal search

decision is qi
1 = qi

2 = 1
2 . Worker i will not deviate from the random search strategy, because any

deviation incurs a infinite cost. In this case, search is random. With c ∈ (0, ∞), worker i applies

to firm j with a higher probability if the expected payoff of applying to firm j is higher than that

of firm −j. However, the solution to equation (2) is always in the interval qi
j ∈ (0, 1). The optimal

decision involves applying to both firms with positive probability, due to the convexity of the

cost function. Related to the focus of this paper: Search is partially directed for c ∈ (0, ∞).

Subgame Equilibrium – I can now characterize the Nash equilibrium in the second stage: given

any (w1, w2), worker i maximizes the payoff given worker −i’s equilibrium strategy, and vice

versa.

Mathematically, the symmetric equilibrium simply requires that both workers use the same

strategy: q1
j = q2

j = qj. Taking the optimal search strategy from equation (2) and imposing the

symmetric equilibrium, I reach the condition for a subgame equilibrium in equation (3):

c log
q1

q2
=
(

q2 +
q1

2

)
(w1 − b)+ −

(
q1 +

q2

2

)
(w2 − b)+, (3)

q1 + q2 = 1.

Lemma 1 states that there is a unique solution to the symmetric subgame equilibrium given any

wage announcement (w1, w2). More importantly, conditional on the wage announcement, the

firms’ identities do not matter for the subgame equilibrium outcome. Based on this symmetry

property, I can define the following function qj = Q(wj, w−j) as the solution to equation (3).

wage approaches b from the right.
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Lemma 1 (Uniqueness of Subgame Equilibrium)

Given any wage announcement (w1, w2), an unique solution (q1, q2) to equation (3) exists.
Moreover, the solution to the subgame equilibrium is independent of firm identity: given two combinations
of wage announcement (w1, w2) and (w′1, w′2), if w1 = w′2 and w2 = w′1,

q1 = q′2, q2 = q′1.

Proof. See Appendix.

Q(wj, w−j) is the labor supply curve for firm j given firm −j’s announcement. When firm j
announces a higher wage, workers will apply to firm j with a higher probability. The slope of

this labor supply curve is governed by the cost of directing search c. Figure 1 plots the supply

curve for different costs of directing search. I will refer to Iqj = IQ(wj, w−j) the queue at firm

j, which measures the expected number of workers waiting to get a job. Because I, the worker

population, is a primitive of the model, I will use the terms queue and qj, the probability of

applying, interchangeably.

Panel (a) plots the supply curve for positive and finite costs. Both labor supply curves

are upward-sloping: to attract a longer queue, firm j has to post a higher wage. For all c,

Q(w−j; w−j) = 1
2 : when firm j posts the same wage as the other firm, workers apply to firms

with ( 1
2 , 1

2 ) regardless of the cost of directing search. When the cost of directing search increases,

the labor supply curve becomes more inelastic. Because it is more costly to direct search, firm j
must offer a higher wage than the low-cost case if it wants to attract the same queue length.

Panel (b) plots the supply curve for the two limiting cases: c = 0 or c = ∞. When the cost

of directing search is zero, the labor supply curve is upward-sloping for a wage that is between

half of the competitor’s wage and twice the competitor’s wage. This extreme case highlights

the role of search friction. Given the competitor’s wage posting, offering a slightly lower wage

does not lead to zero application, because workers are also compensated by a higher job finding

probability. However, when firm j posts a wage that is less than half of the competitor’s wage,

workers will apply to the competitor for sure (qj = 0). When the cost of directing search is

infinity, the labor supply curve is inelastic. Regardless of what wage firm j offers, workers never

find it optimal to tilt their application strategy away from ( 1
2 , 1

2 ).

This characterization of the subgame equilibrium is feasible in the two-by-two game, because

only two firms exist and workers always apply. Knowing the probability qj of applying to firm j
automatically implies workers apply to firm −j with probability 1− qj. In the game with more

than two firms, doing so is no longer feasible.

One property of this labor supply curve is crucial for our understanding of equilibrium: It

has a flat segment when wj ≤ b. When the wage announcement falls below workers’ outside

option, workers regard firm j as equivalent to a firm that promised the outside option, because

they will never take this job offer that is worse than their outside option. Firms will never post

12
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Figure 1: Q(wj, w−j) for different costs

an unacceptable wage, because wj < b and wj = b will attract the same number of applicants but

wj < b will result in zero hiring. Hereafter, I will only focus on wage that is weakly larger than

b. This leads to a constraint w ≥ b. Because it reflects workers’ optimal job acceptance decision,

I refer to this constraint as the participation constraint of workers.

The labor supply curve is upward-sloping, for three reasons. The first reason is the cost of

directing search. For any c ∈ (0, ∞), a higher queue requires a higher wage because workers

need to be compensated for the cost of directing search to firm j; The second reason is the search

friction. The third reason is the duopoly competition. We are in an economy where both firms

internalize their impact on their competitors. In the equilibrium, they pay a lower wage because

they understand competitors will respond in similar way. The upward-sloping labor supply

curve implies that firms will pay workers below their productivity zj in an equilibrium. This

markdown on wage is due to (i) cost in directing search, (ii) the contribution of firms to the

matching process, and (iii) size of the firms. I will refer to the markdown due to different source

as (i) information markdown, (ii) search markdown, and (iii) size markdown.

Subgame Perfect Equilibrium – I look for a symmetric subgame perfect equilibrium. Given that

any subgame equilibrium outcome can be represented by the supply curve Q(wj, w−j), look-

ing for the subgame perfect equilibrium is the same as looking for a Nash equilibrium in the

following normal form game between firm 1 and firm 2. I focus on a symmetric equilibrium.

In a symmetric equilibrium, firms use pure strategy and workers make the symmetric search

decision.

Firms take as given the supply curve as well as their competitor’s wage announcement. For

a wage level w firm j announces, workers will apply to firm j with probability q = Q(w, w−j),

which is consistent with the subgame equilibrium given (w, w−j). Firm j only has one vacant job

13



to fill. The probability of at least one worker apply is 1− (1− q)2. Conditional on hiring a worker,

firm j receives a profit of zj − w. Additionally, a firm faces the participation constraint w ≥ b,

because a wage offer below b will lead to zero hiring. Lemma 2 summarizes the discussion

of subgame equilibrium so far. Proposition 1 establishes the existence and uniqueness of the

equilibrium.

Lemma 2 (Subgame Perfect Equilibrium in 2× 2 Game)

(we
1, we

2, qe
1, qe

2) is the outcome of a symmetric subgame perfect equilibrium if and only if:
1. we

j maximizes firm j’s profit given we
−j:

we
j = arg max

w
[1− (1− q)2](zj − w),

s.t.
q = Q(w; we

−j),

w ≥ b.

2. (qe
1, qe

2) is the outcome of the subgame equilibrium given (we
1, we

2):

qe
j = Q(we

j , we
−j).

Proposition 1 (Existence and Uniqueness of Subgame Perfect Equilibrium (2× 2 economy) )

For any (z1, z2, b, c), there exists a unique symmetric subgame perfect equilibrium.

Proof. See Appendix.

I now investigate two cases of productivity combination. In the first case, both firms produce

z when they match with workers. In the second case, z2 > z1. The first case highlights the effect

of the cost of directing search on the equilibrium wage. The second case highlights the effect

of cost in directing search on the allocation of workers across firms and the efficiency of market

equilibrium.

Homogeneous Productivity: Monopsony – Suppose z1 = z2 = z. This case admits an analytical

solution to the subgame perfect equilibrium. I start with a guess that both firms post wage w∗

and attract q∗ = 1
2 . With this guess, the best response of both firms collapses to a univariate

equation in w∗. Solving this equation yields the result in Corollary 1.1.

Corollary 1.1 (Equilibrium Outcome with Homogeneous Productivity)

If z1 = z2 = z, the equilibrium outcome is

we
1 = we

2 = w∗ = b + max
{

z− b
2
− 2c, 0

}
,

qe
1 = qe

2 = q∗ =
1
2

.
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Proof. See Appendix

This simple analytical result offers us several economic insights. First, although in the equi-

librium no cost is paid to direct search, the wages are reduced. A higher cost of directing search

leads to a lower level of equilibrium wage. Because workers cannot perfectly target high-wage

firms, firms find sharing output with workers is less attractive. As a result, wage is reduced.

Second, the equilibrium wage is a function of the split of gains from trade according to matching

process z−b
2 minus markdown due to the cost of directing. Because the matching process I con-

sider here is symmetric, in that workers and firms contribute to a successful match in the same

way, both worker and firm contribute half to the matching process. The rent extracted by the

firm is 2c. It is the cost of directing search adjusted by the equilibrium probability of job finding
1
2 .

To visualize the equilibrium allocations and wages, Figure 2 plots the equilibrium for a low

cost and a high cost of directing search. First focus on panel (a). The equilibrium is characterized

by a wage level we such that the supply curve Q(w, we
−j) is tangent to the iso-profit Π(w, q) = πe

curve at exactly 1
2 . A this point, firm 1 and firm 2 face the same supply curve. Because the

firm problem is strictly concave, it has a unique solution. As a result, both firms choose we as

the optimal wage posting. The tangency reflects this optimality. What happens when cost of

directing search increases? When the cost of directing search increases, the labor supply curve

becomes steeper given the old equilibrium wage we. These two curves must cross at ( 1
2 , we)

because at this point the two firms are identical to workers. ( 1
2 , we) cannot be the new equilibrium

given higher cost of directing search, because one of the two firms will find it optimal to deviate

to a lower wage and shorter queue. Given the deviating firm’s choice of lower wage, the supply

curve for non-deviating firm shifts down. This deviation argument can be applied step by step.

Each step pushes down equilibrium wage, until the supply curve and iso-profit curve find their

tangency an. The new equilibrium also has qe = 1
2 . However, the wage is lower and firms are

making higher profit. Panel (b) plots an extreme case where both firms post workers’ outside

option b. This happens for any cost that is higher than c̄ = z−b
4 .

Heterogeneous Productivity: Inefficiency – Now consider the case with z1 6= z2. Without loss of

generality, I assume z1 < z2. With this case, I ask two questions: First, how does the equilibrium

allocation of workers depend on the productivities of two firms and cost of directing search?

Second, how does the equilibrium allocation compares to the constrained efficient allocation?

Corollary 1.2 summarizes the allocation and wages with heterogeneous firms:

Corollary 1.2 (Equilibrium Outcome with Heterogeneous Productivity)

1. In the subgame perfect equilibrium,

if z1 < z2, then qe
1 ≤ qe

2 and we
1 ≤ we

2, and vice versa.

The inequality is strict if max{we
1, we

2} > b.
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Figure 2: Equilibrium given Homogeneous Productivity

2. Denote {qe
j (c), we

j (c)} the equilibrium with cost of directing search c, and c2 > c1,

|qe
1(c1)− qe

2(c1)| ≥ |qe
1(c2)− qe

2(c2)|.

The inequality is strict if max{we
1(c1), we

2(c1)} > b.
3. For any (z1, z2, b), there are two thresholds (c̄1, c̄2) such that:
For c < c̄j,

we
j (c) > b.

For c ≥ c̄j,
we

j (c) = b.

Moreover, c̄2 > c̄1 if z2 > z1.

Proof. See Appendix

In the subgame perfect equilibrium, the more productive firm posts a (weakly) higher wage

than the unproductive firm. The opportunity cost of not hiring is higher for the productive firm,

because a filled job produces more at this firm. Thus the productive firm is more willing to post a

higher wage in order to attract applicants. As a result, the more productive firm attracts a longer

queue in the equilibrium. The comparison is weakly because of the participation constraint

w ≥ b. When cost of directing search is high enough, firms will be bounded by the participation

constraint. Corollary 1.2 shows there are two thresholds of the cost. Below the lower threshold,

both firms post wages that are strictly above workers’ outside option; between the lower and

the higher threshold, the unproductive firm is bounded by participation constraint while the
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Figure 3: Equilibrium given Heterogeneous Productivity

productive firm still posts wage strictly larger than b; above the higher threshold, both firms post

workers’ outside option.

The cost of directing search dampens the difference of expected hiring between the two firms

through two mechanisms. Mechanically, it is more costly for workers to differentiate the two

firms when the cost is high, regardless of the wage differentials. Moreover, the cost of directing

search interacts with the participation constraint w ≥ b. When the cost is high enough, the wage

differential between the two firms vanish, which further dampens the expected hirings between

the two firms.

In order to understand the implications of the partially directed search model on policies,

it is important to analyze whether the equilibrium allocation is efficient. Here, I focus on a

constrained efficiency allocation. Specifically, I assume there is a social planner who instructs

how workers apply to these two firms to maximize the net production of the economy. The

planner is subject to two types of frictions: (i) search friction – the planner has to instruct workers

to apply with the same strategy; and (ii) cost of directing search – the planner has to pay the cost

of directing search. Equation 4 summarizes the social planner’s problem. With the assumption

zj > b, the planner will always instruct a match to form whenever possible. The planner’s

problem is as in equation (4):

max
q1,q2∈[0,1]

2

∑
j=1

(1− (1− qj)
2)(zj − b)− 2c

2

∑
j=1

qj log
qj

1/2
, (4)

s.t.

q1 + q2 = 1.
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The optimal allocation will equate the social value of applying to firm j with the marginal cost

of directing search. The efficient allocation can be found as the solution to the three-equation

system in terms of (q∗1 , q∗2 , V∗) as in (5):

(1− q∗1)(z1 − b) = c log q∗1 + V∗, (5)

(1− q∗2)(z2 − b) = c log q∗2 + V∗,

q∗1 + q∗2 = 1.

The first two equations state that the marginal cost and marginal benefit of search must be equal

at the two firms. The last equation states that the constraint q∗1 + q∗2 = 1 must hold.

Comparing the equilibrium outcome to the planner’s allocation, I find the equilibrium allo-

cation is inefficient. In Figure 4, I plot the allocation from the subgame perfect equilibrium and

the socially efficient allocation, for different cost of directing search and for different z2, while

holding z1 = 1 and b = 0.7 As the z2 increases, the second firm becomes more productive. Both

the equilibrium and the planner increase the queue to the second firm. However, for all finite

cost (Panel (a)-(c)), there is a gap between the equilibrium allocation and the planner’s allocation,

in that the equilibrium assigns too many applicants to the unproductive firm than the efficient

allocation.

This inefficiency comes from two forces. The first force is due to the duopoly competition

in finite economy. In the equilibrium, both firms behave strategically. They internalize how

their wage announcement affects the other firm. This is the inefficiency present in standard

duopoly models. In the equilibrium, the productive firm does not hire enough compare to

the efficient allocation and the unproductive firm hires too much. The second inefficiency is

novel in partially directed search models. It comes from the binding constraint of wages at

workers’ outside options. In the equilibrium, both firms extract markdown from wages. The

markdown per se does not create inefficiency if both firms extract the same markdown. However,

the markdown differs when the unproductive firm is constrained by the participation constraint

of wages. When the participation constraint binds, the more productive firm extracts a higher

markdown and hires less than the efficient allocation. In Figure 4, inefficiency due to binding

participation constraint shows up as the flat segment of equilibrium allocation. Related to the

result in Corollary 1.2, when z2 is low enough, the unproductive firm does not post wage above

b and the market assigns a constant q2 for a range of low z2.

By comparing the equilibrium allocation with the planner’s allocation for different costs of

directing search, I find the inefficiency due to the worker’s incentive compatibility constraint is

non-monotonic in the cost of directing search. When the cost is zero, the only inefficiency is due

to duopoly competition in the finite economy. When the cost is infinite, the constraint binds for

7This normalization is without loss of generality, because the allocation is homogeneous of degree zero in
(z1, z2, b, c) and the productivity can always be relabelled as z′j = zj − b.
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both firms and results in a random search equilibrium. The planner’s solution is also random

search because the planner does not have any ability to distort search to different firms. The

inefficiency due to duopoly competition will vanish when the economy is large enough, when

firms’ impact on the market outcome is negligible. To isolate the inefficiency due to cost of

directing search, I consider a limiting economy where both firms and workers’ population grow

to infinity. Section 2.2 prepares the discussion of limiting economy by consider an I× J economy,

with I, J ≥ 2.

2.2 I × J Economy

Setup. – The economy has I workers and J firms. Workers are indexed by i = 1, ..., I and firms

are indexed by j = 1, ..., J. Other than the population, this environment is identical to the case

with two workers and two firms.

First, I modify the cost of directing search to accommodate more than two firms. The random

search strategy is now ( 1
J , ..., 1

J ):

Cost of Directing Search = c
J

∑
j=1

qj log
qj

1/J
.

Second, I showed in the 2× 2 case that the symmetric equilibrium exists and is unique. In the

general case with more than two workers or firms, establishing uniqueness is challenging. In

the 2× 2 game, I can summarize the labor supply to a firm as function of its own wage and the

competitor’s wage. In the I × Jcase, this function depends on the vector of competitors’ post-

ings. I rely on the fixed-point theorems to establish the existence of subgame perfect equilibria.

However, these statements normally do not guarantee uniqueness.

Equilibrium Conditions. – Because the economic intuition is the same as 2× 2 case, I directly

summarize the the key results in the I × J games. The details of the derivation can be found in

the Appendix. I focus on a symmetric equilibrium. In the symmetric equilibrium, firms use pure

strategy and workers make the symmetric search decision. Such an equilibrium always exists.

Proposition 2 (Existence of Symmetric Equilibrium)

At least one symmetric subgame perfect equilibrium exists.

Proof. See Appendix

Homogeneous Productivity– Corollary 2.1 characterizes the unique symmetric equilibrium when

zj = z. In this unique equilibrium, firms post the same wage w∗ and workers apply to firms with

equal probability:

Corollary 2.1

There is a unique symmetric equilibrium if productivity is the same for all firms zj = z. In this equilibrium,
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workers apply to each firm with probability 1
J . Let µ = I

J be the exogenous worker-firm ratio in the economy.
The equilibrium wage is

w∗ = b + max{µ
(1− 1

J )
µJ(z− b)− c

1− (1− 1
J )

µJ − 1
J−1 (1−

1
J )

µJµ
, 0}

Proof. See Appendix

As a benchmark, I consider the limiting wage when J → ∞, and come back to check whether

this is the outcome of the limiting equilibrium.

lim
J→∞

w∗ = b + max
{

µ
e−µ

1− e−µ
(z− b)− µ

1
1− e−µ

c, 0
}

2.3 Lessons from the Finite Economy

In this section, I characterized a model of partially directed search in the finite economy. I

highlight two takeaways on the mechanisms: (i) costly directed search leads to a new type of

monopsony power and (ii) the cost of directing search leads to inefficiency. Next, I characterize

the equilibrium in the limiting economy when the population of workers and the population of

firms grow to infinity. The limiting economy allows us (i) to characterize the equilibrium wages

and allocations in closed-form and (ii) to focus on the inefficiency due to costly directed search

when the monopsony power due to the size of firms vanishes. I define and characterize the

limiting equilibrium, and show the allocations and wages in the finite economy converges to the

limiting equilibrium outcomes when the population grows to infinity.

3 Limiting Economy: Entropic Competitive Search

I have highlighted the mechanisms of a partially directed search model and the possible source

of inefficiencies. In this section, I study a limiting economy where the populations for both the

workers and the firms grow to infinity. The limiting economy allows us (i) to characterize the

equilibrium wages and allocations in closed-form and (ii) to focus on the inefficiency due to

costly directed search when the monopsony power due to the size of firms vanishes.

Setup – The economy has measure µ of workers and measure 1 of firms. Workers are indexed

by i ∈ [0, µ] and firms are indexed by j ∈ [0, 1]. Each firm has one vacant job to fill. When filled,

the job at firm j produces output zj.8 All agents have linear utility. If firm j hires a worker with

wage w, the firm will receive a payoff of zj−w and worker will receive a payoff of w. For workers

that fail to find a match, they receive the outside option of b. For firms that fail to find a match,

they receive the outside option of 0. Without loss of generality, I assume zj′ ≥ zj when j′ > j.

8As a slight abuse of notation, I will use subscript to denote mapping from firm identity to outcomes to be
consistent with the finite economy
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To make the limiting economy more general to incorporate other frictions, the matching

process is characterized by a generalized matching function n(q), where q is the queue length at

a firm and n(q) is the probability of this firm meeting a worker. For workers applying to this

very firm, their probability of meeting the firm is m(q) = qn(q). First, I assume n′(q) > 0 and

m′(q) < 0. When there are more workers applying to the same firm, the firm have a higher

chance of meeting workers and workers have a lesser chance of finding a job. Addtionally,

I assume n′′(q) < 0 and m′′(q) > 0. When there are more workers applying, the marginal

return of job filling probability to applicants declines. This concavity assumption captures the

congestion in the labor search process. Additionally I define ε(q) = n′(q)
m(q) to be the elasticity of

job filling probability to queue. This elasticity measures the contribution of a marginal worker to

the matching process. From the assumption on n and m, ε(q) is decreasing in q: The contribution

of a marginal applicant to a match is smaller when there are more workers applying to the same

firm. This generalized matching process nests the matching process in the finite game as a special

case. This special case is referred to as the urn-ball matching process in the search literature.9

I return to the urn-ball process in the discussion of convergence from finite games to limiting

equilibrium.

The wage posting game unfolds in the same order as the finite economy. Here, I note the

difference in the limiting economy. Because I are now defining an economy with a continuum of

firms, I need to adapt the definition of search strategy and the cost of directing search. Workers’

search strategy is a CDF on the interval of [0, 1]. Define this CDF as Aj. The cost of directing

search is the K-L divergence between chosen search strategy Aj and the random search strategy

on the continuum of firms. Formally, it is calculated based on the Radon-Nikodym derivative of

Aj with respect to the uniform distribution on [0, 1].10 For the Radon-Nikodym derivative to be

well-defined, Aj needs to be absolutely continuous with respect to the uniform distribution (the

Lebesgue Measure on [0, 1]), meaning it has the probability density function aj on [0, 1]. I will

restrict attention to continuous distribution and use the following definition for cost of directing

search:

Cost of Directing Search = c
∫ 1

0
aj log ajdj.

It is not restrictive to focus on continuous distributions. I made this restriction to maintain

mathematical coherence. Economically, it is not a very restrictive assumption, if I approximate

the degenerate distribution as the limit of continuous distributions with shrinking supports.

Although I cannot directly define the K-L divergence between a discrete distribution and a con-

tinuous distribution, I can take the limit of the cost associated with the sequence of continuous

distributions as the cost for degenerate distribution. The K-L divergence asymptotes to infinity

9More specifically, when there are I workers that apply to a firm with probability Q, the probability of this firm

meets a worker is 1− (1− Q)I and the probability that a worker gets an offer from this firm is 1−(1−Q)I

IQ . As I → ∞

holding IQ = q, these two probabilities limit to n(q) = 1− e−q and m(q) = 1−e−q

q
10Radon-Nikodym derivative is f j such that AJ =

∫
J f jdVj for any J ⊂ Ω([0, 1])
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when the support shrinks. For this reason, I can exclude degenerate distributions from the choice

set of workers.

3.1 Subgame Equilibrium

As a primitive step, I first analyze the subgame given any wage profile w. Worker’s problem is

as in equation 6. Workers take as given the wage profile w : [0, 1] 7→ [b, maxj zj] and choose the

probability density function of applying to firm j, to maximize their payoffs:

ae = arg max
a

∫ 1

0
m(qj)max{wj − b, 0}ajdj− c

∫ 1

0
aj log ajdj, (6)

s.t. ∫ 1

0
ajdj = 1.

The optimal search decision of the workers is characterized by the first-order condition as in

equation 7:

m(qj)max{wj − b, 0} − c log aj = V. (7)

Workers equalize the net benefit of applying to every firm to a constant V. This constant is the

multiplier for the constraint
∫ 1

0 ajdj = 1 adding a constant c. With K-L divergence, V is also the

expected net payoff before workers send out any applications.11 From here on, I will refer to V
as the market utility of workers, or the expected value of search.

Similar to the subgame perfect notion in the finite games, the workers’ optimal search decision

regulates the mapping from wage to queues for the firms. To derive this mapping, I impose qj =

µaj based on the symmetric equilibrium refinement. The queue at firm j equals the exogenous

measure of workers and the probability that each of them applies to firm j. Equation 8 defines

the subgame equilibrium mapping from wage to queue:

m(q)max{w− b, 0} − c log
q
µ
= V. (8)

To mimic the subgame perfect equilibrium in the finite economies, I further require equation 8

to hold for all w ∈ [b, maxj zj], even for the off-equilibrium wages. The solution to equation 8 is

unique for every w, given a fixed market utility V. Define this solution as Q(w; V). This is the

labor supply curve in the limiting economy.

3.2 Equilibrium Definition

The equilibrium in the limiting economy inherits the spirit of competitive search models, in that

firms take the wage-queue mapping in equilibrium as given to maximize their payoffs. Yet it

11To see this: Integrate the first-order condition in 7 with weight aj I get: V =
∫ 1

0 m(qj)max{wj − b, 0}ajdj −
c
∫ 1

0 aj log ajdj.
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differs in the assumption on how much information is available to workers.12 Because the cost

of directing search is rooted in Shannon’s entropy, I refer to this new equilibrium concept as

the entropic competitive search equilibrium. The entropic competitive search equilibrium is a tuple

{we, qe, Ve}, where we
j is the wage posted by firm j, qe

j is the equilibrium queue at firm j, and Ve

is the market utility of workers.

Definition 2 gives the conditions for an entropic competitive search equilibrium. Condition

(i) requires that we
j maximizes the profit of firm j given the labor supply curve as defined in

equation 8 and the market utility of workers Ve. Condition (ii) requires that qe
j is consistent with

the subgame equilibrium given we where all workers maximize their payoff and behave sym-

metrically. Condition (iii) requires that given the market utility Ve and the corresponding queue

qe, the total measure of applicants equals the exogenous measure of workers. The competitive

nature of this equilibrium is that the firms take the market utility Ve as given. However, they

have monopsony power: A higher wage does lead to a longer queue. This monopsony power is

summarized by the elasticity of the labor supply curve Q(w; Ve).

Definition 2 (Entropic Competitive Search Equilibrium)

An entropic competitive search equilibrium is {we, qe, Ve} such that the following conditions hold:
(i). (optimal posting) we

j solves firm j’s profit maximization problem given Q(w; Ve):

we
j = arg max

w∈[b,zj]

n(Q(w; Ve))(zj − w),

(ii). (optimal search) qe is consistent with the subgame equilibrium given we

qe
j = Q(we

j ; Ve)

(iii). (market clearing) the total measure of queue equal the exogenous measure of workers:

∫ 1

0
qe

j dj = µ.

For all w ∈ [b, maxj zj], Q(w; Ve) is the solution to the following equation:

m(q)max{w− b, 0} − c log
q
µ
= Ve.

3.3 Equilibrium Characterization

First consider firm j’s problem given the equilibrium market utility Ve. Firm j faces a constrained

optimization problem as in equation (9):

max
w

n(q)(zj − w), (9)

12In competitive search equilibrium, workers have full information.
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s.t.

q = Q(w; Ve),

w ≥ b.

The profit of firm j is the probability of hiring n(q) times the profit per worker zj−w. The feasible

combinations of (q, w) must be consistent with the labor supply curve given the equilibrium

market utility Ve. Additionally, the firm faces the participation constraint on wage w ≥ b.

Instead of writing the problem is terms of the wage w, I rewrite the problem in terms of

queue qj. Utilizing the property of the matching function n(q) = qm(q) and the definition of

labor supply curve Q(w; Ve), the firm’s problem in terms of q is:

max
q

n(q)(zj − b)− q(Ve + c log
q
µ
), (10)

s.t.

Ve + c log
q
µ
≥ 0.

Equation 10 allows us to interpret the entropic competitive search equilibrium in a different way.

Firm j makes the optimal input decision to maximize its profit. The input is queue, the number

of applicants. Inputting q units of queue leads to output of n(q)(zj − b). The cost of production

has two components: (i) a market price for applicants Ve and (ii) a convex cost of increasing

the input c log q
µ . These two components highlights the competitive nature and the monopsonic

nature of the entropic competitive search equilibrium. Firm j’s problem has a strictly concave

profit function and a convex choice set. There is a unique qe
j that maximizes firm j’s profit, as in

the first-order condition:

n′(qe
j )(zj − b)︸ ︷︷ ︸
MPL

− c(1−
γj

qj
)︸ ︷︷ ︸

Markdown

= Ve + c log
qe

j

µ︸ ︷︷ ︸
ACL

, (11)

where

γj ≥ 0,

γj = 0 if Ve + c log
qe

j

µ
> 0.

The marginal value of an additional applicant is n′(qe
j )(zj − b), the marginal increase of job

filling probability multiplied by the gain from trade. The average cost of one applicant is Ve +

c log
qe

j
µ , the market utility plus the cost of directing search. Due to the cost of directing search,

there is a markdown c(1− γj
qj
), where γj is the multiplier on the workers’ participation constraint.

When the participation constraint is slack, firms post a wage strictly above workers’ outside

option. In this case, firm j extracts a constant markdown c. When the participation constraint is
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binding, firms post a wage that equal workers’ outside option. In this case, firm j’s markdown

depends on its productivity.

Now I can characterize the equilibrium wage from firm j by inverting the labor supply

curve. With the definition of labor supply curve in equation 8, The average cost of applicant

is m(qe
j )(w

e
j − b)+. Combining this result with the optimal queue decision of firm j, I reach the

following equation for equilibrium wage from firm j:

we
j = b + max

{
ε(qe

j )(zj − b)− c
m(qe

j )
, 0

}
. (12)

Workers are first compensated for their contribution to the matching process. Their share

from the gains from trade is ε(qe
j )(zj − b). Due to the cost of directing search, firm j also extracts

markdown c
m(qe

j )
in wage unit. The participation constraint requires that the wage increment at

firm j cannot be negative.

Next I establish the existence and uniqueness of the entropic competitive search equilibrium.

The existence of equilibrium in this market relies on: (i) the continuity of the firm’s optimal

input in the market price; (ii) when the market price is 0, all firms demand a queue that is

weakly larger than µ; (iii) When the market price is the highest productivity in the market,

all firms demand a queue that is weakly smaller than µ. The uniqueness of equilibrium is

based on the law of demand for applicants. From equation 11, the optimal input decision is

weakly increasing in Ve, and strictly increasing in Ve if the participation constraint w ≥ b is not

binding. As the market utility increases, the marginal applicant becomes more expensive. Firms

respond by attracting less applicants. Because firms’ profit maximization problem is concave,

the optimal queue decision qe
j is continuous in the market utility V. The aggregate measure

of applicants follows the law of demand: When market utility increases, the aggregate queue

strictly decreases. Proposition 3 formally states the existence and uniqueness of the entropic

competitive search equilibrium.

Proposition 3 (Existence and Uniqueness of ECSE)

There is a unique Entropic competitive search equilibrium.

Proof. See Appendix

How do equilibrium queues and wages depend on the productivities of firms? Equation 11

and equation 12 imply that more productive firms post higher wages and attract longer queues.

All firms face the same upward-sloping labor supply curve. For the more productive firms,

a marginal applicant is more valuable given the same level of queue. Therefore, the profit-

maximizing queue for more productive firms must be higher than less productive firms. In order

to attract a longer queue, more productive firms must promise workers higher levels of expected

payoffs of applying. Workers are compensated by the job finding probability and the wage. As
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queues are longer at more productive firms, job finding probabilities are lower at these firms. In

order to attract a longer queue, more productive firms must promise higher wages.

Corollary 3.1 (Productivity and Equilibrium Outcome)

Let w(z) and q(z) be the equilibrium wage and queue given productivity z. if z > z′:

w(z) ≥ w(z′)

q(z) ≥ q(z′)

with strict inequality if w(z) > b.

Proof. The discussion so far already established the statement.

How do equilibrium queues and wages depend on the cost of directing search? Corollary

3.2 establishes an important result for our understanding of the equilibrium outcome. Fix the

the distribution of productivity in the economy, for every firm j, there is a threshold of cost

of directing search, above which wj = b and firm j extracts a markdown that is below the

unconstrained constant markdown c in the equilibrium. This threshold is increasing in firm j’s
productivity. This is a novel result: costly directed search interacts with the offer acceptance

decision of workers, which generates endogenous dispersion of markdowns across firms. This is

a similar result to 1.2, rephrased in the limiting economy.

Corollary 3.2 (Cost of Directing Search and Equilibrium Outcome)

Assume n(q) has Inada condition: limq→0 n′(q) = ∞ and limq→∞ n′(q) = 0. For a given productivity
distribution zj, denote {q(z; c), γ(z; c), w(z; c)} the equilibrium queue, multiplier to the participation
constraint, and wage for a firm with productivity z in an equilibrium with cost c. For every z < ∞, there
is 0 < c̄(z) < ∞ such that:
if c ≥ c̄(z)

γ(z; c) ≥ 0

w(z; c) = b

if c < c̄(z)
γ(z; c) = 0

w(z; c) > b

Moreover, c̄(z2) > c̄(z1) if z2 > z1.

Proof. See Appendix
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3.4 Partially Directed Search and Standard Monopsony Models

This section rewrites the firms’ problem in terms of expected hiring n instead of queue length. To

do so serves two purpose. First, it makes clear the origins of market power in a partially directed

search model. Second, this steps relate a partially directed search model to a standard model

of monopsony. The partially directed search model provides an alternative interpretation of the

labor supply elasticity estimated from these models. To prepare the notations, I define the the

inverse function of the job-filling probability to be g(n). This function maps the expected hirings

into the number of application per firm:

g(N) = n−1(N).

Let W(n; V, c) be the wage a firm needs to pay if it plans to hire n workers when the market

utility is V. Inverting the optimal decision of workers I get a labor supply curve:

W(n; V, c) = b +
g(n)

n

(
V + c log g(n)

)
. (13)

Given the market utility, firm j’s problem is as in equation 13. Firm j decides on the number of

workers to hire. Hiring n workers produces nzj and incurs a total labor cost of nW(n; V, c). A

constraint is in place for the firm’s problem. It reflects the fact workers always have the option

to walk away from potential matches. So firms can never hire any one if they promise a wage

below b. This formulation makes it clear the role of outside option in the partially directed search

model: Workers’ outside option is a potentially binding "minimum" wage.

max
n

zjn− nW(n; V, c), (14)

s.t.

W(n; V, c) ≥ b.

To analyze the firm’s problem, I first derive the marginal cost curve MC(n; V, c):

MC(n; V, c) = W(n; V, c) + nW ′(n; V, c) = b + g′(n)
(

V + c log g(n)
)
+ g′(n)c

The marginal cost has two components, the first component reflects the contribution of a marginal

worker to the matching process at firm j. In order to hire extra worker, the firm has to compensate

workers their outside option b and their contribution to the matching process. Due to the cost in

directing search, the red component reflects the market power due to cost of directing search. I

will define Ws(n; V, c) as the social value component:

Ws(n; V, c) = W(n; V, c) + nW ′(n; V, c) = b + g′(n)
(

V + c log g(n)
)

.
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(a) Productive Firms with c > 0 (b) Unparoductive Firms with c > 0

(c) c = ∞ (d) c = 0

Figure 5: Supply Demand Diagram for Fixed V

Figure 5 plots the labor supply and labor demand curve given fixed V. Panel (a) is the case

with a positive cost of directing search for a productive firm. The labor supply curve is in pink.

Any wage below worker’s outside option results in zero employment, so the labor supply curve

is bounded below by b. For the employment that results in a wage above b, the labor supply

curve is upward-sloping. (The segment below is not necessarily increasing due to the functional

form of K-L divergence; however, it does not matter because of the constraint). The social value

function of marginal worker Ws is in green and is above the labor supply curve, reflecting the

search friction in the economy. To hire additional worker, the firm has to attract more than one

applicants, which changes the matching probability of everyone applying to the same firm. The
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marginal cost of hiring additional worker, MC, is further above Ws reflecting the cost of directing

search. There is a discontinuous jump of marginal cost curve. For the units of employment lower

than threshold AC = b, all units must be hired at a constant cost (b), so there is no distortion

between marginal and average cost. Beyond this threshold, the marginal cost jumps up because

in order to hire more the firm offers a higher wage, for every job searcher in the market.

To find the optimal input of the firm, I look for the crossing point of marginal productivity zj

and the marginal cost of recruiting MC. The level of employment is optimal for firm j because

the marginal benefit equals the marginal cost. The wage offered to workers is the wage required

to hire n∗j workers. The wage is below marginal product for two reasons: (1) the markdown due

to search friction. Firms need to be compensated for creating jobs (the gap between MC curve

and Ws curve); (2) the markdown due to the cost of directing search (the gap between Ws and W
curve). It is evident that the markdown due to the oligopoly competition vanishes in the entropic

competitive search equilibrium.

Panel (b) plots the input decision of an unproductive firm for the same cost of directing

search. For this firm, productivity is low enough that the optimal employment is at the threshold

AC = b. At this point, social value and wage function coincide, because there is the first unit that

firm j decides to post higher wage in order to hire more. Firm j takes all the gains from trade

and workers get paid their outside option.

Panel (c) plots the case c→ ∞. In this case, distorting search is infinitely costly. To hire more

workers than the exogenous queue µ, the firm needs to post an infinite wage, which can never be

optimal if yj < ∞. In this case, both firms (productive and unproductive) offer workers’ outside

option, and extract all the gains from trade.

Panel (c) plots the case c → 0. In this case, the labor supply curve and the social value curve

always coincide. Firms and workers both get their contributions to the matching process. There

is no bunching at workers’ outside option because a relatively more productive firm can always

differentiate itself from an unproductive firm. Because search is costless, posting a slightly higher

wage attracts strictly more workers.

3.5 Convergence of Finite Games to Entropic Competitive Search Equilibrium

This section establishes the convergence of the subgame perfect equilibrium in wage posting

games with finite population to entropic competitive search, when the number of firms grows to

infinity and the number of workers grows proportionally to firm population. The finite game is

based on the urn-ball matching process. This matching process converges to a matching function

of n(q) = 1− e−q. The plan of this section is to show that as the population of workers and

firms grows to infinity, the subgame perfect equilibrium outcome converges to the outcome of

the entropic competitive search equilibrium with matching function n(q) = 1− e−q and the same

productivity distribution.

Homogeneous Firms – I start with the case without firm heterogeneity. This case is easy to
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study because the outcome of both the subgame perfect equilibrium and the entropic competitive

search equilibrium can be solved in closed form. From equation (11) and equation (12), In

the entropic competitive search equilibrium with homogeneous firms, the equilibrium queue

length is qj = µ and the equilibrium wage is b + max
{

µ e−µ

1−e−µ (z− b)− µ 1
1−e−µ c, 0

}
. This wage is

exactly the limit of subgame perfect equilibrium outcome from corollary 2.1. Thus the outcome

of subgame perfect equilibrium with homogeneous firms indeed converges to the outcome of

entropic competitive search equilibrium with homogeneous firms.

Heterogeneous Firms – Showing convergence with heterogeneous firms is more complex. I

cannot rely on the closed-form solution of equilibrium wages from the finite games. To make

the notion of convergence explicit, consider a sequence of finite economies with growing pop-

ulations and the same productivity distribution. Start with any finite economy economy with

I workers, J firms, outside option b, and productivity z = (z1, ..., zJ). For any positive integer

t, define the t−replica economy as an finite economy with tI workers, tJ firms, outside option

b, and productivity zt = ∪t(z1, ..., zJ). As shown in proposition 2, there is at least one symmet-

ric subgame perfect equilibrium. Denote (one of) the equilibrium allocations and wages in the

t−replica economy as (qt, wt). Correspondingly, we can derive the unique entropic competitive

search equilibrium in the limiting economy with measure µ = I
J workers, measure 1 of firms,

and the productivity distribution according to zt = (z1, ..., zJ). Define the equilibrium queue and

wage as (q∞, w∞), where (q∞
j , w∞

j ) is the equilibrium outcome for a firm with productivity zj in

the limiting equilibrium.

Economically, by convergence, I mean the equilibrium queue and wage of a firm with pro-

ductivity zj limits to the outcome of an identical firm in the limiting equilibrium. Mathematically,

for the sequence of finite game outcomes {qt, wt}t, there is at least one subsequence {qt′ , wt′}t′

such that as t′ → ∞, for every j:
wt′

j → w∞
j ,

tIqt′
j → q∞

j .

Because (qt, wt) is the outcome of the symmetric subgame perfect equilibrium in the t-replica

economy, the marginal benefit of applying to every firm must equal. Therefore, we can find a

unique market utility Vt such that for ∀j:

Vt =
1− (1− qt

j)
tI

tIqt
j

(wj − b)+ − c log
qt

j

1/(tJ)
.

Lemma 3 is the key step to establish convergence. If the market utility Vt converges to a limit V∞,

then the optimal choice of queue and wage for a firm with productivity zj must also converges

to the solution to the firm’s problem with the same productivity zj, given market utility V∞ in

the limiting equilibrium. This result is an application of the Maximum Theorem. Firm’s problem

is strictly concave. Therefore, the optimal posting decision in the finite games is continuous in
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its parameters (t, Vt, qt, wt). The limit of these optimal solutions is the solution to the first-order

condition when t goes to infinity. In the limit, the impact of any marginal firm on market utility

Vt vanishes, and the matching probabilities limit to the urn-ball matching function.

Lemma 3 (Convergence of Firm’s Optimization Problem)

If Vt → V∞ as t→ ∞, then (wt
j, tIqt

j) converges to (w̃j, q̃j) such that

(q̃j, w̃j) = arg max
q,w

(1− e−q)(zj − w),

s.t.
1− e−q

q
(w− b)+ − c log

q
µ
= V∞.

Proof. See Appendix

Proposition 4 is a natural extension of convergence in Lemma 3. Proposition 4 shows that

(i) there exists a subsequence of the replica economies whose equilibrium outcomes converges

and (ii) every convergent subsequence must has the outcome of the entropic competitive search

equilibrium as limit. I make statement only on subsequences of the replica economies because

multiple subgame equilibria might exist for the same firm-worker population and productivity

distribution. First, the sequence of equilibrium market utility {Vt}t is a bounded sequence, be-

cause the equilibrium wages cannot exceed the productivities of firms and worker’s optimization

will never make the market utility negative infinity. I can always find a convergent subsequence

{Vt′}t′ . For this convergent subsequence, the conditions for Lemma 3 is satisfied. The only step

is to show that the limit V∞ must also clears the market for applicants in the corresponding lim-

iting economy, because of the continuity of firm strategies in market utility Vt. This argument

establishes the existence of convergent subsequence of equilibrium outcomes. Second, the en-

tropic competitive search equilibrium is unique given any productivity distribution. Therefore,

every convergent subsequence of the replica economies must has the outcome of this unique en-

tropic competitive search equilibrium as limit. Conversely, for every entropic competitive search

equilibrium with discrete productivity distribution, we can find a sequence of replica economy

whose outcomes converge to the equilibrium of this entropic competitive search equilibrium.

Proposition 4 (Convergence of Equilibrium with Discrete Distributions)

1. For a sequence of the symmetric subgame perfect equilibrium outcomes {wt, qt}t, there exists at least
one subsequence {wt′ , qt′}t′ such that for ∀j:

wt′
j → w∞

j ,

t′ Iqt′
j → q∞

j .

2. For every entropic competitive search equilibrium with discrete productivity distribution, we can find a
sequence of finite economies with the same productivity distribution such that the equilibrium converges.
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Proof. See Appendix

The discussion so far assumes the share of productivity stays constant when I take population

to infinity. This result offers us an interpretation of entropic competitive search equilibrium with

discrete distribution of productivity. The following result shows if a sequence of productivity

distribution converges weakly to a limit, then the associated equilibrium outcomes in distribution

also converges to the equilibrium with limiting distribution. So an entropic competitive search

equilibrium with continuous distribution can be interpreted as the limit of equilibria with discrete

distributions. Intuitively, this result comes from the 2 features of the limiting equilibrium: First,

fact firms only interact with the market through market utility V; Second, the optimal posting

solution is continuous in the market utility. If the market utility converges, the solution of firm’s

problem also converges. The market clearing condition in equivalent problem implies the market

utility will converge in this case, which justifies the assumption.

First, I show for any finite economy, the queues at the subgame perfect equilibrium keeping

the distribution of firm productivities unchanged, the equilibrium outcome in finite games con-

verges to entropic competitive search equilibrium with the same productivity distribution. The

first step shows that an entropic competitive search equilibrium with discrete distribution of firm

productivities can be interpret as the limit of finite games with the same distribution. Second,

I show if the productivity distribution converges weakly to a limiting distribution (potentially

continuous), the corresponding equilibrium queues and equilibrium wages also converges. The

second step shows that an entropic competitive search equilibrium with continuous productivity

distribution can be interpreted as the limit of equilibria with discrete distributions.

Proposition 5 (Convergence of ECSE in productivity distribution)

Fix (b, µ), zn
j

d→ z∗j , and (qn
j , wn

j ) is the associated equilibrium outcome given zn
j . Then qn

j
d→ q∗j and

wn
j

d→ w∗j , where (q∗j , w∗j ) is the associated equilibrium outcome with z∗j

Proof. See Appendix

4 Efficiency

I have characterized the allocations and wages in the unique limiting equilibrium. To understand

the implications of the monopsony due to costly directed search on policies such as minimum

wage, it is important to understand the efficiency property of the market equilibrium. This

section discusses the efficiency property of the entropic competitive search equilibrium. The

efficient allocation maximizes the net output of the economy taking into consideration of the

cost of directing search and search friction. Because the equilibrium allocation only depends on

zj − b, from here on, I will normalize b = 0 to simplify the notations.
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4.1 Efficient Allocation

The planner instructs workers to apply to firms with distribution aj. Due to lack of coordination,

the planner needs to instruct all workers to apply with the same strategy.13 The net output of the

economy equals the sum of outputs from different firms minus the cost of directing search of all

workers. The first constraint requires that the search strategy the social planner picks has to be

an appropriately defined distribution. The second constraint states that the queue length at firm

j is formed as the measure of workers in the economy times the probability of workers applying

to a specific firm j.

max
aj

∫ 1

0
n(qj)zjdj− cµ

∫ 1

0
aj log ajdj,

s.t.

∫ 1

0
ajdj = 1,

qj = µaj.

The planner’s problem is strictly convex: the objective function is concave and the constraints

are linear. Similar to the characterization of the entropic competitive search equilibrium, I can use

the definition of queue length to rewrite the social planner’s problem. The first-order condition

on the queue length at firm j characterizes the unique optimal allocation. Denote the solution to

this planner’s solution as q∗j . It has to solve equation system 15:

n′(q∗j )zj − c log
q∗j
µ

= V∗, (15)

∫ 1

0
q∗j dj = µ.

When the marginal worker applies to firm j, the probability of a match for firm j increases by

n′(q∗j ). However, distorting search away fro firm distribution is costly. c log
q∗j
µ measures the

marginal cost of directing search. The socially optimal allocation must equalize the benefit and

cost of applying to firm j.

4.2 Efficiency Property of Equilibrium

I compare the allocation from the entropic competitive search equilibrium to the constrained

efficient outcome. Equation (16) summarizes the allocation from the entropic competitive search

equilibrium:

n′(qe
j )zj − c log

qe
j

µ
− c(1−

γj

qj
) = Ve, (16)

13For example, planner cannot instruct half of workers to apply to firms [0, 0.5] and the other half to [0.5, 1].

34



∫ 1

0
qe

j dj = µ.

Compared to the social planner’s calculation, firms extract a constant markdown c in expectation,

the markdown due to cost of directing search, from each applicant. γj is the multiplier on the

participation constraint of workers wj ≥ b. When this constraint binds, γj is positive. Otherwise,

γj = 0.

By comparing the allocation of the entropic competitive search equilibrium to the allocation

of the planner’s solution, I reach the following welfare theorems of partially directed search

environment in proposition 4.1.

Proposition 6 (Welfare Theorems of Partially Directed Search Model)

If zj = z, the entropic competitive search equilibrium is constrained efficient.
Otherwise:
1. If γj = 0 almost surely, the entropic competitive search equilibrium is constrained efficient.
2. If γj > 0 for a positive measure of firms, the entropic competitive search equilibrium is inefficient.

First, consider γj = 0 for all firms. In this case, all firms promise wages strictly above workers’

outside option. The markdown due to cost of directing search does not lead to inefficiency. The

equilibrium outcome is the same as the constrained efficient outcome, because the markdown on

wages becomes a level shift on the the market utility for applicants. For any solution to the social

planner’s problem, relabel Ve = V∗ − c. Given this Ve, the equilibrium queues are identical to

the planner’s solution and the market clears for applicants. Because the solution to planner’s

problem and the equilibrium outcome are both unique, I showed the social planner’s solution is

identical to the allocation from the entropic competitive search equilibrium.

In traditional monopsony models of the labor market (Robinson, 1969), market power leads

to inefficiency. Here, I find a case where market power leads to pure rent extraction: It only

affects the rent sharing between workers and firms, not the allocation efficiency. Why? In the

traditional models of monopsony, firms face an upward-sloping labor supply curve because they

are mutiworker firms with wage-setting power. To hire one more worker, they raise the market

wage and have to pay all the existing workers within the firm a higher wage. The optimal choice

of a monopsonistic firm is to ration on employment. They hire below the competitive level

to avoid inflating wages within incumbent workers. The wedge between the socially efficient

allocation and the market equilibrium with monopsony is on the margin of work or leisure in

the traditional models.

In the model of costly directed search, firms face upward-sloping supply curves for a different

reason: The cost of directing search weakens competition across firms. Firms set wages to attract

workers. When the cost of directing search is high, the return to setting a higher wage decreases.

Firms do extract markdown due to the costly directed search. However, this markdown does
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not lead to distortion when every firm extracts the same markdown. This result comes from the

general equilibrium force. Conditional on the same market price for applicants (V), the upward-

sloping supply curve leads to a lower level of queue length and lower wage. However, a lower

wage length from every firm decreases workers’ market utility from the market. The drop in the

market utility makes it less costly for each firm to attract more applicants. It turns out with the

specific cost function of K-L divergence, the underemployment and the general equilibrium forces

cancel out. The potential wedge between the planner’s solution and the market equilibrium is on

the margin of which firm to work for. If all firms extract the same markdown, workers’ search

decision is not distorted by monopsony.

When γj > 0 for positive measure of firms, the market equilibrium is inefficient. In this

case, a positive measure of firms are bounded by the constraint wj ≥ b and bunch at workers’

outside option. The participation constraint of workers forces unproductive firms to extract less

markdown, because their unconstrained optimal wage is below workers’ outside option. (If they

can, they want workers to pay for a match.) As a result, the markdown is unevenly distributed

among firms. Markdown at firm j decreases the payoff for workers to apply to firm j. When

the markdowns at the productive firms are lower than the markdowns at the productive firms,

the incentive of applying to different firms is distorted. Productive firms have more markdown

and attract fewer workers than socially optimal; Unproductive firms have less markdown and

attract more workers than socially optimal. As a result, the market equilibrium is inefficient. The

discussion of efficiency highlights the following message: uneven markdown leads to distortion.

The partially directed search environment endogenously generates this type of inefficiency, when

the unproductive firms are forced to extract lower markdowns.

This a novel type of inefficiency in partially directed search model. When the cost is zero,

the market equilibrium is always efficient, as the markdowns are uniformly zero across all firms.

When the cost is infinity, the market equilibrium is also efficient, as both the planner’s solution

and the market equilibrium allocation are random search.

4.3 Policy Implications

With the welfare theorem in hand, I can analyze the implications for policies in a clear way. To

recap, the efficiency of an entropic competitive search equilibrium depends on whether mark-

downs are equalized across firms. Inefficiency of the market equilibrium is due to unproductive

firms being bounded by participation constraint w ≥ b and attracting to many applicants than

socially optimal.

Minimum Wage

Firms’ market power in the labor market is one important rationale behind the minimum wage.

In a size-based monopsony model, firms internalize their impact on aggregate labor supply and
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pay a wage below the competitive wage level. A binding minimum can increase the wage without

decreasing employment. In the partially directed search model, firms also have market power.

However, minimum wage leads to efficiency loss. An increase in the binding minimum wage

tightens the participation constraint and forces the markdown at unproductive firms to be even

lower. As a result, an increase in the minimum wage reallocates workers from productive firms to

unproductive firms. This is a further deviation from the socially efficient allocation. Meanwhile,

the reallocation effect leads to an increase in employment and an ambiguous effect on average

wage.

Suppose the minimum wages in the range minj we
j < w < minj zj. Given a minimum wage

in this range, some firms need to increase their wages. However, as w < minj zj, all firms are

still making positive profits in equilibrium, so they stay active. This restriction helps isolate the

reallocation effect of minimum wage in a partially directed search environment, and assume

away the entry margins.

The only difference between the case with a binding minimum wage and the baseline environ-

ment is that firms now face a tighter constraint on the wage to w ≥ w > 0. The characterization

of the entropic competitive search equilibrium is otherwise identical to the baseline model:

max
w,q

n(q)[zj − w],

s.t.

m(q)w− c log
q
µ
= Ve.

w ≥ w

In an equilibrium with a binding minimum wage, firms are divided into two groups accord-

ing to their productivities. The first group of firms are less productive. The optimal wage for

these firms is below the minimum wage. Because these wages are not feasible, they post the

minimum wage and attracts the corresponding queue q. The second group of firms are more

productive. They are not constrained by minimum wage. The two types of firms are separated

by a threshold productivity z̄, with which the firm’s optimal wage to post is exactly the min-

imum wage. Firms with z < z̄ are constrained by minimum wage and firms with z ≥ z̄ are

unconstrained by minimum wage.

When the minimum wage increases, more firms become constrained. The threshold produc-

tivity z̄ increases. All firms below the new threshold are now forced to pay a higher wage. When

the constrained firms post a higher wage, the market utility increases for workers. The uncon-

strained firms will also post higher wages, because they now face more competitions. As a result,

posted wages increase for every firm after a minimum wage hike. Workers reallocate from the

productive firms to the unproductive firms because the unproductive firms now extract a even

lower markdown than the productive firms.
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Proposition 7 (Effect of Minimum Wage on Equilibrium Outcome)

For w1, w2 ∈ [minj we
j , minj zj]. Denote the equilibrium outcome associated with minimum wage w as

qe(w), we(w) and the cutoff productivity as z̄(w). For w1 > w2,
1. posted wages increase in minimum wage

we(w1) > we(w2).

2. reallocation from productive to unproductive firms

z̄(w1) > z̄(w2).

For zj ≥ z̄(w1):
qe

j (w1) < qe
j (w2).

Proof. See Appendix.

Now, I aggregate the impacts on firm-level outcomes to the impact on aggregate efficiency.

Differentiating the planner’s objective function with respect to the minimum wage I get the

following response of welfare to the minimum wage, as in equation 17:

W′(w) = −c
∫ 1

0
γjdj + Ve

∫ 1

0

dqe
j

dw
dj = −c

∫ 1

0
γjdj. (17)

The first part of the equality is based on the optimal posting condition of firms. An increases

in minimum wage tightens the constraint on wages w ≥ w and also shifts the queue length

at different firms.14 The second equality comes from the market clearing for applicants. No

matter how minimum wage shifts queues, it must aggregate up to zero. I reach a form of

envelope condition for the welfare: the effect of minimum wage is the sum of the multiplier

on the constraint w ≥ w. Equation 17 is the key result of this section: An increase in the

binding minimum decreases efficiency of the equilibrium allocation, by creating more markdown

dispersion across firms.

Note that minimum wage is a popular policy not only because of its pro-efficiency benefit in

a standard monopsony. Many advocates for minimum wage stress its impact on redistribution

from firms to workers. In the partially directed search models, minimum wage creates a new

form of distortion: the minimum wage firms hire more often than is socially optimal. Policy-

makers face a tradeoff between equity (to increase wages of workers) and efficiency. Next, I

discuss the impact of a minimum wage hike on the aggregate employment and the average

wage.

Employment increases after a minimum wage hike, in line with the prediction of traditional

14Here, I slightly abuse the notation because the queue at threshold is not differentiable with respect to minimum
wage. The argument holds when will look at the left and right limit separately.
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monopsony models. However, this effect works through a very different mechanism. A higher

minimum wage reallocates applicants from the productive firms to the unproductive firms. The

productive firms have longer queue than the unproductive firms. Because of the search friction,

the reallocation of workers alleviates search frictions in aggregate, which increase aggregate job

finding probability. The average wage might increase or decrease after a minimum wage hike,

although the posted wages increase at all firms. This result is due to the compositional effect. A

minimum wage hike reallocates workers from high-wage firms to low-wage firms. The net effect

on average wage depends on the comparison between the change in posted wages and the shift

of worker allocation.

Corporate Income Tax

It is natural to ask whether an alternative policy instrument can alleviate the inefficiency while

achieving the goal of redistribution. This section provides one possible tax instrument can ac-

complish this task. Suppose the corporate income tax is T(π). A corporate income tax does not

change workers’ search decision. Therefore, the firms in the economy still face the same labor

supply curve. With the taxation, posting a wage w generates after-tax profit zj − w− T(zj − w)

for firm j. Equation 18 summarizes firm’s problem with an arbitrary tax policy (I assume the tax

function is well-behaved, and come back to verify):

max
w≥0,q

n(q)(zj − w− T(zj − w)), (18)

s.t.

m(q)w− c log q = V,

w ≥ 0.

The goal is to design the shape of the tax function T(π) that will decentralize the social planner’s

problem while guaranteeing the workers are paid their social values. I can indeed find corporate

income tax that implements the planner’s solution. Proposition 8 states that there is a budget-

balanced tax function that implements the planner’s solution. Moreover, with this tax function,

the equilibrium wage equals workers’ contribution to the matching process. Therefore,the tax

policy function also undoes the markdown due to the cost of directing search.

Take the shadow value of worker to the social planner V∗, derived from equation 15. The cor-

porate profit transfer scheme that implement the efficient allocation while undoing the monop-

sony should assign queues and wages according to:

n′(q̂j)zj − c log
q̂j

µ
= V∗,

ŵj = ε(q̂j)zj.
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Focus on the case wj > b. The first-order condition for firm j with the transfer scheme T(π),

given a market utility V∗ is:

n′(qj)zj − (V∗ + c log
qj

µ
)− c + τ(qj) = 0, (19)

where τ(qj) is the incidence due to the profit transfer:

τ(qj) =

(
c + (1− ε(qj))(V∗ + c log

qj

µ
)

)
T′(zj −

V∗ + c log qj
µ

m(qj)
)− n′(qj)T(zj −

V∗ + c log qj
µ

m(qj)
).

In order to make it optimal for firm j to post ŵj to attract a queue of q̂j, the transfer must be

designed such that τ(q̂j) = c. This result in a differential equation in tax function T(π), as

summarized in proposition 8:

Proposition 8 (Optimal Corporate Income Tax)

The following budget-balanced tax function implements the social planner’s solution:

T′(π) =
T(π) + c

n′(q(π))

π + c
n′(q(π))

,

∫ 1

0
T(πe

j )dj = 0,

where q(π) solves

m(q)
ε(q)

1− ε(q)
π − c log q = V∗.

Meanwhile workers are paid their social value:

we
j = ε(q∗j )zj.

The marginal tax rage is increasing in π:
T′′(π) > 0.

Proof. See Appendix

This transfer function starts as a subsidy and becomes a taxation when profit is high enough.

To see this, notice the transfer is increasing when T(π) > 0 . If the transfer function starts as a

tax, the budget cannot be balanced. Therefore, the transfer function must starts as a subsidy for

low-profit firms, T(0) < 0. The subsidy increases at first until it reach the threshold:

T(π̄) = − c
n′(q(π̄))

.

When profit is larger than this threshold, the marginal tax rate on profit becomes positive. The
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marginal tax rate is always below one. To see this, if there is some π with T′(π) > 1, there must

be a π̃ such that T(π′) = π′. This cannot happen because the transfer function starts at T(0) < 0

and T′(π) < 1 if T(π) < π. This transfer scheme is progressive (T′′(π) > 0), in that the marginal

tax rate (or negative subsidy rate) is increasing in the profit of a firm. By making higher profit

less attractive to the firm, the corporate income transfer function incentivizes firms to post higher

wage to workers.

The profit transfer policy redistributes from the productive firms to the unproductive firms

and the workers. The productive firms are the ones that gain high profit in the equilibrium. By

making extracting markdown less attractive, the transfer policy increase the posted wage at all

firms. Unproductive firms are running lower profit due to the higher posted wage. The transfer

policy then take the tax revenue from productive firms to subsidize the unproductive firms. By

doing so, this policy makes all firms steer away from the participation constraint w ≥ b and

equalizes the markdown across all firms to 0.

5 Micro-foundation: Rational Inattention

This paper is motivated by the limited information in job search process. In this section, I make

the link between a partially directed search model and limited information explicit. To do so, I

first introduce an environment where workers face uncertainty about the wage posted by firms.

Workers can reduce this uncertainty by acquiring information. Acquiring information is costly,

where the cost is proportional to the reduction in uncertainty measured by Shannon’s entropy.

This type of learning model belong to the models of rational inattention, a booming literature

since Sims (2003). I show a symmetric perfect Bayesian equilibrium in a posting game with

uncertainty and with rational inattention can be solved as a collection of the symmetric sub-

game perfect equilibrium without uncertainty and with costly directed search. For simplicity of

notation, I normalize b = 0.

5.1 Equivalence between Information Acquisition and Costly Directed Search

Setup – The production environment is identical to the case with the baseline model. There are

I workers and J firms. Workers are indexed by i = 1, ..., I and firms are indexed by j = 1, ..., J.

Each firm has one vacant job to fill. When filled, the job at firm j produces output zj. All agents

have linear utility. If firm j hires a worker with wage w, the firm will receive a payoff of zj − w
and worker will receive a payoff of w. For workers that fail to find a match, they receive their

outside option of b. For firms that fail to find a match, they receive their outside option of 0.

The model with rational inattention differs in its information environment. Trades unfold

in five stages. At the first stage, the vector of productivity of firms is z = (z1, ..., zJ), drawn

from i.i.d. distribution GZ(z), with finite support. At the second stage, firms observe the vector

of productivities and decide on the wages when they hire a worker, given all the competitors’
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wages.15 At the third stage, workers do not directly observe the wages offered by firms nor

their productivities. They can learn about the wages by paying a cost. Learning is modelled as

a distribution of signals conditional on the actual wages. After observing the signals, workers

make the decision of which firm to apply to maximize their expected payoffs. It is important to

stress the information structure. Firms observe their own productivity and take as given other

firms’ wage postings. Workers cannot observe the productivity or the wage offered by firms.

Both firms and workers understand the game: They understand the distribution of productivity,

the optimization problem each agent is solving and their information availability. After the

search decision is made, the matching stage and the hiring stage unfold as in the baseline cases.

Workers can observe the wage when they are making offer acceptance decision.

Cost of Acquiring Information – Workers form a belief about the wages offered by firms G(w) ∈
∆W, where ∆W is the set of Borel probability measure on W = [0, w̄]16. The learning decision

is a conditional distribution F(s|w) of signal s. Signals are generated from the same space of

wages: s ∈ RJ . I do not put any restriction on the conditional distribution F(s|w), other than

it is a proper CDF (
∫

s F(ds|w) = 1). This conditional distribution models the information

acquisition in job search. Workers might rely on various sources (e.g., LinkedIn and friends) to

gather information about the compensation at different firms, and these sources provide some

description of the wages. It might be noisy or precise. By putting effort into job search, workers

can gather more precise information about the wages at different firms.

Reducing the uncertainty about wages requires efforts. The cost of acquiring information is

proportional to the expected mutual information between the prior distribution of wages G(w)

and the posterior distribution of wages F(w|s). Mutual information is the difference between

uncertainty evaluated at the two distributions, using Shannon’s entropy:

Cost of Acquiring Information = c
(
H(G)− EsH(Fw|s)

)
,

H(F) = −
∫

w
f (w) log f (w)dw.

Shannon’s entropy is the expectation of negative logarithm of probability density, or the expected

information of a distribution. Using the negative logarithm of probability to measure information

satisfies four axioms of information (with a discrete distribution): (i) Monotonicity - more likely

events contains less information, (ii) Non-negativity, (iii) Events with certainty do not provide

information, and (iv) Additivity - Information from independent events are additive. Notice the

mutual information is always weakly larger than 0 and is minimized when prior and posterior

15It is an strong assumption to assume firms know the strategy of every competitor in the market; This assumption
is less stark n in large economy, because firms only need to know the distribution of productivity in the limiting
economy.

16I impose that wages are in bounded interval to make sure the expectations are defined.
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coincide.17

Equilibrium Definition – The equilibrium concept needs to be adapted to accommodate the

uncertainty of workers regarding firms’ wage postings. The natural concept is the perfect Bayesian
equilibrium (hereafter, PBE):

Definition 3 (Symmetric Perfect Bayesian Equilibrium with Information Acquisition)

A Symmetric Perfect Bayesian Equilibrium is a tuple
{

Ge(w), Fe(s|w), {q̃e
j (s)}j, we(z|z)

}
:

1. (Optimal Posting) we(z|z) maximizes the firm’s profit given Fe(s|w), {q̃e
j (s)}j and other firms use the

same strategy, if the firm has productivity z and the entire productivity profile is realized at z;
2. (Optimal Search) Fe(s|w), {q̃e

j (s)}j maximizes every worker’s payoff given belief Ge(w) and other
workers using the same strategy;
3. (Consistency) Ge(w) is satisfies the Bayes rule given the productivity distribution G(z) and we(z|z)
on the equilibrium path.

In a PBE, workers form a belief regarding firms’ equilibrium wage profiles according to Bayes

rule. Workers optimally choose how to learn about the wage profile and how to apply for jobs

based on their believes of the equilibrium wage profile. A subgame equilibrium is defined as

a collection of learning and search strategy that maximize every worker’s payoff given other

workers’ learning and search strategy, as well as the belief. Firms take as given the outcomes of

subgames and determine their optimal wage postings. I focus on a symmetric perfect Bayesian

equilibrium equilibrium where (i) workers adopt identical learning and search strategy and (ii)

firms adopt pure strategy (firms with the same productivity post the same wage).

Subgame Equilibrium – First characterize the subgame given any belief of wages Ge(w).18 A

symmetric subgame equilibrium is
{

Fe(s|w), {q̃e
j (s)}j

}
such that every worker finds it optimal

to adopt the equilibrium strategy when other workers do the same. Mathematically, it requires{
Fe(s|w), {q̃e

j (s)}j

}
solves the following fixed-point problem:

{
Fe(s|w), {q̃e

j (s)}j

}
= arg max

F(s|w),{q̃j(s)}j

∫
w

∫
s
∑

j

1− (1− qe
j )

I

Iqe
j

wjq̃j(s)F(ds|w)G(dw)

− c
(
H(G)− EsH(Fw|s)

)
,

s.t.

∑
j

q̃j(s) = 1,

∫
s

F(ds|w) = 1

17A result from Jensen’s inequality.
18All workers face the same trading environment, so they form the same consistent belief about wage profile on the

equilibrium path.
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qe
j (w) =

∫
s

q̃e
j (s)Fe(ds|w).

Given other workers’ use the equilibrium learning and search strategy {Fe(s|w), q̃e
j (s)}, the

probability of any individual worker applying to firm j is qe
j (w) =

∫
s qj(s)F(ds|w). This prob-

ability is crucial for the link between a perfect Bayesian equilibrium with rational inattention

and the subgame perfect equilibrium with observed wage postings and costly directed search.

First, it summarizes the probability that any other worker applying to the same firm and thus

is sufficient for the calculation of the job finding probability at every firm. Second, it has the

interpretation of a recommendation signal.

Suppose I restrict the feasible set of signal structures to be signals that directly suggest

whether to apply to firm j. Workers are free to choose the probability of these recommendation

signals, with the restriction that the probabilities of recommendations add up to 1. Restricting

attention to these recommendation signal is without loss of generality. In other words, any sig-

nal structure combined with optimal search decision can be represented as a recommendation

signal directly telling workers where to apply that is always followed by workers. This result is

similar to the logic of the revelation principle. In the setting of rational inattention, this result

comes from two features of the learning and search decision: (1) The conditional distribution of

signals and the search decision enter multiplicatively into the expected income and (2) the cost

of acquiring information from Shannon’s entropy has a chain rule.19 This result has intuitive

economic interpretation: workers do not gather new information in the search stage. The recom-

mendation strategy carries the same amount of information content as the signal structure that

induces workers to behave as the recommendation strategy.

Matějka and McKay (2015) states this result in a decision theory context. They show that

a decision problem with uncertainty of payoffs and entropy cost in acquiring information can

be solved as a decision problem with observed payoffs and a cost based on the mutual infor-

mation between the recommendation signal and a baseline probability. The baseline probability

is the search probability according to the prior. Lemma 4 restated their results in a frictional

environment.

Lemma 4 (Matějka and McKay (2015) with Search Friction)

{F(s|w), {q̃j(s)}j} solve worker’s problem given the equilibrium recommendation strategy qe
j (w) if and

only if the recommendation strategy qj(w) =
∫

s q̃j(s)F(ds|w)ds solves the following problem

max
{qj(w)}

∫
w

∑
j

1− (1− qe
j (w))I

Iqe
j (w)

wjqj(w)G(dw)− c
(

H(q̄)−
∫

w
H(q(w))dG(w)

)
,

19For two random variables X and Y, conditional information of X on Y equals the mutual information of (X, Y)
minus the information of Y.
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s.t.

∑
j

qj(w) = 1,

q̄j =
∫

w
qj(w)G(dw).

Two assumptions in this paper further simplify this problem: (1) Firms draw productivities

from the same distribution; (2) In a symmetric equilibrium, firms with the same productivity

adopt an identical strategy. As a result, a priori firm identity does not reveal any information

regarding wages in a symmetric equilibrium. Uniform distribution 1
J measures the information

content in prior distribution. In another word, in a symmetric equilibrium, the benchmark prob-

ability is q̄j =
1
J . In the context of search theory, this is the random search strategy. Reduction in

uncertainty is measured by the difference of entropy from random search strategy and the actual

strategies after information acquisition.

Lemma 4 is a powerful result. I can essentially reduce the strategy space of worker’s problem

from a high-dimensional space of distribution into the search probability among J firms, for a

consistent belief of equilibrium wage distribution G(w). Additionally, in a symmetric equilib-

rium with identical productivity distribution, I can analyze the subgames node-by-node, because

the benchmark strategy q̄j does not depend on the belief G(w).

Corollary 8.1 (Subgame Recommendation Equilibrium )

{F(s|w), {qj(s)}j} is a subgame equilibrium given G(w) in a symmetric perfect Bayesian equilibrium if
and only if it solves the following fixed point problem

qe
j (w) = arg max

{qj(w)}

∫
w

∑
j

1− (1− qe
j (w))I

Iqe
j (w)

wjqj(w)G(dw)− c
∫

w
∑

j
qj(w) log

qj(w)

1/J
dG(w),

s.t.

∑
j

qj(w) = 1

Proof. Take the results of 4; Write out the mutual information using qj(w) and benchmark 1
J .

The subgame recommendation equilibrium already looks very similar to the subgame equi-

librium in an economy where workers observe the wages and pay a cost to direct search. One

caveat: there is no restriction on the wage profiles that are with zero probability given G(w).

For wage profiles that are off-equilibrium, the definition of a perfect Bayesian equilibrium does

not put any restriction on worker’s belief. Because workers do not think these wage profiles are

possible, they will never gather information about these non-existent wage profiles. Worker’s

search decision might be ill-informed if firms actually deviate to those wage profiles. The search

decisions at those ill-informed states might prevent firms from actually deviating to those states.

One could construct multiple equilibria using this logic. The same issue arises in Bayesian games
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without information acquisition. A remedy is to introduce the trembling-hand refinement and

require the subgame equilibrium restrictions to hold off-equilibrium. Ravid (2019) provide a

definition of such refinement in the context of information acquisition.

Symmetric Perfect Recommendation Equilibrium – I adopt the equilibrium refinement as in Ravid

(2019). Formally, it requires that for any wage profile, I can find some perturbation that visits

this wage profile with positive probability and the subgame recommendation equilibrium is still

an equilibrium given such a perturbation.

Definition 4 (Perfect Recommendation Equilibrium with Information Acquisition)

A symmetric Perfect Recommendation Equilibrium is a symmetric Perfect Bayesian Equilibrium

such that
1. (credible response) qe

j (w) is a credible response to {Ge(w), we(z|z)}:
For every w = (w1, ..., wJ), there exists a sequence (Gn, {σn

j }j)n such that:
a. σn

j (wj|z) > 0 for every z and every j− th element of w;
b. σn

j (w|z) converges strongly to δw(zj|z) for every z

c. Gn is consistent with {σn
j }j;

d. For all n, qe
j (w) is the subgame recommendation equilibrium given Gn.

2. (Attentive) There exits w such that workers apply to every firm with positive probability.

Proposition 9 is the key result of this section: An allocation is the subgame recommendation

equilibrium in a symmetric perfect recommendation equilibrium if and only if for every wage

(on or off the equilibrium path), this allocation is also the subgame equilibrium in a game with

observed wage profiles and the cost of directing search.

Proposition 9

qe
j (w) is a credible response to {Ge(w), we(z|z)} if and only if for every fixed w, qe

j (w) is the solution to
the subgame equilibrium with costly directed search and observed wage w.

Proof. See Appendix.

Firms face identical information environment in the game with observed wage profiles and

the game with information acquisition. From proposition 9, I show the subgame equilibrium

outcomes in the game with rational inattention and that in the game with observed wage profile

and costly directed search are identical. Given the solution to the subgame equilibrium is unique,

firms in the two games face identical problem. In conclusion, a symmetric perfect recommen-

dation equilibrium can be solved as a collection of subgame perfect equilibrium with observed

wage profiles and cost of directing search, given different productivity vectors.

Corollary 9.1 (Equivalence between symmetric perfect recommendation equilibrium and equi-

librium with costly directed search)
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{Ge(w), qe
j (w), we(z|z)} is a symmetric recommendation equilibrium if an only if for every z, ({qe

j (w)}j, w(z|z))
is a symmetric subgame perfect equilibrium with full information and costly directed search.

Corollary 9.2 (Existence of Symmetric perfect recommendation equilibrium)

A symmetric perfect recommendation equilibrium exits.

Proof. Proposition 2 establishes that a symmetric subgame perfect equilibrium with costly di-

rected search exists for any productivity z. A symmetric subgame perfect equilibrium with full

information and costly directed search is also a symmetric perfect recommendation equilibrium

by corollary 9.1.

6 Discussion

In this section, I discuss how the partially directed search model is linked to the economic issues

that are attracting increased attention, as well as the possible extensions to quantitative studies

and general cost functions.

6.1 Information Technology and the Labor Market

The past decades have witnessed a rapid improvement of information technology. These im-

provements will affect how workers search for jobs, as well as the wages and the allocations in

the labor market. Papers in the literature consider the improvement as changing the efficiency of

matching function (e.g., Martellini and Menzio, 2018) or making more searchers informed (e.g.,

Lester, 2011). The partially directed search model provides an alternative way to interpret chang-

ing information technology: As information becomes cheaper to acquire, the cost of directing

search falls. This section takes the baseline model to consider a simple comparative static when

c falls.

First, an improved information technology leads to a declined of the aggregate job finding

probability. As the cost of directing search falls, more workers apply to the productive firms

and less workers apply to the unproductive firms. The reallocation of workers makes queues

more unequal among firms. Due to the search frictions, the aggregate job finding probability

falls. Interpreted from a matching efficiency perspective: The aggregate matching efficiency falls

when cost of directing search falls.

Second, the average wage of the economy might rise or fall. There are two forces at work.

The direct effect of falling cost is that firms are facing a more elastic application supply curve. To

reach the same level of recruiting target, they have to promise a higher wage. This effect increases

wage at all firms. The indirect effect comes from search friction. As workers are reallocated from

unproductive to productive firms, the queueing in productive firms is even longer. The marginal

worker is less valuable to the productive firms for recruiting purpose. This force drives down

wage at the productive firms and drive up wages at the unproductive firms. The net effect
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depends on relative magnitude of the competition effect and congestion effect. This intuition is

along the same line as Lester (2011). In Lester (2011), the congestion effect comes from firms

shifting from accommodating informed searchers to uninformed searchers. In this model, it

comes from reallocation of searchers from less congested to more congested markets.

6.2 Potential Methods to Quantify the Model

The main takeaway of this paper is that the cost of directing search affects the rent sharing

between market organizers and searchers and the efficient allocation of resources. For a quanti-

tative study of this frictional trading environment, it is important to quantify the cost of directing

search. This section discuss the potential approaches to quantify the cost of directing search. The

model in this paper does not have worker-side heterogeneity. So all the discussion in this section

requires the researcher to either (1) select a set of homogeneous job searchers or (2) conditional

on observed worker heterogeneity.

Pass Through Coefficient – The first approach requires a dataset containing information on firm-

level value-added and wages. Recent papers such as Lamadon et al. (2019) uses a matched data

on U.S. business and their workers. The baseline model has two equations to characterize the

equilibrium outcome at different firms. First, the optimal queue decision links a firm’s output to

its equilibrium queue length. Second, the optimal search condition links the queue at a firm to

its equilibrium wage. By differentiating these two conditions, I can investigate how wage varies

with output at the firm level.

n′(qj)zj − c− c(log qj + 1) = Ve, (posting)

m(qj)wj − c(log qj + 1) = Ve, (search)

d log wj

d log zj
=

( c
w − qm′)n′

( c
y − qn′′)m

. (pass-through)

Vacancy-Employer-Employee Data – The second approach requires the researcher to observe

wages, worker flows, and vacancy flows at the same time. Kettemann et al. (2018) link the

Austrian employer-employee dataset with a vacancy dataset at the firm level. With firm-level

information on vacancy and worker flows, it is possible to estimate the queue length at the firm

by parametric assumptions on the firm-level matching function. For instance, suppose I assume

the matching function is Cobb-Douglas. The hiring-per-vacancy at the firm level can be expressed

as a function of queue length. Using the optimal search condition with an approximation, I

can express the log queue length as the supply elasticity times the log wage at the firm level.

Combining two equations, I arrived at a structural equation that links the log wage at the firm

level to the log vacancy yield. Given an estimate of the elasticity of matching function, one could

recover c
m(qj)wj

from equation (21). This is a relevant normalization of cost of directing search. It

measures the markdown due to cost of directing search as a fraction of the wage level. One of the
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main takeaway from Kettemann et al. (2018) is that the firm level vacancy yield does increases

with firm wage, but the correlation is weaker than the prediction from a directed search model.

From the partially directed search model, equation (21) implies that the cost of directing search

is high.

log
hj

vj
= Constant + ε log qj,

log qj ≈
1

c
m(qj)wj

+ 1− ε
log wj, (20)

log
hj

vj
= Constant +

ε
c

m(qj)wj
+ 1− ε

log wj (21)

Empirical studies on the online job search behavior (e.g. Marinescu and Wolthoff, 2016)

or experiments (e.g. Belot et al., 2018) find that the elasticity of applicant to wage is 0.7 to

0.9, meaning that a one percent increase in posted wage increases queue by 0.7 ∼ 0.9 percent.

Although this paper assumed away many potentially important mechanism in the job search

process, (20) provides a way to interpret these elasticities. For example, if we parametrize the

matching function as Cobb-Douglas, n(q) = Aqε and take the elasticity to be 0.8:

c
m(qj)wj

= 1.25− (1− ε).

This number is the the markdown due to cost of directing search as a fraction of wage. For

example, if the ε = 0.5. This result implies that in a large economy with homogeneous firms,

the markdown due to cost of directing search would be 75% of the wage in equilibrium. It is

important to note that this result does not rely on the static model. An extension to the dynamic

model where workers only search when unemployed will result in the same link between the

cost of directing search and queue-wage elasticity, with c scaled by the discount rate.

6.3 Alternative Cost Functions

So far, I focus on the K-L divergence as the cost of directing search, because of its foundation

in information theory and its tractability. To show this framework is generalizable to other

parametrization of cost functions, I now analyze the partially directed search for a general class of

divergence measures called f-divergence. Specifically, the f-divergence takes the Radon-Nikodym

derivative between the chosen search strategy and the uniform distribution aj and evaluate the

integral of the following form:

Cost of Directing Search =
∫ 1

0
φ(aj)dj

49



where φ is increasing and convex. To ensure non-deviation is costless, φ(1) = 0. The f-divergence

nests the K-L divergence as a special case when φ(a) = a log a. Now, I show partially directed

search can also be motivated by the general f-divergence, the entropic competitive search equi-

librium can be similarly defined, and the inefficiency of market equilibrium also exists. For

simplicity, I assume b = 0 and µ = 1.

Partially Directed Search with f-divergence Consider the worker’s problem given any wage func-

tion ω and queue function q(ω). Workers’ problem is as in equation (10). The worker’s problem

is again convex: it has a strictly concave objective function and linear constraint. The optimal

search decision implies the search strategy must be a solution to condition (11). The marginal

cost of applying to firm j is now measured by cφ′(qj).

max
a

∫ 1

0
m(qj(ω))ω+

j qjdj− c
∫ 1

0
φ(qj)dj (22)

s.t. ∫ 1

0
qjdj = 1

m(qj(ω))ω+
j − cφ′(qj) = V (23)

Entropic Competitive Search Equilibrium with f-divergence The equilibrium with the general cost

function can be accordingly defined: I look for wages that maximize firm’s profit, search strat-

egy that maximizes workers’ payoff, and the equilibrium supply curve that is consistent with

worker’s decisions. I directly state the equivalent problem in equation Definition 6.

Definition 5 (Equivalent problem with f-divergence)

1. firm’s optimality given V
{q(V), w(V)} = max

w,q
n(q)(zj − w)

s.t.
m(q)w− cφ′(q) = V

w ≥ 0

2. Market Clearing ∫ 1

0
q(Ve)dj = 1

Proving the existence of uniqueness follows the same logic as the case with K-L divergence:

Firm’s problem is strictly convex given any V. The optimal choice of queue is decreasing in V
with at least a positive measure of firms that is strictly decreasing. Therefore, law of demand

holds for the aggregate demand of applicants. However, the result on wage is different for the

general class of cost function. Specifically, in equation (13), the markdown due to the cost of
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directing search depends on the curvature of cost function, which is zero when φ(a) = a log a.

max{n′(qe
j )zj − cφ′′(qe

j ), 0} − cφ(qe
j ) = Ve

wj = max{
n′(qj)

m(qj)
zj − c

φ′′(qj)

m(qj)
, 0} (24)

Efficiency with f-divergence The planner’s problem is defined in equation (14). The constrained

efficient allocation equalizes the benefit and cost of applying to firm j. Comparing this allocation

the allocation from the market equilibrium, I find the markdown due to cost of directing search

has impact on efficiency. The curvature in cost of directing search is crucial for how monopsony

power distorts allocation to firms. With K-L divergence, all firms extract a constant markdown

in expectation. In the general case, the markdown differs for firms with heterogeneous produc-

tivities. However, the inefficiency due to incentive compatibility constraint of workers prevails in

the general case: In the equilibrium with general f-divergence, there can be cases where positive

measure of firms post workers’ outside option. Given this result, our discussion about minimum

wage holds for general cost functions.

max
qj

∫ 1

0
n(qj)zjdj− c

∫ 1

0
φ(qj)dj (25)

s.t.

∫ 1

0
qjdj = 1

qj = qj

n′(q∗j )− cφ′(q∗j ) = V∗

7 Conclusion

In this paper, I provide a tractable framework to study equilibrium implications of costly di-

rected search. Cost of directing search is closely linked to the competition among firms and

the efficiency of market equilibrium. Firms in an economy with higher cost of directing search

face a more inelastic labor supply curve. In the equilibrium, firms extract markdown due to the

cost of directing search. Markdown per se does not lead to inefficiency, if it is equalized across

firms with heterogeneous firms. The market equilibrium is constrained efficient with low cost

of directing search. When cost of directing search is high enough, workers’ outside option pre-

vents unproductive firms from lowering wages. As a result, the unproductive firms extract less

markdown compared with the productive firms. Unequal markdown distorts workers’ search

decision, with the unproductive firms hire too often compared with the socially optimal level. I

show the traditional remedy to the firm market power, the minimum wage, worsens the ineffi-
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ciency by decreasing the markdown at unproductive firms even further. Instead, a self-balanced

corporate income transfer scheme can alleviate inefficiency while achieving the goal of redistri-

bution from firms to workers.

To highlight the mechanism and its micro-foundation, I assumed away some realistic and

salient features of frictional markets. Further exploring these possibilities would be interesting

and crucial. First, it would be important to incorporate worker heterogeneity in order to discuss

the wage distribution and the efficiency of a market equilibrium. A two-sided heterogeneity

model with costly directed search would introduce a new force that governs the sorting strength

between workers and firms. Recent empirical studies found evidence of increasing sorting in

developed countries. A possible explanation would be an improvement of information technol-

ogy which allows workers to gather relevant information with a lower cost, and thus increases

sorting.20 Second, quantifying the cost of directing search should also be interesting. I discussed

the methods to identify the cost of directing search given different types of datasets. To take the

cost more seriously, introducing other types of frictions that might affect wages and allocations

into the model is important. Lastly, the compositional shift of job searchers and it interactions

with firms’ job creation incentives is an important hypothesis of the labor market fluctuations.

The partially directed search model provides a framework that allows for flexible impacts com-

positional shift on job creation incentives. An interesting application would be to quantify the

impacts of compositional shifts on labor market fluctuations using the partially directed search

model.

20This is an ongoing project of the author. Please find a brief summary of this project on my website:
www.liangjiewu.com
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Appendix

Proof of Lemma 1

Return to main text.

Want to show the following equation system has a unique solution:

(1− q1 +
q1

2
)(w1 − b)+ − c log q1 = (1− q2 +

q2

2
)(w2 − b)+ − c log q2,

q1 + q2 = 1.

Using the second equation to write the system solely in q1:

2− q1

2
(w1 − b)+ − 1 + q1

2
(w2 − b)+ − c log

q1

1− q1
= 0.

The left hand side is continuous and strictly decreasing in q1.

When q1 = 0, the LHS is

(w1 − b)+ − 1
2
(w2 − b)+ + ∞ > 0

When q1 = 1, the LHS is
1
2
(w1 − b)+ − (w2 − b)+ −∞ < 0

So there is one and only one solution to this equation in the interval [0, 1]. There is a unique

(q1, 1− q1) that solves the original equation. Interchange the role of firm 1 and firm 2 results

in (1 − q1, q1) as the solution. So the subgame equilibrium is independent of firm identities

conditional on wages.

Proof of Proposition 1

Return to main text.

The goal is to look for the solution to the following equation system in terms of (q1, q2, w1, w2, γ1, γ2):

(Subgame Equilibrium)

c log
q1

q2
=

(
2− q1

2

)
(w1 − b)−

(
2− q2

2

)
(w2 − b)

(Firm 1’s Optimality)

(1− q1)(z1 − b) + γ1 =

(
1
2
+ q1

)
(w2 − b) + c

(
1 +

q1

1− q1
+ log

q1

1− q1

)
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(Firm 2’s Optimality)

(1− q2)(z2 − b) + γ2 =

(
1
2
+ q2

)
(w1 − b) + c

(
1 +

q2

1− q2
+ log

q2

1− q2

)
(Probability)

q1 + q2 = 1

(participation constraint at Firm 1 )

γ1 ≥ 0 ⊥ w1 − b ≥ 0

(participation constraint at Firm 2)

γ2 ≥ 0 ⊥ w2 − b ≥ 0

Consider four cases, depending on whether the participation constraints are binding.

Case 1: γ1, γ2 = 0

In this case, I look for solution to the following equation:

T(q1) = 0

where

T(q) =
2− q
3− 2q

(
q(z2 − b)− c

(
1 +

1− q
q

+ log
1− q

q

))
− 1 + q

1 + 2q

(
(1− q)(z1 − b)− c

(
1 +

q
1− q

+ log
q

1− q

))
− c log

q
1− q

T′(q) > 0

lim
q→0

T(q) = −∞

lim
q→1

T(q) = ∞

T(q) crosses zero once and only once. Given this unique q, the rest of equilibrium objects

(q2, w1, w2) are uniquely pinned down. I can find a solution in this case if both firms are posting

positive wages:

T1(q1) ≥ 0

T2(q1) ≥ 0

where

T1(q) = (1− q)(z1 − b)− c(1 +
q

1− q
+ log

q
1− q

)
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T2(q) = q(z2 − b)− c(1 +
1− q

q
+ log

1− q
q

)

Case 2: γ1 > 0, γ2 = 0

In this case, w1 = b, the solution is characterized by firm 2’s optimal posting condition given firm

1 posts b:

0 = T2(q) = q(z2 − b)− c
(

1 +
1− q

q
+ log

1− q
q

)
There is a unique solution to this equation. Denote this solution q̃. I can find a solution in this

case if firm 2 is posting a positive wage and the marginal value of increasing wage is negative

for firm 1:

q̃(z2 − b)− c
(

1 +
1− q̃

q̃

)
≥ 0

T̃(q; c) < 0

where T̃(q) is the marginal benefit for firm 1 to increase wage given firm 2 is posting optimally:

T̃(q̃; c) = (1− q)(z1 − b)− c
(

1 +
q

1− q
+ log

q
1− q

)
− c

1 + 2q
1 + q

log
1− q

q

Case 3: γ1 = 0, γ2 > 0

In this case, w2 = b,

0 = T1(q)

Similar to case 2 I can solve for a unique q, denoted as q̃. I can find a solution in this case if:

(1− q̃)(z1 − b)− c
(

1 +
q̃

1− q̃

)
≥ 0

q(z2 − b)− c(1 +
1− q̃

q̃
+ log

1− q̃
q̃

)− c
3− 2q̃
2− q̃

log
q̃

1− q̃
< 0

Case 4: γ1 > 0, γ2 > 0

In this case,

q1 = q2 =
1
2

w1 = w2 = b

This is the equilibrium outcome if

c ≥ max{z1, z2} − b
4

Existence and uniqueness: In every case, I can find a unique solution. To prove existence, I

check that at least one of the four cases hold given any (z1, z2, c, b). To prove uniqueness, I check

there is only one case that holds. WLOG, assume z2 > z1. I will divide the parameters according
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to the cost of directing search. First define two thresholds of cost: c̄1 and c̄2.

High-Threshold - c̄2: This is the threshold where the productive firm stops to post wage above

the outside option b. For the costs larger than this threshold, I can only find equilibrium in case

4 where both firms post wj = b.

c̄2 =
z2 − b

4

Low-Threshold - c̄1: This is the threshold where the unproductive firm stops posting wage above

b. To look for this threshold, I solve the following equation in c:

T̃(q̃(c̄1); c̄1) = 0

where q̃(c̄1) solves

T2(q̃; c̄1) = 0

Economically, c̄1 is the cost such that when firm 2 posts optimally given firm 1 posts w1 = b,

the optimal strategy for firm 1 is posting wage w1 = b. I can always find a unique solution c̄1

because of the following two statements:

Statement 1: T̃(q̃(c); c) is strictly decreasing in c. To show this, I total differentiate T̃(q̃(c); c) w.r.t

c:

dT̃(q̃(c); c)
dc

=
∂T̃
∂q

dq
dc

+
∂T̃
∂c

= − 1
1− q

− q
1 + q

log
1− q

q
−

q(1 + q log 1−q
q )(2cq(1 + q) + c(1− q)2 log 1−q

q + (1− q2)2(z1 − b))

(1− q)(1 + q)2(c + (1− q)q2(z2 − b))

< 0

The last inequality comes from evaluating the expression at q < 1
2 (This is the relevant range

when c < z2−b
4 ).

Statement 2:

T̃(q̃(0); 0) = z1 − b > 0

T̃(q̃(
z2 − b

4
);

z2 − b
4

) =
1
2
(z1 − b)− 2c ≤ 1

2
(z2 − b)− 2c = 0

So I can find a unique c̄1 that solves the equation. When c < c̄1, T̃(q̃(c̄1); c̄1) > 0 and when c > c̄1,

T̃(q̃(c̄1); c̄1) < 0

Next, I investigate the cost of directing search by thresholds.

a. When c > c̄2 I already showed an equilibrium of case 4 exists. WTS: the other cases cannot be

an equilibrium. Notice when c > c̄2:

T1(
1
2
) < 0

T2(
1
2
) < 0
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Case 1: To find an equilibrium of case 1, it must be q̃ < 1
2 . By the monotonicity of T2, I have

T2(q̃) < T2(
1
2 ) < 0. A contradiction to case 1’s conditions.

Case 2: To find an equilibrium of case 2, it must be q̃ > 1
2 . The subgame equilibrium condition

implies that b = w1 > w2. A contradiction to case 2’s condition w2 > w1 = b. This cannot be an

equilibrium.

Case 3: To find an equilibrium of case 3, it must be q̃ < 1
2 . The subgame equilibrium condition

implies that b = w2 > w1. A contradiction to case 3’s condition w1 > w2 = b. This cannot be an

equilibrium.

b. When c ∈ [c̄1, c̄2), he following inequality holds:

T̃(q̃(c), c) ≤ T̃(q̃(c̄1), c̄1) = 0

At q̃(c), firm 2 is posting positive wage and the marginal benefit of increasing wage is negative

for firm 1. Thus, I have found an equilibrium in of case 2.

Case 1: I can always T(q̂; c) = 0, this point has to be q̂ < q(c), at this point T2(q̂; c) < 0.

Case 3: To find an equilibrium I solve T1(q) = 0. When c > c̄1, the solution has to be q̃ > q̃(c), at

which point firm 2 is willing to post a wage above b.

Case 4: is directly ruled out by the condition.

c. When c < c̄1, want to show the only equilibrium must be in case 1. Notice given this cost

of directing search c:

T̃(q̃(c), c) > T̃(q̃(c̄1); c̄1) = 0

So

(1− q(c))(z1 − b)− c(1 +
q(c)

1− q(c)
+ log

q(c)
1− q(c)

)− c
1 + 2q(c)
1 + q(c)

log
1− q(c)

q(c)
> 0

Combined with T(q)’s definition, at q(c)

T(q; c) < 0

So I can find q̂ > q(c) such that T(q̂; c) = 0. Next, verify given q̂, both firms are willing to post

wages above outside option of workers.

T2(q̂; c) > T2(q(c); c) = 0

So in this case, firm 1 must be posting wage above outside option. Given z2 > z1, the solution to

T(q) = 0 must be below 1
2 . This means firm 2 is posting a wage w2 > w1 > b. This is indeed an

equilibrium of case 1.

Case 2 cannot be equilibrium, because given c, the equilibrium will be q̃(c), at which point
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firm 1 is willing to post wage above outside option.

Case 3 cannot be equilibrium, because in order to find T1(q̃) = 0, q̃ < q(c) < 1
2 . This means firm

2 is posting a wage above firm 1, a contradiction.

In conclusion:

• c ≥ c̄2: the unique equilibrium is in which both firms post b;

• c ∈ [c̄1, c̄2): the unique equilibrium is in which the productive firm post w > b and the

unproductive firm post b;

• c < c̄1: the unique equilibrium is in which both firms post w > b;

Proof of Corollary 1.1

Return to main text. Guess we
1 = we

2 = w∗, for firm j the profit maximization problem is

max
w

(1− (1− q)2)(z− w)

s.t.

(1− q +
q
2
)(w− b)− (q +

1− q
2

)(w∗ − b) = c
q

1− q

Writing the problem in terms of q instead w, I have

max
q

(1− (1− q)2)(z− b)− 2q(c log
q

1− q
+ (q +

1− q
2

)(w∗ − b))

s.t.

w ≥ b

Taking the first order condition w.r.t q

(1− q)(z− b)− (c log
q

1− q
+ (q +

1− q
2

)(w∗ − b))− q(c
1
q
+ c

1
1− q

+
1
2
(w∗ − b)) + γ = 0

where γ is the multiplier on w ≥ b.

Imposing q = 1
2 and w = w∗ I get

1
2
(z∗ − b)− 3

4
(w∗ − b)− 1

2
(4c +

1
2
(w∗ − b)) + γ = 0

Rearrange we get

w∗ = b + max{ z− b
2
− 2c, 0}

The equation we used to derive w∗ is the definition of a symmetric equilibrium: each firm

optimize given the other firm’s strategy; firms with identical productivity use the same strategy.
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As w∗ is the only solution, the symmetric equilibrium allocations and wages are unique.

Proof of Corollary 1.2

More productive firm posts higher wage and attracts longer queue;

Higher cost leads to less queue differential.

First consider the case when both firm 1 and firm 2 post wage above b: Following the proof of

proposition 1, the equilibrium probability of applying to firm 1 solves

T(q1) = 0

For the first statement of Corollary 1.2, it suffices to check T( 1
2 ). Using the formula from propo-

sition 1, I reach

T(
1
2
) =

3
8
(z2 − z1)

If z1 > z2, T( 1
2 ) < 0. Because I showed T′(q) > 0 and there is only an unique equilibrium, this

means q∗1 > 1
2 > q∗2 . From worker’s optimal search condition, it must be such that w∗1 > w∗2 .

For the second statement of proposition 3, it suffices to check ∂T
∂c . Differentiate T(q), I get:

∂T
∂c

=
2
(
−2q3 + 3q2 + q + (1− q)q log

(
q

1−q

)
− 1
)

(1− q)q(3− 2q)(2q + 1)

Notice this expression is independent of (z1, z2). The sign of the derivative takes

I f q > 1
2

∂T
∂c

> 0

I f q < 1
2

∂T
∂c

< 0

I f q = 1
2

∂T
∂c

= 0

Take the case z1 > z2 as example, I already established that q1 > 1
2 in this case. Now suppose

for c2, T(q1(c2)) = 0. At this point, Tc > 0. So T(q1(c2); c1) > 0. Thus it cannot be an equilibrium.

Using the monotonicity of T(q), it must be some q1(c1) < q1(c2) that satisfies the equilibrium

conditions.

Now consider the case when only one firm post wage w > b: In this case, the firm that post

wage above b solves the problem

max
w

(1− (1− q)2)(zj − w)
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s.t.

(1− q +
q
2
)(w− b) = c log

q
1− q

Writing in terms of q I get

max
q

(1− (1− q)2)(zj − b)− 2q(c log
q

1− q
)

The F.O.C. is

(1− q)(z− b)− c log
q

1− q
− c(1 +

q
1− q

) = 0

If w > b,

log
q

1− q
> 0

This implies the more productive firm (the one that posts wage above b) attracts longer queue

than the unproductive firm (the one that posts wage b). The F.O.C. also implies an increase in c
leads to a decrease in q.

The case where both firms post b automatically satisfies the statements.

The proof of proposition 1 already showed there are two thresholds.

Details of I × J Game

Return to main text.

Definition 6 (Equilibrium in I × J economy)

A symmetric subgame perfect equilibrium is {{qe
j (w)}j=1...J , we}, such that:

1. (Subgame Equilibrium)
∀w = (w1, ..., wJ)

{qe
j (w)}j=1...J = arg max

qj

J

∑
j=1

1− (1− qe
j (w))I

Iqe
j (w)

qj max{wj − b, 0} − c
J

∑
j=1

qj log
qj

1/J

s.t.
J

∑
j=1

qj = 1

2. (Firm’s Optimal Posting)

we
j = arg max

w

(
1− (1− qe

j (w̃))I
)
[zj − w]
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where

w̃j′ =

we
j′ if j′ 6= j

w if j′ = j

The following proposition establishes the existence of a symmetric subgame perfect equilib-

rium and the equation system that characterize the equilibrium outcomes. Specifically, I look for

a tuple of {we
j , qe

j} where (wj, qj) is the optimal choice of wage and queue for firm j, taking as

given other firms’ equilibrium wage postings and the labor supply curve.

Lemma 5 (Characterization of Symmetric Subgame Perfect Equilibrium)

{we, qe} is the outcome of a symmetric subgame perfect equilibrium if and only if
1. we

j maximizes firm j’s profit given we
−j:

we
j = arg max

w
[1− (1− q)I ](zj − w)

s.t.
q = Q(w, w−j),

where Q(w, w−j) is the solution to

1− (1− q)I

Iq
(w− b)+ − c log

q
1/J

= V

for j′ 6= j
1− (1− qj′)

I

Iqj′
(we

j′ − b)+ − c log
qj′

1/J
= V

q + ∑
j′ 6=j

qj′ = 1.

Solving for the equilibrium involves a non-trivial fixed-point problem. The complexity comes

from strategic interactions between firms. If I investigate the equivalent problem in Lemma 3, the

system involves simultaneously solving optimal wages because all firms internalize their impact

on each other. Firms all understand their announcement will change workers’ probability of

applying to every firm. It is reasonable to conjecture that this kind of interaction would vanish

if the number of firms grow to infinity, as the impact of each firm on other firms becomes small.

This conjecture provides a second motivation to study a limiting economy where the population

for both workers and firms grow to infinity. I will take on this task in Section 3.

Proposition 2.2. establishes the existence of such symmetric equilibrium. Here i sketch the

intuition behind the existence of symmetric equilibrium. Workers’ problem is almost identical

to the 2× 2 case, and a unique subgame equilibrium always exists. I can reduce the two-stage

game into a normal form game where firms are given a labor supply curve that depends on the

entire wage profile from other firms. The existence of a symmetric equilibrium hinges on firms
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adopting pure strategy in the equilibrium of this normal form game. The proof of proposition

2.2. shows that individual firm’s payoff function is strictly concave in queue given other firms

use pure strategy. I can thus use the standard results from normal form games to establishe the

existence of a symmetric equilibrium.

Proof of Proposition 2

Click to return to main text.

To show the symmetric equilibrium exits, I want to show the payoff of a firm j choosing queue

length q is quasi-concave in its argument. More specifically, firm j solves the following problem

given other firms’ wage postings: (To simplify the notation, normalize b = 0. The case for

zj > b > 0 can be accordingly derived.)

max
w≥0

(1− (1− q)I)(zj − w)

s.t.
1− (1− q)I

Iq
w− c(log

q
1/J

+ 1) = V

1− (1− qj′)
I

Iqj′
wj′ − c(log

qj′

1/J
+ 1) = V

∑
j′

k j′qj′ − qj + q = 1

We can write firm’s problem in terms of probability q by eliminating w:

max
q

Π(q) = (1− (1− q)I)zj − Iq(V + c log Jq)

s.t.
1− (1− qj′)

I

Iqj′
wj′ − c log

qj′

1/J
= V

∑
j′

k j′qj′ − qj + q = 1

V + c log Jq ≥ 0

First investigate the shape of the profit function:

Π′(q) = I(1− q)I−1z− IV − cI log Jq− cI − Iq
dV
dq

Π′′(q) = −I(I − 1)(1− q)I−2z− c
I
q
− I

dV
dq
− Iq

d2V
dq2

Other terms are straightforward, except for the response of market utility V to q. Differentiate
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the equation system that defines q and V I have:

dV
dq

= − 1
∑j′ 6=j(ξ j′)−1 > 0

where

ξ j = Xjwj −
c
qj

< 0

Xj is the response of job finding probability at firm j to change in other worker’s strategy:

Xj =
I2qj(1− qj)

I−1 − I(1− (1− qj)
I)

I2q2
j

< 0

Further differentiate V w.r.t. q we have:

d2V
dq2 = −

∑j′ 6=j(ξ j′)
−2 dξ j′

dq(
∑j′ 6=j(ξ j′)−1

)2

where
dξ j′

dq
= (

dXj

dq
wj +

c
q2

j
)

dqj′

dq

The sign of d2V
dq2 depends on whether

dξ j′
dq is positive. Because the job finding probability is convex

in q:
dXj

dq
> 0

An increase in q leads to decreases in qj′ :

dqj′

dq
< 0

Thus we have
dξ j′
dq < 0 and d2V

dq2 > 0. This result has a very natural economic interpretation: it

is marginally more costly to attract workers when the queue is already long, because the search

friction is more severe and the cost of directing search is convex. Because dV
dq > 0 and dV2

dq2 > 0,

we have:

Π′′(q) = −I(I − 1)(1− q)I−2z− c
I
q
− I

dV
dq
− Iq

d2V
dq2 < 0

Combining all the results I have shown that the payoff function of any firm is strictly concave

given other firms use pure strategy. However, there is a constraint on the feasible q. I now show

the feasible set is convex. Suppose q1 and q2 are in the feasible set. For α ∈ [0, 1] and q1 and q2,

WTS:

αq1 + (1− α)q2 ≥ min{q1, q2}
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WLOG assume q2 = min{q1, q2}. Because both V and log q are increasing in q:

V|αq1+(1−α)q2 + c log J(αq1 + (1− α)q2) ≥ V|q2 + c log Jq2 ≥ 0

Thus the feasible set is convex. I have shown that the payoff function is strictly concave on a

convex set. Thus the solution is unique. Utilizing standard results from Debreu (1952), a pure

strategy equilibrium exist in the first stage game. Given any wage profile, a unique symmetric

subgame perfect equilibrium exists. Thus, there exists at least one symmetric subgame prefect

equilibrium.

Proof of Corollary 2.1

Click to return to main text.

Suppose all firms use identical strategy w∗. For each individual firm j, the problem is

max
q

(1− (1− q)I)(z− w)

s.t.
(1− (1− q)I)

Iq
(w− b)− c log Jq =

(1− (1− 1−q
J−1 )

I)

I 1−q
J−1

(w∗ − b)+ − c log J
1− q
J − 1

Rewrite the problem in terms of q:

max
q

(1− (1− q)I)(z− b)− Iq(c log Jq +
(1− (1− 1−q

J−1 )
I)

I 1−q
J−1

(w∗ − b)+ − c log J
1− q
J − 1

)

Take first-order condition and impose q = 1
J I get

(
1− (1− 1

J )
I

I/J
− 1

J
1

J − 1

I(1− 1
J )

I−1

I 1
J

+
1
J

1
J − 1

1− (1− I
J )

I

I/J2

)
(w∗− b) = (1− 1

J
)I−1(z− b)− c− c

J − 1

Imposing I
J = µ:

(
J

J − 1

1− (1− I
J )

µJ

µ
− 1

(J − 1)
(1− 1

J
)

I−1
I µ

)
(w∗ − b) = (1− 1

J
)

I−1
I µJ(z− b)− c− c

J − 1

Rearrange and impose the constraint w ≥ b I reach

w∗ = b + max{µ
(1− 1

J )
µJ(z− b)− c

1− (1− 1
J )

µJ − 1
J−1 (1−

1
J )

µJµ
, 0}
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Proof of Proposition 3

Click to return to main text.

The equivalent problem is the same as looking for a Walrasian equilibrium. I look for V∗ such

that the optimal demand for applicants equal to the exogenous supply of workers. To show the

existence, I rely on the continuity of demand function. To show uniqueness, I rely on the strict

monotonicity of demand function. Focus on the firm’s problem given any V

max
w≥0,q

n(q)[zj − w]

s.t.

m(q)(w− b)+ − c[log q− log µ] = V

The demand for applicant is solution to the following equation

max{n′(q)zj − c, 0} − c[log q− log µ] = V

For the case n′(q)zj > c, differentiate the condition yields

dq
dV

=
1

n′′(q)zj − c 1
q

< 0

For the case n′(q)zj < c, differentiate the condition yields

dq
dV

=
1
−c 1

q

< 0

For the case n′(q)zj = c, the equation above is not differentiable. However, both left and right

derivative points to a decrease in demand if V increase

dq
dV
|+ =

1
n′′(q)zj − c 1

q

< 0

dq
dV
|− =

1
−c 1

q

< 0

Thus the law of demand holds for all firms. The solution to the first order condition is continuous

in V by Maximum Theorem. I next show I can always find a unique solution for V∗ ∈ [0, maxj zj].

When V = 0, the constraint implies

q∗j (0) ≥ µ
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When V = maxj zj, the maximization implies there is no firm posting wage above its productivity.

This means w∗j ≤ zj ≤ maxj zj. From the constraint

c[log qj − log µ] = m(q)w+
j −max

j
zj ≤ w+

j −max
j

zj ≤ 0

The first inequality uses m(q) ≤ 1. So I reach

q∗j (max
j

zj) ≤ µ

The aggregate demand for applicants D(V) =
∫ 1

0 q∗j (V)dj is strictly decreasing in V because the

integrand is strictly decreasing in V. It has the property

D(0) ≥ µ

D(max
j

zj) ≤ µ

So there exists a unique V∗ ∈ [0, maxj zj] such that D(V∗) = µ

Proof of corollary 3.2

Click to return to main text. For every z. Solve the following equation

n′(q̄)(z− b) = c (26)

Denote the solution to this equation as q̄(c, z). q̄ is decreasing in c because n is concave. For every

z, I find c such that the market clears when z is exactly constrained by the w ≥ b. For zj > z

−c log q̄(c, z) = n′(qj)(zj − b)− c log qj

For zj < z
qj = q̄(c, z)

All qj are strictly decreasing and continuous in c. Using the same logic of finding an entropic

competitive search equilibrium. If n(q) has the Inada condition, there is a unique c ∈ (0, ∞) such

that ∫ 1

0
qjdj = µ

Call this cost c̄(z). Next I want to show that c̄ is increasing in z. First, for every level of cost c, q̄
is increasing in z

∂q̄
∂z

= − n′(q̄)
n′′(q̄)(z− b)

> 0
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Suppose there are two productivity level z1 > z2, if for z2, c̄1 is the threshold that clears the

market. Then c̄1 cannot be the threshold for z1, because for c1, q̄ increased and the aggregate

queue is lower than µ. To clear the market, q̄ must decrease. For this to happen, c̄2 > c̄1.

Proof of Lemma 3

The proof of lemma is an application of Maximum Theorem. I already show that individual

firm’s problem can be written as an optimization problem with convex feasible set and strictly

concave objective function. To make notation explicit, let’s write the problem in terms of t, the

population size.

Π∗(t, wt, qt) = max
q

(1− (1− q)tI)(zj − b)− tIq(V + c log tJq)

s.t.
1− (1− qj′)

tI

tIqj′
(wj′ − b)− c log

qj′

1/(tJ)
= Vj

t ∑
j′

k j′qj′ − qj + q = 1

V + c log tJq ≥ 0

I established earlier that the objective function is strictly concave when c > 0 and the feasible

set is convex. According to Maximum Theorem, the optimal solution qj(t, wt, qt) is single-valued

and continuous function in (t, wt, qt) and V, and value at optimum Π∗(t, wt, qt) is also contin-

uous in (t, wt, qt). Now I just need to take limit of the stationary conditions to derive the limit.

Given any vector of wage (t, wt, qt), the best response of a firm of productivity zj is (q∗, {qj′}j′ , V∗)
that solves the following equations:

Π′(q∗) = (1− q∗)tI−1zj −V∗ − c log tJq− c− q∗
dV
dq
|q∗ = 0

For all j′:
1− (1− qj′)

tI

tIqj′
(wj′ − b)− c log

qj′

1/(tJ)
= V∗

and lastly

t ∑
j′

qj′ − qj + q = 1

To make the notation explicit for the limit, define Q = tIq. Using µ = I
J , the J + 2 equation

system for optimal posting decision becomes:

(1− 1
tI

Q∗)tI−1zj −V∗ − c log
Q∗

µ
− c− 1

tI
Q∗

dV
dq
|q∗ = 0
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For all j′:
1− (1− 1

tI Qj′)
tI

Qj′
(wj′ − b)− c log

Qj′

µ
= V∗

and lastly
1
µ ∑

j′
Qj′ −

1
tI

Qj +
1
tI

Q∗ = 1

The key observation for the convergence result is that the first order condition is only linked

to the constraints by V∗, the market utility. The first step is to show, as t → ∞, the impact of

every firm on the market utility vanishes:

1
tI

Q∗
dV
dq
|q∗ → 0

Q∗ is always a bounded number (it is a probability) and 1
tI asymptotes to 0. For now I ignore the

case with binding constraint. The proof of proposition 2 establishes that

dV
dq

= − 1
∑j′ 6=j(ξ j′)−1

where

ξ j = Xj(wj − b)− c
qj

< 0

Xj is the response of job finding probability at firm j to change in other worker’s strategy,

Xj =
(tI)2qj(1− qj)

tI−1 − tI(1− (1− tj)
tI)

(tI)2q2
j

< 0

First let’s rewrite Xj as

Xj =
qj(1− qj)

tI−1 − 1
tI (1− (1− qj)

tI)

q2
j

Using the harmonic mean inequality:

dV
dq

= − 1
∑j′ 6=j(ξ j′)−1 ≤

1
tJ − 1

1
tJ − 1 ∑

j′ 6=j
(−ξ j′)
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I have

− 1
tJ − 1

ξ j =
c

(tJ − 1)qj
−

(1− qj)
tI−1

(tJ − 1)qj
+

1
(tJ − 1)qj

(1− (1− qj)
tI)

tIqj

≤ c
(tJ − 1)qj

+
1

(tJ − 1)qj

(1− (1− qj)
tI)

tIqj

≤ c + 1
(tJ − 1)qj

≤ c + 1
(tJ − 1)Q

The first inequality comes from − (1−qj)
tI−1

(tJ−1)qj
< 0; The second inequality comes from (1−(1−qj)

tI)
tIqj

≤ 1;

The third inequality comes from qj shares a common lower bound Q, where Q is the probability

of searching other firms if firm j posts zj and other firms post b. To find this probability:

−c log Q =
1− ((tJ − 1)Q)tI

I(1− (tJ − 1)Q)
(zj − b)− c log(1− (tJ − 1)Q))

Because 1−((tJ−1)Q)tI

I(1−(tJ−1)Q)
is a probability and is bounded by 1:

c log(1− (tJ − 1)Q))− c log Q =
1− ((tJ − 1)Q)tI

I(1− (tJ − 1)Q)
(zj − b) ≤ (zj − b)

Rearranging the LHS:

c log(
1
Q
− (tJ − 1)) ≤ (zj − b)

Taking exponential on both sides:
1
Q
− (tJ − 1) ≤ e

zj−b
c

Rearranging:

(tJ − 1)Q ≥ tJ − 1

tJ − 1 + e(zj−b)/c

Thus
dV
dq
≤ c + 1

(tJ − 1)Q
≤ 1 + c

1 + 1
tJ−1 e(zj−b)/c

As t→ ∞:

lim
t→∞

dV
dq
≤ 1 + c

Therefore:

lim
t→∞

1
tI

dV
dq

= 0
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The first order condition in the limit becomes

(1− e−Q∗)zj −V∗ − c log Q∗ − c = 0

where V is the limit of sequence of Vt that solves the constraints on firm j’s problem. There are

another J + 1 equations for Qj′ and V∗, as t→ ∞ they become:

1− e−Qj′

Qj′
(wj − b)− c log

Qj′

µ
= V∗

∑
j

Qj = µ

The assumption for this lemma implies (tIqt, V∞) satisfy the equation system above. We can find

a unique Q∗ that solves:

(1− e−Q∗)zj −V∞ − c log Q∗ − c = 0

So (Q∗, tIqt, V∞) solve the limit version of the first order conditions. This is also the unique

solution to the equation system because given wt, there is a unique solution to the system (it is a

subgame with wage vector wt).

1− e−Qj′

Qj′
(wj − b)− c log

Qj′

µ
= V∗

∑
j

Qj = µ

Using the continuity of the solution to firm’s problem, it has to be such that the limit of firm’s

optimal choice converges to the solution to the equation above. The above condition is also the

unique solution to the firm’s problem in the limit taking as given V∞:

max
w

(1− e−Q)(zj − w)

s.t.
1− e−Q

Q
(w− b)− c log

Q
µ

= V∞

Proof of Proposition 4

1. There exists at least one convergent sub-sequence of subgame perfect equilibrium

To prove this point, consider any sequence of subgame perfect equilibrium {we
t , qe

t}t, the
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marginal benefit of search for every firm must be equal in the equilibrium:

Vt =
1− (1− qe

t,j)
tI

Iqe
t,j

(we
t,j − b)− c log

qe
t,j

tJ

So the t-economies are indexed by Vt, in that given any Vt and t, I can solve for the equilibrium

allocation and wage. Vt is a real number that is bounded, because the marginal benefit of apply-

ing to firms cannot be positive infinity (due to the cost of directing) or negative infinity (due to

the wage is bounded by b). The Bolzano–Weierstrass theorem implies there must exist a conver-

gent subseuqence of {Vt}t. Find the corresponding allocations and wages to this subsequence.

Lemma 3 states that the allocations and wages must converges to the optimal queue-wage choice

of firms in an entropic competitive search equilibrium, given market utility V∞ = limt→∞ Vt.

Now I show V∞ must clears the market, so the corresponding queues and wages are indeed

an entropic competitive search equilibrium. The proof relies on the continuity of firms’ problem

in both finite and limiting economy. There is always an equilibrium with the same distribution of

productivities and worker-firm ratio µ. Define the market utility of this equilibrium Ve. Suppose

that V∞ 6= Ve. Denote qj(V) the solution to firms of productivity zj‘ problem in the limiting

economy given market utility V. The entropic competitive search equilibrium is unique. If

V∞ 6= V∗, then t ∑j qj(V∞) 6= µ. Using continuity of qt
j in t, for every t, I can find some t′ > t such

that

∑
j

qt
j(Vt′) 6= 1

This is contradicting to the fact {we
t′ , qe

t′} is a subgame perfect equilibrium. So the limiting point

must be V∞ = Ve. So the limiting of this subsequence is indeed an entropic competitive search

equilibrium. Moreover, because the limiting equilibrium is unique, every convergent sequence

limits to the same point.

2. Every entropic competitive search equilibrium is a limit of some convergent sequence

Our proof for statement 1 is constructive. So following the same method I can find the

convergent sequence that limits to any entropic competitive search equilibrium with discrete

productivity distribution.

Proof of Proposition 5

Firm’s problem is strictly convex, and so is continuous in V and y. Given any fixed V, de-

note firm’s choice of queue given z as q(z; V). Convergence in productivity distribution implies∫
z q(z; V)dFn(z)→

∫
z q(z; V)dF∗(z).
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Define Dn(V) =
∫

z q(z; V)dFn(z) and D∗(V) =
∫

z q(z; V)dFn(z). Dn(V) and D∗(V) are continu-

ous bijections from [0, maxj zj] to [0, µ]. Their inverse D−1
n (µ) is also continuous. Let {Vn}n be the

market utility with distribution Fn and V∗ is the market utility with distribution F∗. It must be

such that Vn → V∗. Otherwise I can find n large enough such that Vn does not clears the market.

Define a new random variable Zn = (zn, Vn). Zn
d→ (z∗, V∗). Continuous mapping theorem

establish that

qn = q(zn, Vn)
d→ q∗

wn = w(zn, Vn)
d→ w∗

Proof of Proposition 7

Click to return to main text. I first consider the impact of minimum wage on the market utility

V. It has to be increasing in the minimum wage. To see this, notice the firms who are constrained

by the minimum wage has a queue that solves the following equation

m(q̄)w− c log q̄ = V

If the market utility weakly decreases when the minimum wage increases. q̄ will increase. For a

weakly decreasing market utility, the queues at unconstrained firms weakly increase. As a result,

the aggregate demand for applicants strictly increases. Given the old market utility clears the

market and the equilibrium is unique, this is a contradiction.

For the unconstrained firms, this first order condition is

n′(q)z− c log q− c = V

I already showed the market utility must rise when the minimum wage increases. The first order

condition implies that the queue for the unconstrained firms must decrease.

Next, I show the threshold of productivity must increases. Suppose to the contrary, the

threshold decreases. This means some firms that used to be bounded by the minimum wage is

now unconstrained, including the old threshold firms. Recall the threshold firms find minimum

wage optimal. Our discussion so far implies, the queue at the old threshold firm must be de-

creasing. The new threshold is less productive than the old threshold firm, and thus post a lower

queue than old minimum wage queue. Therefore, weakly less firms are posting the minimum

wage, and the queue they demand from market is decreasing. This cannot be true in equilibrium,

because now the aggregate demand for applicants decreases for all firms.

Next I turn to the results on wages: Posted wages increase for all firms. For the firms that use

to post the old minimum, their wages increase mechanically. For the unconstrained firms, their
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wages increase. To see this, notice the wage for an unconstrained firm with productivity zj is

wj = max{ε(qj)zj −
c

m(qj)
, 0}

I have shown qj decreases for these firms. The matching elasticity ε(qj) is decreasing, and m(qj)

is decreasing in qj. A decrease in qj leads an increase in wage.

The last is to show the wage at the newly constrained firms also increase. To see this, notice these

firms use to be unconstrained and are now posting minimum wage. Suppose these firms are

posting a wage higher than before. The new threshold firm used to be unconstrained and more

productive than the newly constrained firms. The new threshold firm must used to post a wage

higher than these firms, and thus higher than the new minimum wage. This is a contradiction,

because I just showed the threshold firm must be increasing its wage.

Proof of Proposition 8

First assume the tax function is well-behaved, such that it maintains the strict concavity of the

objective function. Take the first order condition given tax function T(π) I have

n′(q)zj − (Ve + c log q)− c− n′(q)T(π)) + (c− qm′(q)
m(q)

(Ve + c log q))T′(π) = 0

Comparing this equation to planner’s solution, I notice the wedge is

−c− n′(q)T(π)) + (c− qm′(q)
m(q)

(V + c log q))T′(π)

The goal is to set tax policy function such that for every q, given the equilibrium market utility

replicates planner’s solution V∗, the wedge is zero. According to the labor supply curve V +

c log q = m(q)w. The tax function needs to be such that

c + n′(q)T(π) = (c− qm′(q)w)T′(π)

With this wedge being zero, the wage must be

m(q)w = n′(q)z

This implies

π = z− w = −qm′(q)
n′(q)

w

So the tax function must be such that

c
n′(q)

+ T(π) = (
c

n′(q)
+ π)T′(π)
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To make sure this exactly cancelled the wedge at every point. I impose that equilibrium mar-

ket utility is Ve = V∗. For every q and its associated π. To show the tax function is convex,

differentiate T′(π):

T′′(π) =
T′π − T + c

n′ (T
′ − 1)− c n′′q′

(n′)2 (π − T)

(π + c
n′(q(π))

)2

=

−T c
n′

π+ c
n′
+ c

n′
T−π
π+ c

n′
− c n′′q′

(n′)2 (π − T)

(π + c
n′(q(π))

)2

=

c
n′ π−T c

n′
π+ c

n′
+ c

n′
T−π
π+ c

n′
− c n′′q′

(n′)2 (π − T)

(π + c
n′(q(π))

)2

=
−c n′′q′

(n′)2 (π − T)

(π + c
n′(q(π))

)2 > 0

Proof of Proposition 9

I want to show that a symmetric perfect Bayesian equilibrium is indeed a Perfect Recommenda-

tion Equilibrium. To do so, I just need to check the two refinements are met.

Costly Directed Search to Rational Inattention

Want to show if qe(w) solves the following mapping for every w, then it must be credible and

attentive.

{qe
j}j = arg max

qj
∑

j

1− (1− qe
j )

I

Iqe
j

wjqj − c ∑ qj log
qj

1/J
(27)

s.t.

∑
j

qj = 1

1. Credible Response

Consider a fixed w, the goal is to construct a sequence of believes and firm strategy Gn, σn
j

such that w is visited with positive probability. With these believes, the subgame equilibrium in

a symmetric perfect Bayesian equilibrium is still subgame equilibrium with the new belief. Our

strategy is to construct Gn such that the firms stay identical ex’ante. To do so: For any pertur-

bation wage profile w ≥ 0, let δw be the delta function with parameter w. For any equilibrium

wage profile we, define the perturbation firm strategy:

σn
j =

(
1− 1

n

)
δwe +

1
n
(

J

∑
k=1

1
J

δw̃k)

where w̃k is constructed by a shuffling of perturbation wage profile w. Specifically, I can construct

such perturbation by shuffling firm identities in the following matrix. Each column has the
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same element, but I sequentially shuffle to leading elements to the tail. Call the k-th column of

following matrix the wage profiles w̃k.
w1 w2 w3 . . . wJ

w2 w3 w4 . . . w1

. . . . . . . . . . . . . . . . . . . . . . . . .

wJ w1 w2 . . . wJ−1


The potential issue with an arbitrary wage perturbation to w is that the perturbation to w might

induce the benchmark strategy (the strategy before acquiring information) to be non-uniform.

In such a case, using uniform search strategy as the benchmark strategy no longer characterize

the optimal strategy. My solution is to find a collection counter-perturbations such that the

benchmark strategy stays uniform. I construct such perturbation by shuffling firm identities.

Given the wage profiles, the corresponding subgame equilibrium in the game with observed

wages and cost of directing search must be the following matrix
qe

1 qe
2 qe

3 . . . qe
J

qe
2 qe

3 qe
4 . . . qe

1

. . . . . . . . . . . . . . . . . . . . . .

qe
J qe

1 qe
2 . . . qe

J−1


No matter what is the perturbation profile w, the row sum of the above matrix must be 1. So

by uniformly weight the counter-perturbation profiles, I maintain a uniform benchmark strategy.

This means equation (23) still characterize the subgame perfect equilibrium given the perturbated

firm strategy and belief.

2. Attentive

For wage profile that equalize across all firms, it is always a subgame equilibrium to put positive

weight on all firms. So the equilibrium outcome is attentive.

Rational Inattention to Costly Directed Search On the equilibrium path, a symmetric equi-

librium means two firms use the same strategy if they have the same strategy. Because productiv-

ity distribution is identical across firms, this means the belief on wage profile must be identical

across firms on the equilibrium path. Thus if any benchmark strategy is the equilibrium out-

come, it must be uniform. For workers’ strategy to be credible, corollary 8.1 implies the equation

(23) must hold for every w
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