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Abstract 

I use the bootstrap to study a comprehensive sample of 1400 instrumental 

variables regressions in 32 papers published in the journals of the American 

Economic Association.  IV estimates are more often found to be falsely significant 

and more sensitive to outliers than OLS, while having a higher mean squared error 

around the IV population moment.  There is little evidence that OLS estimates are 

substantively biased, while IV instruments often appear to be irrelevant.  In 

addition, I find that established weak instrument pre-tests are largely 

uninformative and weak instrument robust methods generally perform no better or 

substantially worse than 2SLS. 
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I:  Introduction 

The economics profession is in the midst of a “credibility revolution” 

(Angrist and Pischke 2010) in which careful research design has become firmly 

established as a necessary characteristic of applied work.  A key element in this 

revolution has been the use of instruments to identify causal effects free of the 

potential biases carried by endogenous ordinary least squares regressors.  The 

growing emphasis on research design has not gone hand in hand, however, with 

equal demands on the quality of inference.  Despite the widespread use of Eicker 

(1963)-Hinkley (1977)-White (1980) robust and clustered covariance estimates, in 

finite samples heteroskedastic and correlated errors still produce test statistics 

whose distribution is typically much more dispersed than believed.  This 

complicates inference in both ordinary and two stage least squares, but is 

compounded in the latter, where first stage joint test statistics are used to buttress 

the credibility of second stage results.  In this paper I show that two stage least 

squares (hereafter, 2SLS or IV) methods produce estimates that, in practice, rarely 

identify parameters of interest more accurately or substantively differently than is 

achieved by biased ordinary least squares (OLS). 

I use the bootstrap to study the distribution of test statistics for a 

comprehensive sample of 1533 instrumented coefficients in 1400 2SLS 

regressions in 32 papers published in the journals of the American Economic 

Association.  I maintain, throughout, the exact specification used by authors and 

their identifying assumption that the excluded variables are orthogonal to the 

second stage residuals.  When I bootstrap, I draw samples in a fashion consistent 

with the error dependence within groups of observations and independence across 

observations implied by authors’ standard error calculations.  Thus, this paper is 

not about point estimates or the validity of fundamental assumptions, but rather 

concerns itself with the quality of inference within the framework established by 

authors themselves.  The bootstrap shows that conventional tests have rejection 
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rates much greater than nominal size, i.e. systematically understate confidence 

intervals, and that these distortions grow in joint tests.  Bootstrapping the 

bootstrap, however, I also find that the bootstrap itself continues to understate 

confidence intervals.  Thus, the results reported below are likely to be generous. 

I find that, depending upon the bootstrap method used, 2SLS point 

estimates are falsely declared significant between ⅓ and ½ of the time, while their 

bootstrapped 99 percent confidence interval includes the OLS point estimate 

between 92 and 94 percent of the time and the entirety of the bootstrapped OLS 99 

percent confidence interval between 75 and 83 percent of the time.  The 

extraordinary sampling variability of IV estimates is reflected in their sensitivity to 

outliers.  With the removal of only or two clusters or observations 45 and 63 

percent, respectively, of reported .01 significant 2SLS results can be rendered 

insignificant at the same level.  I find that only 8 to 14 percent of regressions can 

reject the null that the OLS estimates are in fact unbiased at the .01 level.  This is 

important because the ln mean squared error of 2SLS around its own population 

moment is on average 4.77 greater than the ln mean squared error of OLS around 

its population moment, so if OLS is unbiased the use of 2SLS is, from a quadratic 

loss point of view, a regrettable choice.  Surprisingly, I find that the ln mean 

squared error of 2SLS around its population moment is on average 1.52 greater 

than that of OLS around the same moment, i.e. in applied work biased OLS is on 

average more accurate in estimating the IV population moment than 2SLS itself!  

Moreover, the bias of 2SLS methods is greater than the bias of OLS (from the 

2SLS moment) in about 1/6 of coefficients.  I find that the null that all first stage 

coefficients are zero can only be rejected at the .01 level between 52 to 70 percent 

of the time, i.e. in ⅓ to ½ of published regressions one cannot reject the null that 

the instruments are totally irrelevant and the observed correlation between the 

endogenous variables and the excluded instruments, despite the exogeneity of the 

latter in the population, is due to a wholly undesirable finite sample correlation 
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between the instruments and the endogenous errors.  Only one in ten to twelve 

instrumented coefficients resides in a regression that rejects the instrument 

irrelevance and the no-OLS bias nulls at the .01 level.  Only 5 to 6 percent of 

instrumented coefficients meet these standards of credibility while producing a 

confidence interval that does not contain the OLS point estimate. 

Weak instruments can, in principle, play a role in many of the maladies 

described above.  A weak first stage relationship results in variation of predicted 

values well below that of the original regressors, producing less efficient estimates 

than OLS.  Weak instruments also produce biased coefficients with highly non-

normal distributions whose tail variation may be much greater than believed, 

generating empirical rejection rates under the null much greater than nominal size.  

I find that conventional first stage F statistics have a much wider sampling 

distribution than recognized, with those based on the default covariance estimate 

showing an average rejection probability of .284 at the .01 level when the null of 

zero effects is true, which remains as high as .160 when clustered/robust 

covariance estimates are used.  In light of this, I construct bootstrap equivalent F-

statistics by inverting the bootstrapped p-value and find that instruments are much 

weaker than believed, with only 30 to 40 percent of regressions showing a 

bootstrapped F greater than 10.  However, outside of the very weakest of 

instruments, with Fs less than 1, no F-statistic of any form is associated with 

second stage size biases.  While weak instruments distort the distribution of 

second stage test statistic distributions, beyond the weakest cases these effects are 

completely dominated by the biases created by the departure of heteroskedastic, 

correlated and non-normal errors from the iid normal ideal, making inference with 

both 2SLS and OLS equally inaccurate, despite the use of cluster/robust 

covariance estimates.  The simplest evidence of this is the fact that the average 

excess size of 2SLS and OLS versions of the same regressions are roughly the 
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same.  Non-iid errors confound the measurement of instrument strength, but also 

make it less relevant, as instrument strength is not the main source of size biases. 

 There is a growing professional tendency to use weak instrument pre-tests 

based upon conventional first stage F-statistics to establish the credibility of 2SLS 

results.  I apply the weak instrument pre-tests of Stock and Yogo (2005) and show 

that, outside of the most extreme cases where the conventional first stage F is less 

than 1, they provide little protection against excess size as coefficients which pass 

the tests have rejection rates under the null which are no better than those which 

do not.  The bounds on both size and bias that are supposed to be assured by the 

tests are grossly violated by regressions which pass.  Given this, and the fact that I 

find that conventional Fs greater than 10 have a .089 to .213 probability of arising 

when the instruments are in fact completely irrelevant, the increasing use of these 

pre-tests to legitimize results is unfortunate. 

The finding that first stage relations are much weaker than believed might 

lead to an increased reliance on weak instrument robust methods.  My results 

indicate this would be ill-advised.  I examine the performance relative to 2SLS of 

three weak instrument robust inference and estimation methods.  The Anderson-

Rubin (1949) method tests second stage significance by projecting the dependent 

variable directly on the excluded instruments and has been endorsed by a number 

of econometricians as a solution to the problem of inference with weak 

instruments (e.g. Dufour 2003, Baum, Schaffer and Stillman 2007, Chernozhukov 

and Hansen 2008).  It performs very poorly, as the projection onto a broader space 

magnifies size distortions in over-identified equations, while in exactly identified 

equations it has few advantages since, as already noted, with non-ideal errors 

outside of the most pathologically weak first stage relations OLS and 2SLS have 

similar coverage bias.  The limited information maximum likelihood (LIML) 

method has been found, in analysis with iid disturbances, to have better median 

bias and coverage bias, especially with weak instruments, than conventional 2SLS 
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(Anderson, Kunitomo & Sawa 1982, Anderson 1983, Staiger and Stock 1997, and 

Stock and Yogo 2005).  In practical application, I find that none of these properties 

holds, as LIML performs much worse than 2SLS on bias and mean squared error 

(particularly when instruments are weak), with no advantages in size.  Fuller 

(1977) designed his k method as an adjustment that creates finite moments for the 

LIML estimator, and, in iid settings, Rothenberg (1984) showed that to a second-

order approximation Fuller’s method is the unbiased k-class estimator with 

minimum mean squared error, while Stock and Yogo (2005) concluded that bias in 

Fuller’s k is more robust to weak instruments than 2SLS.  I find that Fuller’s 

method has lower mean squared error and bias than 2SLS, but, again outside of 

extreme cases with conventional Fs less than 1, this is unrelated to any measure of 

the strength of instruments.  In sum, in practical application most of the 

predictions of iid based theory are found to be untrue. 

The concern with the quality of inference in 2SLS raised in this paper is 

not new.  Sargan, in his seminal 1958 paper, raised the issue of efficiency and the 

possibility of choosing the biased but more accurate OLS estimator, leading later 

scholars to explore relative efficiency in Monte Carlo settings (e.g. Summers 1965, 

Feldstein 1974).  The current professional emphasis on first stage F-statistics as 

pre-tests originates in Nelson and Startz (1990a, b), who used examples to show 

that size distortions can be substantial when the strength of the first stage 

relationship is weak, and Bound, Jaeger and Baker (1995), who emphasized 

problems of bias and inconsistency with weak instruments.  These papers spurred 

path-breaking research, such as Staiger and Stock (1997) and Stock and Yogo’s 

(2005) elegant derivation and analysis of weak instrument asymptotic 

distributions, renewed interest in older weak instrument robust methods, and 

motivated the use of such techniques in critiques of selected papers (e.g. Albouy 

2012, Bazzi and Clemens 2013).  The contribution of this paper within this 

literature is two-fold:  first, in showing that departures from the iid ideal that 
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motivates most theoretical work raises important questions, both regarding the 

measurement of instrument strength and the practical usefulness of iid based 

results; and, second, in highlighting the importance of redirecting some attention 

away from uninformative first-stage pre-tests to older concerns regarding mean 

squared error and the relative efficiency of 2SLS and OLS. 

The paper proceeds as follows:  Section II below begins by describing the 

rules used to select the sample and its characteristics.  I have not allowed myself 

any discretion in picking papers or regressions and, subject to some basic rules 

regarding data and code availability and methods applied, have used all papers 

produced by a search on the AEA website.  Section III provides a brief review of 

notation and the bootstrap methods used in the paper highlighting the reason why 

the bootstrap itself may produce rejection rates greater than nominal size.  Section 

IV presents the results described above concerning the sample itself, while 

sections V and VI review the disappointing performance of weak instrument pre-

tests and weak instrument robust methods.  Section VII concludes. 

All of the results of this research are anonymized.  Thus, no information 

can be provided, in the paper, public use files or private conversation, regarding 

results for particular papers.  Methodological issues are more important than 

individual results and studies of this sort rely upon the openness and cooperation 

of authors.  For the sake of transparency, I provide complete code (in preparation) 

that shows how each paper was analysed, but the reader eager to know how a 

particular paper fared will have to execute this code themselves.  Public use data 

files (in preparation) provide the results and principal characteristics of each 2SLS 

regression in an anonymized fashion, allowing researchers to reproduce the tables 

in this paper and use the data in further analysis. 

II. The Sample 

 My sample is based upon a search on www.aeaweb.org using the keyword 

"instrument" covering the American Economic Review and the American 
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Economic Journals for Applied Economics, Economic Policy, Microeconomics 

and Macroeconomics which, at the time of its implementation, yielded papers up 

through the July 2016 issue of the AER.  I then dropped papers that: 

(a) did not provide public use data files and Stata do-file code1; 

(b) did not include instrumental variables regressions; 

(c) used non-linear methods or non-standard covariance estimates; 

(d) provided incomplete data or non-reproducible regressions. 

Public use data files are necessary to perform any analysis, and I had prior 

experience with Stata and hence could analyse do-files for this programme at 

relatively low cost.  Stata is by far the most popular programme as, among papers 

that provide data, only five make use of other software.  The keyword search 

brought up a number of papers that deal with instruments of policy, rather than 

instrumental variables, and these were naturally dropped from the sample. 

 Conventional linear two stage least squares with either the default or 

clustered/robust covariance estimate is the overwhelmingly dominant approach, 

so, to keep the discussion focused, I dropped four rare deviations.  These include 

two papers that used non-linear IV methods, one paper which clustered on two 

variables, the union of which encompassed the entire sample making it impossible 

to implement a pairs bootstrap that respects the cross-correlations the authors 

believe exist in the data, and another paper which uniquely used auto-correlation 

consistent standard errors (in only 6 regressions) using a user-written routine that 

does not provide formulas or references in its documentation.  One paper used 

Fuller’s modification of LIML methods.  Since this method is considered a weak 

instrument robust alternative to 2SLS, I keep the paper in the sample, examining 

its regressions with conventional 2SLS and, along with the rest of the sample, 

using LIML and Fuller methods.  A smattering of GMM methods appear in two 

                                                 
1Conditional on a Stata do-file, a non-Stata format data file was accepted. 
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papers whose 2SLS regressions are otherwise included in the sample.  Inference in 

the generalized method of moments raises issues of its own that are best dealt with 

elsewhere, so I exclude these regressions from the analysis. 

 Many papers provide partial data, indicating that users should apply to 

third parties for confidential data necessary to reproduce the analysis.  As the 

potential delay and likelihood of success in such applications is indeterminate, I 

dropped these papers from my sample.  One paper provided completely “broken” 

code, with key variables missing from the data file, and was dropped from the 

sample.  Outside of this case, however, code in this literature is remarkably 

accurate and with the exception of two regressions in one paper (which were 

dropped),2 I was able to reproduce, within rounding error or miniscule deviations 

on some coefficients, all of the regressions reported in tables.  I took as my sample 

only IV regressions that appear in tables.  Alternative specifications are sometimes 

discussed in surrounding text, but catching all such references and linking them to 

the correct code is extremely difficult.  By limiting myself to specifications 

presented in tables, I was able to use coefficients, standard errors and 

supplementary information like sample sizes and test statistics to identify, interpret 

and verify the relevant parts of authors’ code.  Two papers critique the results of 

other papers.  I use these, as they provide data and code for 73 regressions in 9 

papers otherwise not in my sample.3  

As shown in Table I, my final sample consists of 32 papers, 16 appearing 

in the American Economic Review and 16 in other AEA journals.4  Of the 1400 IV 

regressions in these papers, 1359 involve only one endogenous variable, with 1087 

                                                 
2I also dropped 2 other regressions that had 10 million observations, as bootstrapping these 

regressions is beyond the computational resources available to me.  
3In referring to “papers” below, however, I count all papers reviewed in a single review 

paper as one paper. 
4The AEJ: Microeconomics does not appear in the final sample because the six papers that 

showed up in my search either did not provide a data file or used non-linear methods.  



9 

Table I:  Characteristics of the Sample 

           32 papers         1400 2SLS regressions (1533 coefficients) 

Journal 
endogenous regressors 
& excluded instruments 

covariance  
estimate 

distribution 

16 
7 
4 
5 

 AER 
 AEJ: A. Econ. 
 AEJ: E. Policy 
 AEJ: Macro 

1087  
272 
41 

 

    1 & 1 
    1 &  >1 
  >1 &  >1 

105 
1035 
260 

  default 
  clustered 
  robust 

767 
633 

  t & F 
  N & chi2 

  Notes:  AER = American Economic Review; AEJ = American Economic Journal; t, F, N & chi2 = 
t, F, standard normal and chi-squared distributions. 

 

of these exactly identified by one excluded instrument.  Multiple testing, in the 

form of multiple coefficients of substantive interest presented within one 

estimating equation, is extremely rare, with only 41 equations involving more than 

one instrumented endogenous variable.  This contrasts strongly with practice in 

field and laboratory experiments, where I find in Young (2017) that about half of 

estimating equations include multiple treatment measures, with an average of 5 

treatment measures per equation.  When equations are overidentified, the number 

of instruments can be quite large, with an average of 18 excluded instruments 

(median of 14) for 1.3 endogenous variables in 300 overidentified equations in 15 

papers.  Thus, econometric issues concerning the higher dimensionality of 

instruments are relevant in a substantial subset of equations and papers. 

 Turning to statistical inference, almost all of the papers in my sample use 

the Eicker (1963)-Hinkley (1977)-White (1980) robust covariance matrix or its 

multi-observation cluster extension.  One paper uses the default 2SLS covariance 

estimate, as does a solitary regression in another paper where the old fixed effects 

command the author chose for that regression did not allow the clustering used in 

other regressions in the same paper.  Different Stata commands make use of 

different distributions to evaluate the significance of the same 2SLS estimating 

equation, with the sample roughly equally divided between results evaluated using  
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Table II: Tests of Normality, Cluster Correlation and Heteroskedasticity 
(fraction of regressions rejecting the null at 1x10-10 and .01 levels) 

 
1400 second stage 

regressions 
1533 first stage 

regressions 

 1x10-10 .01 1x10-10 .01 

normality of residuals .709 .854 .665 .857 

no cluster fixed effects .805 .942 .801 .940 

homoskedasticity (Breusch & Pagan 1979) .780 .873 .730 .863 

homoskedasticity (Koenker 1981) .526 .729 .487 .704 

homoskedasticity (Wooldridge 2013) .573 .756 .530 .728 

  Notes:  As the theory underlying the homoskedasticity tests is developed in an OLS framework, 
the second stage tests are performed using the OLS version of the authors’ estimating equation. 

 

the t and F (with finite sample covariance corrections) and those evaluated using 

the normal and chi2.  In directly evaluating authors’ results, I use the distributions 

and methods they chose.  For more general comparisons, however, I move 

everything to a consistent basis using, in turn, either the default or 

clustered/robust5 covariance estimates and the same t and F distributions (with 

finite sample covariance corrections) for all 2SLS and OLS results.  

 Table II shows that non-normality, intra-cluster correlation and 

heteroskedasticity of the disturbances are important features of the data generating 

process in my sample.  Using Stata’s test of normality based upon skewness and 

kurtosis, I find that about ⅔ of first and second stage regressions reject the null 

that the residuals are normal at the 1x10-10 level and about .85 at the .01 level.  In 

equations which cluster, cluster fixed effects are found to be significant .80 of the 

time at the 1x10-10 level and .94 of the time at the .01 level.  In close to ½ of these 

                                                 
5I use the robust covariance estimate for the paper that used the default covariance estimate 

throughout, cluster the solitary regression mentioned above, and also cluster three regressions 
where the author used the robust covariance estimate but otherwise clustered all other regressions 
in the paper. 
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regressions the authors’ original specification includes cluster fixed effects, but 

where there is smoke there is likely to be fire, i.e. it is unlikely that the cluster 

correlation of residuals is limited to a simple mean effect; a view apparently 

shared by the authors, as they cluster standard errors despite including cluster 

fixed effects.  Tests of homoskedasticity involving the regression of squared 

residuals on the authors’ right-hand size variables and cluster fixed effects (where 

authors cluster), using the test statistics and distributions suggested by Breusch and 

Pagan (1979), Koenker (1981) and Wooldridge (2013), reject the null between 

.487 to .780 of the time at the 1x10-10 level and between .704 and .873 of the time 

at the .01 level.  These tests are based upon the assumption that the disturbances 

are iid normal or at least iid, and hence the distribution theory underlying each test 

is often undermined by the results of the others,6 so it would be incorrect to 

conclude that they show that residuals are simultaneously non-normal, correlated 

and heteroskedastic.  They do indicate, however, significant departures, on at least 

some dimension, from the iid ideal.  This is borne out by the poor predictive power 

of iid based theory in this sample, as shown later. 

III. Notation and Bootstrap Methods 

(a) Notation 

I follow fairly standard notation.  With lower case bold letters indicating 

vectors and upper case bold letters matrices, the data generating process is taken as 

given by: 

VX∆ΠZY

uXδYβy

++=

++=)1(
 

                                                 
6The Breusch & Pagan test assumes the residuals are iid normal, while the other two tests of 

homoskedasticity assume they are iid.  The test of normality assumes the residuals are iid.  The test 
for cluster fixed effects uses the default covariance matrix, as the number of cluster fixed effects 
equals the maximum possible rank of the cluster covariance matrix, and hence implicitly assumes 
that with these fixed effects the residuals are iid.  I should note that in implementing the normality 
and heteroskedasticity tests on residuals, where authors weight I use the weights to remove the 
known heteroskedasticity in the residuals before running the tests.   
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where y is the n x 1 vector of second stage outcomes, Y the n x kY matrix of 

endogenous regressors, X the n x kX matrix of included exogenous regressors, Z 

the n x kZ matrix of excluded exogenous regressors (instruments), u the n x 1 

vector of second stage disturbances, and V the n x kY matrix of first stage 

disturbances.  The remaining (Greek) letters are parameters, with β representing 

the parameters of interest.  The nuisance variables X and their associated 

parameters are of no substantive interest, so I use ~ to denote the residuals from the 

projection on X and characterize everything in terms of these residuals.  For 

example, with ^ denoting estimated and predicted values, the coefficient estimates 

for OLS and 2SLS are given by: 

.
~~~~~~̂

  where,~~̂
)

~̂~̂
(ˆ,~~

)
~~

(ˆ)2( 1
2sls

1
ols YZ)ZZ(ZYyYYYβyYYYβ 1 ′′=′′=′′= −−−  

(b) The Bootstrap 

 Conventional econometrics uses assumptions and asymptotic theorems to 

infer the distribution of a statistic f calculated from a sample with empirical 

distribution F1 drawn from an infinite parent population with distribution F0, which 

can be described as f(F1|F0).  In contrast, the bootstrap estimates the distribution of 

f(F1|F0) by drawing random samples F2 from the population distribution F1 and 

observing the distribution of f(F2|F1) (Hall 1992).  If f is a smooth function of the 

sample, then asymptotically the bootstrapped distribution converges to the true 

distribution (Lehmann and Romano 2005), as, intuitively, the outcomes observed 

when sampling F2 from an infinite sample F1 approach those arrived at from 

sampling F1 from the actual population F0. 

In bootstrapping the distribution of a test statistic one derives a bootstrap 

estimate of its p-value and simultaneously learns about the size distortions of the 

conventional test.  To be concrete, let µ0 denote a moment of the parent population 

that is of interest.  In conventional statistics we observe the concomitant moment 

µ1 in F1, construct a test statistic measuring its distance from a hypothesized value 



13 

of µ0, say 0, and use theory to evaluate its likelihood of arising in sampling.  By 

drawing samples F2 and testing µ2 = µ1, i.e. centring the test statistic around the 

known population moment of F1, we learn something about the distribution of the 

test statistic for F1 of µ1 = µ0 = 0 under the null µ0 = 0 for F0.  This forms the basis 

of the bootstrap p-value.  At the same time, by applying conventional p-value 

calculations to each test of µ2 = µ1 we learn about size, as µ1 is the true null when 

sampling F2 from F1.  It is worth emphasizing that these size calculations have no 

necessary implications regarding the validity of the null for F0, although it is true 

that a finding that the test statistic has unexpectedly large dispersion (producing 

positive size distortions) will typically result in a bootstrap upward adjustment of 

the conventional p-value for tests of the null for F0. 

The bootstrap can be iterated to identify its own size distortions.  Consider 

drawing a sample F2 from F1, calculating the test statistic for the test µ2 = µ1, and 

then drawing bootstrap samples F3 from F2 and using the distribution of the test 

statistic for µ3 = µ2 to evaluate the p-value of the earlier test statistic.  Performing 

this many times reveals the size distortions of the bootstrap, since, in each case, 

one is using the bootstrap to evaluate a null that is known to be true.  In principle, 

knowledge of these size distortions could be used to adjust the original bootstrap 

p-value for the test of µ1 = µ0 (Hall 1986, Hall & Martin 1988).  However, given 

the large number of regressions studied in this paper, I find this to be beyond my 

computing resources, as it requires the calculation of 1000s of bootstraps for each 

of the original 1000s of bootstraps used to evaluate the paper’s test statistics.  I do, 

however, draw 10 iterated bootstraps for each test, allowing me to calculate the 

average bootstrap size distortion across all the tests I examine, although not 

providing enough information to adjust any given one. 

 I make use of two bootstrap test statistics.  The first is the bootstrap-c, 

which uses the bootstrap distribution of coefficients to calculate their covariance 
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matrix and Wald statistics, computing the probability: 

)()()()()()()3( 1
1

2112
1

212 0ββV0ββββVββ −′−>−′− −− ii  

where 1β  is the vector of coefficients estimated using the sample F1, 
i
2β  is the 

vector of coefficients estimated in the ith draw of sample F2 from F1, )( 2βV  is the 

covariance matrix of 2β  calculated across all draws, and 0 is the null hypothesis 

being tested in the original population.  In the case of an individual coefficient, the 

common variance in the denominator on both sides can be cancelled and the 

method reduces to calculating the probability: 
2

1
2

12 )β()ββ()4( >−i  

If the distribution of coefficients is unbiased and normal, this amounts to 

calculating their variance.  Any estimate of variance is, however, subject to 

sampling variation.7  Since the distributions used to evaluate test statistics are 

convex around critical values, this variation tends to produce size greater than 

nominal value, even in the bootstrap.  Iterating the bootstrap by bootstrapping the 

bootstrap, as described earlier, amounts to estimating the variance of the estimate 

of the variance, which can be used to adjust the bootstrap critical values.  Further 

iterations could, in turn, estimate the variance of this estimate, and so forth.  At 

each stage, one can take a step up what Mosteller and Tukey (1977) describe as the 

“misty staircase” of statistical inference, deriving an estimate of the variance of the 

previous estimate of variance. 

 The second bootstrap measure I use is the bootstrap-t, which uses the 

iteration by iteration covariance estimate to calculate the Wald statistic, computing 

the probability: 

)()()()()()()5( 1
1

1112
1

212 0ββV0ββββVββ −′−>−′− −− iii  

                                                 
7This is not a matter of sampling variation arising from using a finite number of bootstrap 

draws from F1 to estimate the variance of the coefficients.  Rather, just as for any conventional 
estimate of variance, the bootstrap estimate itself is a function of the sample F1 drawn from F0.   
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where )( 2
iβV is the conventional covariance estimate of  

i
2β  calculated in the ith 

draw and )( 1βV  is the conventional covariance estimate for the original sample.  

In the case of an individual coefficient, this amounts to estimating the distribution 

of squared t-statistics calculating the probability: 
2

1

1

2

2

12

)β(ˆ

β

)β(ˆ

ββ
)6( 








>







 −
σσ i

i

 

where σ̂  denotes the estimated standard error of the coefficient.  If the coefficients 

and standard errors followed normally based distributions, this would amount to 

calculating the degrees of freedom of the t-distribution, which identifies the 

variance of the variance.  Thus, in principle the bootstrap-t can place one further 

up the misty staircase, attaining higher accuracy without the computational cost of 

iterating the bootstrap.  This relies, however, upon the conventional estimate of 

variance being roughly accurate.  If the conventional variance estimate is poor, the 

bootstrap-t can prove less accurate than the bootstrap-c, as it simply adds noise to 

the estimated distribution of coefficients (compare equations (4) and (6)), 

providing not the desired estimate of the variance of the variance of coefficients, 

but simply a noisier estimate of the variance.  I find that in the case of 2SLS 

estimates, where the conventional estimate of variance is very inaccurate, the 

bootstrap-t has less accurate size than the bootstrap-c, while in the case of OLS 

estimates, where conventional variance estimates are closer to actual coefficient 

variation, it performs as well and often much better than the bootstrap-c.  Results 

with both measures are reported in the tables below. 

IV:  Consistency without Inference 

Table III reports the statistical significance of the coefficients of 

instrumented right-hand side variables using conventional and bootstrap 

techniques.  As shown, using authors’ covariance calculation methods and chosen 

distribution (normal or t), .322 of instrumented coefficients are statistically 
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Table III:  Coefficient Significance:  Rejection Rates and Size Distortions  
using Conventional Methods and the Bootstrap 

(1533 coefficients in 1400 regressions) 

 two stage least squares ordinary least squares 

 
rejection 

rates 
average 

size 
rejection 

rates 
average 

size 

 .01 .05 .01 .05 .01 .05 .01 .05 

authors’ methods 
clustered/robust 
default 
bootstrap - t 
bootstrap - c 

.322 

.297 

.393 

.213 

.151 

.502 

.478 

.525 

.374 

.277 

.052 

.046 

.095 

.028 

.019 

.109 

.100 

.165 

.071 

.054 

 
.509 
.579 
.431 
.449 

 
.603 
.691 
.545 
.569 

 
.049 
.127 
.023 
.024 

 
.102 
.204 
.072 
.071 

   Notes:  .01/.05 = level of the test; rejection rates = fraction of coefficients rejecting the null of 
0; average size = based upon the bootstrap, average rejection rate of the null when true.  
Bootstrap-t implemented using the clustered/robust variance estimate. 

 
significant at the .01 level and .502 at the .05 level.  As authors use diverse 

methods, the remainder of the table, and (unless otherwise noted) all further 

analysis below, evaluates results using consistent formats and distributions.  In the 

second row I use the robust or clustered covariance matrix for each equation, and 

in the third I use the default covariance estimate throughout.  Both are evaluated 

using the t-distribution with the same degrees of freedom and finite sample 

covariance adjustments as OLS, to facilitate comparisons with that method.  As 

expected, use of the t-distribution lowers significance rates slightly relative to 

those found with the normal distribution used by authors in almost half of the 

regressions in the first row.  Also as expected, the default covariance estimate 

produces somewhat higher rejection rates, with the difference concentrated in 

papers which cluster to correct for the well-known bias brought about by the 

correlation between errors within clusters and instrumented “treatment” which 

does not vary within clusters (Kloek 1981, Moulton 1986).8 

                                                 
8In regressions which cluster across multiple observations, moving from the default to the 

clustered covariance estimate lowers the fraction of .01 significant results from .47 to .33, while in 
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The changes wrought by the use of different conventional distributions or 

covariance estimates are trivial relative to those found by applying the bootstrap.  

As shown in Table III, when the distribution of t-statistics (bootstrap-t) is used to 

evaluate significance, significance rates fall by about ⅓ at each level, while when 

the distribution of coefficients (bootstrap-c) is used, significance rates fall by ½.  

The changes in p-values are substantial, as shown in Figure I, which plots the 

bootstrap p-values against the conventional clustered/robust p-values of the second 

row of Table III.  Among 2SLS coefficients which are found to be .01 significant 

using authors’ methods, but not so using the bootstrap-t, the average p-value rises 

from .004 to .040, with ¼ of these showing bootstrap p-values in excess of .052, 

while among those for which the bootstrap-c reverses significance, the average p-

value rises from .003 to .075, with ¼ of these showing bootstrap p-values in excess 

of .108. 9  Using authors’ methods all of the 32 papers in my sample have at least 

one .05 significant instrumented coefficient, and all but 4 have at least one .01 

significant coefficient.  Using the bootstrap-t and -c, 3 and 6 papers, respectively, 

have no .05 significant coefficients and a total of 10 and 14, in each case, have no 

.01 significant coefficients whatsoever.   

Table III also reports the size of conventional and bootstrap methods 

estimated by bootstrap sampling the data and testing the null of whether the  

                                                                                                                                       
regressions which use the single-observation robust version the same adjustment actually increases 
the fraction of significant results from .20 to .23.  Although a failure to cluster at the treatment level 
is not uncommon in randomized experiments (see Young 2017), I find no such cases in my IV 
sample.  Every regression in which instrumented treatment is applied to groups of observations 
clusters at that or a higher level of aggregation. 

9I recognize that in a frequentist world, a p-value of .011 is no more significant at the .01 
level than a p-value of .11, so all that matters is the frequency of 0/1 significance reported in Table 
III, not the magnitude of the changes in p-values.  However, based upon the comments of seminar 
participants, most economists appear to operate in a quasi-Bayesian world in which the actual p-
value matters (as it affects the posterior probability of the null).  I should note that coefficients 
found to be significant using the bootstrap but not so using conventional methods are very rare.  
For example, of the 327 and 232 coefficients found to be significant at the .01 level using the 
bootstrap-t and bootstrap-c, respectively, only 12 and 2 (in turn) are not significant using authors’ 
methods.   
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estimated coefficients equal their known population moments.  As shown, 

conventional 2SLS methods have substantial coverage bias, with clustered/robust 

methods rejecting the null when true .046 of the time at the .01 level and .100 of 

the time at the .05 level, while estimates using the default covariance matrix do 

even worse with, for example, an average rejection rate of .095 at the .01 level.  

The bootstraps, however, also have empirical size greater than nominal value, with 

the bootstrap-t rejecting the true null .028 and .071 of the time at the .01 and .05 

levels, respectively, and the bootstrap-c doing better, with average rejection rates 

of .019 and .054 at the two levels.  The weaker performance of the bootstrap-t 

reflects the inaccuracy of the conventional 2SLS variance estimates where, I find, 
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the ln clustered/robust standard error has only a .856 correlation with the ln of the 

bootstrapped estimate of the coefficient standard error.  In contrast, the 

comparable correlation in the case of OLS is .996, i.e. OLS standard error 

estimates convey more information, which is why the size of the bootstrap-t is at 

least as accurate, and often better, than that of the bootstrap-c in the OLS settings 

examined further on.  Regardless, the implication of the excess size of both 

bootstrap methods, here and later, is that the significance rates reported using 

bootstrap techniques are likely to be generous. 

Table III also compares the results of 2SLS methods with OLS versions of 

the same equations.  While the estimated size of conventional and bootstrap 

methods in 2SLS and OLS is comparable, conventional OLS results are much 

more robust to the introduction of the bootstrap, with the number of .01 and .05 

significant results falling by only about 15 and 10 percent, respectively.  

Significant OLS results have, to begin with, lower p-values with, for example, an 

average p-value of .0008 among .01 significant results as compared to the .0022 

achieved by similar 2SLS results.  Moreover, those p-value changes which do 

occur are much more dramatic in the case of 2SLS, as shown in Figure I above.  

For example, the 5th and 95th percentiles of the difference between the 2SLS 

bootstrap-t and clustered/robust conventional p-values are -.046 and .154, 

respectively, while the same percentiles for the difference between the OLS 

bootstrap-t and conventional p-values are -.008 and .086.  

Table IV highlights the extraordinary uncertainty surrounding 2SLS 

estimates.  As shown, the conventional clustered/robust .99 2SLS confidence 

interval contains the OLS point estimate .866 of the time and the entirety of the 

OLS confidence interval .675 of the time.  Bootstrapped confidence intervals, 

however, are much wider.  In the case of the bootstrap-t, the .99 two-sided 

confidence interval, arrived at by multiplying the conventional point estimate of 

the standard error by the bootstrapped estimate of the tail values of the absolute  
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Table IV:  Confidence Intervals and Critical Values (1533 coefficients) 

 confidence intervals (CI) and point estimates (β) 

 βols ∈ CI2sls CIols ⊂  CI2sls β2sls ∈ CIols CI2sls ⊂  CIols 

 .99 .95 .99 .95 .99 .95 .99 .95 

clustered/robust 
bootstrap - t 
bootstrap - c 

.866 

.922 

.940 

.723 

.803 

.851 

.675 

.747 

.833 

.542 

.618 

.708 

.325 

.379 

.361 

.267 

.307 

.300 

.003 

.004 

.002 

.003 

.005 

.002 

 cumulative distribution of t-statistic .01 critical values 

 .01 .10 .25 .50 .75 .90 .99 

conventional 
bootstrap-t 2SLS 
bootstrap-t OLS 
bootstrap-c 2SLS 
bootstrap-c OLS 

2.58 
1.67 
2.25 
2.19 
2.41 

2.58 
2.35 
2.54 
2.64 
2.56 

2.59 
2.66 
2.68 
2.93 
2.64 

2.61 
3.13 
2.92 
4.52 
2.82 

2.68 
3.88 
3.62 
8.08 
3.38 

2.68 
4.84 
5.22 
30.8 
5.14 

2.77 
8.77 
9.45 
112.8 
8.20 

   Notes:  .99/.95 = level of the confidence interval.  Numbers reported in the top panel are fraction 
of coefficients meeting the specified criteria. Numbers reported in the bottom panel are the 
percentiles of the critical values of the absolute value of the t-statistic.  For the bootstrap-c a t-
statistic equivalent is calculated by dividing the coefficient deviation critical value by the original 
clustered/robust standard error estimate. 

 

value of the conventional t-statistic, contains the OLS point estimate .922 of the 

time and the bootstrapped OLS confidence interval .747 of the time.  For the 

bootstrap-c, the two-sided .99 confidence interval, arrived at by calculating the tail 

values of the absolute value of the coefficient deviations from the parent 

population moment, contains the OLS point estimate .940 of the time and the 

entirety of the bootstrapped OLS confidence interval .833 of the time.  In contrast, 

the .99 OLS confidence intervals, whether bootstrapped or conventional, contain 

the 2SLS point estimate only about ⅓ of the time and the entirety of the 2SLS 

confidence interval virtually never. 

The bottom panel of Table IV reports the cumulative distribution, across 

the 1533 coefficients, of the two-sided t-statistic .01 critical values of conventional 

and bootstrap tests.  Relative to the conventional distribution, based as it is upon 
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the putative degrees of freedom of the 2SLS and OLS regressions, the bootstrap-t 

2SLS and OLS distributions are extraordinarily dispersed, with critical values that 

are both much smaller and much larger than those assumed by the conventional 

distribution.  Within the bootstrap-t, however, one sees that, with the exception of 

the extreme ends, bootstrapped 2SLS critical values are not systematically larger 

than those of bootstrapped OLS.  The table also calculates equivalent “t-statistic” 

critical values for the bootstrap-c by dividing the coefficient deviation critical 

values by the original sample’s conventional estimate of the standard error.  For 

OLS this calculation produces a distribution that is quite similar to that of the 

bootstrap-t.  For 2SLS, however, the bootstrap-c “t-statistic” critical values are 

systematically larger.  Since the difference between the bootstrap-c and bootstrap-t 

is that the latter divides the sample by sample coefficient estimate (common to 

both methods) by the sample by sample standard error estimate, this indicates that 

the standard error estimate is correlated with deviations of coefficients from the 

population moment.  I find that the average correlation between the absolute 

deviation of the 2SLS coefficient from the population moment and the 

conventional clustered/robust and default standard error estimates is, 

extraordinarily, .475 and .525, respectively, while the comparable average 

correlations for conventional OLS estimates are only .140 and .228 in each case.  

This is actually a positive feature, in that it limits the frequency with which the 

extreme coefficient outcomes of 2SLS lead to false conventional rejections, but it 

also shows that the distributions do not remotely satisfy the assumptions 

underlying the t-statistic, which is supposedly the ratio of independent random 

variables.  The tails of the actual distribution of 2SLS t-statistics are similar to 

those of OLS, producing similar size distortions when, as is customary, t-statistics 

are used to evaluate significance.  However, the proportional understatement of 

conventional confidence intervals is systematically greater in 2SLS (as evidenced 
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by the greater “t-statistic” critical values in the bootstrap-c) indicating a greater 

downward bias in conventional 2SLS standard error estimates.  

 Reported 2SLS results are remarkably dependent upon outliers.  Figure II 

graphs the maximum and minimum coefficient p-values, calculated using authors’ 

methods, found by deleting one cluster or observation in each regression.  With the 

removal of just one cluster or observation, .45 of reported .01 significant 2SLS 

results can be rendered insignificant at that level, with the average p-value, when 

such changes occur, rising from .004 to .134.  Conversely, .21 of .01 insignificant 

results can be rendered significant at the same level, with the average p-value 

falling from .106 to .004.  The average gap between the delete-one maximum and 

minimum p-values is .28, with large differences appearing even in regressions 

with thousands of clusters or observations.  With the deletion of two observations, 

no less10 than .63 of .01 significant results can be rendered insignificant (with 

average p-values rising to .253) and .39 of .01 insignificant results can be made 

significant, while the average gap between maximum and minimum delete-two p-

values is at least .45.  In contrast, when OLS versions of the same regressions are 

examined, insignificant OLS results are found to have a similar sensitivity to 

outliers, but significant results do not.  With the removal of one or two 

observations, .25 and .39, respectively, of .01 insignificant OLS results can be 

made significant, but only .15 and .26 of .01 significant OLS results can be made 

insignificant with the same deletions.  In regressions with original p-values greater 

than .1, the average gap between the maximum and minimum delete-one or 

-two OLS p-values is .48 and .71, which is similar to the same gaps for 2SLS 

regressions with original p-values greater than .1 (.50 and .72).  In regressions 

where the original p-value is less than .1, however, the average delete-one/-two

                                                 
10“No less” because computation costs prevent me from calculating all possible delete-two 

combinations.  Instead, I delete the cluster/observation with the maximum or minimum delete-one 
p-value and then calculate the maximum or minimum found by deleting one of the remaining 
clusters/observations. 
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Figure II: Sensitivity of P-Values to Outliers (Instrumented Coefficients)

(a) 2SLS
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Table V:  Testing OLS Bias, Durbin-Wu-Hausman Tests (1400 regressions) 

 rejection rates average size 

 .01 .05 .01 .05 

DWH1 
DWH2 
DWH3 

bootstrap – t 
bootstrap – c 

.296 

.300 

.351 

.137 

.084 

.416 

.421 

.469 

.269 

.190 

.107 

.109 

.134 

.032 

.021 

.180 

.182 

.220 

.075 

.061 

   Notes:  Unless otherwise noted, as in Table III above.   Conventional test statistics 
evaluated using the chi2 distribution.  DWH1-DWH3 use V1-V3, as listed in the text.  
Bootstrap-t based upon V3; results using V1 and V2 are very similar. 

OLS gaps are only .04 and .07, while the same gaps for the corresponding 2SLS 

regressions are .12 and .25. 

The motivation for using 2SLS stems from the fear that the correlation of 

endogenous regressors with the error term will produce substantially biased and 

inconsistent estimates of parameters of interest.  Table V shows that there is 

actually limited evidence of this in my sample. I report the Durbin (1954) - Wu 

(1973) - Hausman (1978) test based upon the Wald statistic formed by the 

difference between the 2SLS and OLS coefficient estimates.  Following Staiger 

and Stock’s (1997) classification, I use three related estimates of the variance of 

the coefficient difference, namely: 
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where Y
~

and Ŷ
~

follow the notation described earlier and 2
2slsσ̂  and 2

olsσ̂  denote the  

2SLS and OLS estimates of the variance σ
2 of the second-stage disturbances.  The 

different forms of the test arise from the fact that both estimates of σ2 are 

consistent under the null.  I estimate 
2σ̂ in both cases by dividing the sum of 

squared residuals by the same finite sample n-kY-kX adjustment.  This ensures that 

V1 is always positive definite and orders the test statistics so that DWH1 < DWH2 

< DWH3, where DWHi denotes the Wald statistic calculated with Vi. 
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As shown in Table V, once again conventional tests show sizeable size 

distortions, with rejection rates in excess of .10 at the .01 level.  Conventional 

Wald tests reject the null of no bias about ⅓ of the time at the .01 level, but 

comparable rejection rates for the bootstrap-t and -c are only .137 and .084, 

respectively, with the bootstrap-c again showing smaller size distortions.  Only 13 

of the 32 papers in my sample have any regressions in which the zero difference 

null is rejected by the bootstrap-t at the .01 level, and only 23 have regressions 

which reject the null at the .05 level.  Comparable numbers for the bootstrap-c are 

14 and 18 papers, respectively.  In the overwhelming majority of regressions 

reported in published papers, there is actually no compelling evidence that use of 

OLS methods produces substantively biased estimates.  Given the width of 2SLS 

confidence intervals recorded earlier above, this result is not surprising. 

Table VI uses bootstrapped samples from the authors’ data sets to estimate 

the mean squared error (MSE) and bias around values of interest produced by 

2SLS and OLS estimation.11  I consider two scenarios: (1) OLS is inconsistent and 

the original 2SLS coefficient estimate is the desired population moment; (2) OLS 

is consistent and either the original OLS or 2SLS coefficient estimate is the 

desired population moment.  As mean squared error and bias varies with units of 

measurement, I normalize by dividing the estimates for 2SLS by OLS and taking 

the logarithm, which limits the influence of outliers on the average and ensures 

that reported results (modulo a sign change) are not sensitive to the choice of 

denominator.  As shown, on average 2SLS’s ln mean squared error around its own 

population moment is 1.52 greater than that of OLS coefficients around the same 

2SLS population moment, as an average reduction of -1.20 in the 40 percent of 

cases where 2SLS does better is more than offset by the average 3.27 ln increase in 

                                                 
11As shown by Kinal (1980), with normal disturbances only the first kZ – kY moments of 

2SLS estimates exist.  However, the disturbances in my sample are not normal and the dependent 
variables do not allow for the unbounded outcomes that generate this result.  The MSE and bias 
calculations presented in this paper are for the bounded disturbances actually present in the data. 
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Table VI:  Average Relative Ln Mean Squared Error and Ln Bias  
Around 2SLS and OLS Population Moments (2000 bootstrap iterations) 

 βtrue = β2sls βtrue = β2sls or βols 

 MSE Bias MSE Bias 

 N mean N mean N mean N mean 

all 
IV < OLS 
IV > OLS 

1533 
600 
933 

1.52 
-1.20 
3.27 

1533 
1295 
238 

-1.75 
-2.24 
.941 

1533 
18 

1515 

4.77 
-.259 
4.83 

1533 
124 

1409 

2.44 
-.796 
2.72 

   Notes:  N = number of coefficients falling into each category; otherwise, numbers reported are 
the mean ln relative squared deviation around (MSE) or ln absolute deviation from (bias) the 
2sls point estimates (left panel) or each method’s own point estimate (right panel) of the 
population moment of interest.   

 

the 60 percent of cases where it does worse.  With regards to ln relative bias, 2SLS 

does better, achieving an average -1.75 ln relative reduction in the absolute 

deviation from the 2SLS population moment.  However, despite the fact that the 

bias of OLS is motivation for the use of 2SLS methods, in 16 percent of 

coefficients 2SLS shows a greater bias than OLS around the 2SLS population 

moment, with an average .941 increase in ln relative bias. 

Table V showed that there is generally not much evidence that OLS 

estimates are, in fact, substantively biased.  In consideration of this, the right panel 

of Table VI calculates the mean squared error and bias of the two methods under 

the null that OLS is not biased.  Since in this case 2SLS remains consistent, albeit 

inefficient, I give each method the benefit of the doubt and calculate its mean 

squared error and bias around its own population moment. As shown, in 99 

percent of coefficients 2SLS has higher mean squared error, with an average ln 

ratio of 4.83 in these cases.  Similarly, in 92 percent of coefficients 2SLS has a 

larger bias, with an average ln increase of 2.72.  These results highlight the 

substantial risks involved in using 2SLS and the importance of being very certain  

that OLS does, in fact, yield intolerably biased estimates.  
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Table VII:  Identification & Strength of the First-Stage (1397 regressions) 

 instrument relevance test 

 rejection rates average size 
 .01 .05 .01 .05 

clustered/robust 
default 
bootstrap - t 
bootstrap - c 

.905 

.924 

.518 

.704 

.951 

.959 

.646 

.891 

.160 

.284 

.085 

.096 

.217 

.363 

.121 

.135 

 first stage F# 

 mean F > 10 prob (F > 10) 

clustered/robust 
default 
bootstrap - t 
bootstrap - c 

125 
474 
7.4 
9.0 

.728 

.790 

.338 

.397 

.089 

.213 

.063 

.071 

      Notes:  .01/.05 = level of the test; (#) for 1359 regressions with one endogenous 
regressor; F > 10 = fraction of sample with F > 10; prob(F>10) = bootstrapped estimate of 
probability under the null of zero effects of a first stage F greater than 10. 

Table VII asks whether 2SLS equations are even identified by testing the 

null that all first stage coefficients on the excluded exogenous variables are zero.12  

Using the conventional test with the clustered/robust covariance estimate, .905 of 

first stage regressions reject the null of a rank zero first stage relation at the .01 

level.  This share falls to only .518 using the bootstrap-t and .704 using the 

bootstrap -c.  Size distortions are remarkable, with .160 and .284 average rejection 

rates when the null is true at the .01 level using the clustered/robust and default 

covariance estimates, respectively.  As explored in the on-line appendix, size 

                                                 
12In the case of the 1359 regressions with one endogenous variable, this is simply the F-test 

of the significance of the excluded instruments in the first stage regression.  In the case of the 41 
regressions with more than one endogenous variable, I stack the first stage coefficients and use the 
covariance matrix for Zellner’s (1962) seemingly unrelated regression model with identical 
regressors (Greene 2012) as the default covariance estimate and White’s (1982) sandwich 
covariance estimator as the clustered/robust covariance estimate, and test joint significance using 
the chi2 distribution.  I only report statistics for 1397 regressions in the table because for three of 
the regressions with multiple endogenous variables the total number of coefficients tested is several 
multiples of the number of observations per equation and the covariance matrix is utterly singular.  
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distortions increase as more coefficients are tested together and in the 310 

equations with more than one excluded instrument examined in the table there are, 

on average, 25.7 coefficients being simultaneously tested.  Size distortions for the 

bootstrap are also very large, with an average rejection rate at the .01 level of .085 

using the bootstrap-t and .096 using the bootstrap-c.  Consequently, the bootstrap 

significance rates reported in the left panel should be considered quite generous. 

The strength with which the instrument irrelevance null is rejected, as 

measured by the size of the first stage F-statistic, is typically used as an indicator 

of the degree to which the problems of bias and excess size associated with weak 

(but non-zero) identification are likely to be avoided.  The bootstrap indicates, 

however, that the distribution of these test statistics is much more dispersed than 

typically recognized, suggesting that they overstate instrument strength.  To this 

end, Table VII calculates an F-equivalent of the bootstrapped p-values by inverting 

them with the clustered/robust degrees of freedom13 used to evaluate the paper’s 

conventional F-statistic.  While the mean of the conventional F is 474 using the 

default covariance estimate and 125 using the clustered/robust covariance 

estimate, it falls to 9.0 and 7.4 when equivalents are calculated using the bootstrap-

c and -t, respectively.  Based upon conventional methods, about ¾ of regressions 

have an F greater than 10, which is commonly taken as an indicator of instrument 

strength, but only about ⅓ to .4 exceed this value when bootstrap p-value 

equivalents are calculated.  The bootstrap distribution of the F-statistics reveals 

that when the regression is completely unidentified, i.e. all first stage coefficients 

on excluded exogenous variables are zero, the conventional F statistic with the 

clustered/robust and default covariance estimates is greater than 10 .089 and .213 

of the time, respectively.  Thus, allowing that the exclusion restriction holds in the 

aggregate population, with disturbingly high frequency a report of a strong first 

                                                 
13As I bootstrap in clusters when the regression clusters. 
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stage relationship might actually reflect a finite sample correlation of otherwise 

irrelevant excluded exogenous variables with the residuals, producing biased 

estimates.  Issues associated with the use of the first-stage F statistic as a pre-test 

are explored more fully in the next section and in the conclusion. 

As in the case of 2SLS p-values, the calculated strength of the first stage 

2SLS relationship is remarkably dependent upon a few observations, as shown in 

Figure III below.  The first two graphs in each row depict the ratio of the minimum 

F found by deleting one or two clusters or observations to the actual test statistic in 

the full sample, while the third and fourth graphs in each row depict the ratio of 

the actual test statistic to the maximum F found by deleting one or two clusters or 

observations.14  The upper and lower panels refer to F-statistics calculated using 

the default and clustered/robust covariance estimates, respectively.  On average, 

the default F can be reduced to .66 (.51) of its full sample value with the deletion 

of just one (two) observation(s), while the clustered/robust does slightly better, 

falling to .72 (.60) of its full sample value.  Conversely, the ratio of the actual to 

delete-one (two) maximum default F averages .84 (.75), while the clustered/robust 

F is more sensitive in this direction, averaging .65 (.53).  The average proportional 

sensitivity is slightly greater in regressions with original Fs less than ten, but the 

differences are hardly meaningful.15  As is to be expected, the largest movements 

are found in small samples with 100 or less clusters or observations, but 

proportional changes of .1, .2 or more are disturbingly commonplace in samples 

with 10s and 100s of thousands of observations, as shown in the figure.  These 

results point to the extraordinary sampling variability of F statistics, explaining the 

                                                 
14The delete-two ratios are upper bounds since, as before, I do not do a full delete-two 

search but instead simply take the delete-one maximum or minimum and then search across the 
remaining clusters/observations. 

15The average ratios for F’s greater than 10 (less than 10) moving left to right through the 
top and then bottom panels are .66 (.64), .52 (.48), .87 (.74), .79 (.63), .72 (.71), .61 (.58), .65 (.64), 
.and 54 (.50).  The only substantial differences are found in the third and fourth panels of the top 
row, depicting the potential increases in the default F. 
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Figure III:  Proportional Change of First Stage F with Removal of One or Two Clusters or Observations
(1359 regressions with one endogenous regressor)
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gross size distortions of conventional methods and the difficulties even the 

bootstrap finds in providing accurate size, as shown earlier in Table VII. 

The sources of delete-one and -two sensitivity are worth exploring.  

Consider the generic regression on a matrix of regressors X.  The change in the 

estimated coefficient for a particular regressor x brought about by the deletion of 

the vector of observations i is given by: 

xxεx iii
~~/~ˆˆ)8( ~ ′′−=− ββ  

where x~  is the vector of residuals of x projected on the other regressors, ix~  the i 

elements thereof, and iε  the vector of residuals for observations i calculated using 

the delete-i coefficient estimates.  The delete-i residuals are related to the 

estimated residuals through the formula i
1

iii ε)H(Iε ˆ−−= , where Hii denotes the i 

x i block of the hat matrix XX)XX(H 1 ′′= − .16  The default and clustered/robust 

covariance estimates are of course given by: 

2)~~(

~ˆˆ~

 :robustclustered/  ;~~
ˆˆ1

:default )9(
xx

xεεx

xx
εε i
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Define εεεε ii ′′ / , εεεε ii ˆˆ/ˆˆ ′′  and xxxx ii
~~/~~ ′′  as the group i shares of squared delete-i 

residuals, squared actual residuals, and coefficient leverage,17 respectively.  

Clearly, the standard error estimate and the coefficient estimate relative to the 

standard error estimate will be more sensitive to the deletion of some observations 

i when these shares are uneven. 

  Table VIII summarizes the maximum residual and leverage shares found in 

my sample.  In the 1359 first stage regressions with one endogenous variable, the  

                                                 
16Where there are regressors that are non-zero only in i, as in the case of cluster fixed 

effects, so that I - Hii is singular, one applies the formula by calculating H using the residuals of the 
projection of the other regressors on these measures (i.e. the partitioned regression version of H). 

17Since “leverage” is typically defined as the diagonal elements of the matrix H formed 
using all regressors, while the measure described above is the equivalent for the partitioned 
regression onx~ . 
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Table VIII:  Largest Shares of Squared Residuals & Coefficient Leverage 
(1359 regressions with one endogenous variable) 

 2SLS first-stage  2SLS second-stage  OLS version 

 
one 

cl/obs 
two 

cl/obs 
.05 

cl/obs 
one 

cl/obs 
two 

cl/obs 
.05 

cl/obs 
one 

cl/obs 
two 

cl/obs 
.05 

cl/obs 

xxxx ii
~~/~~ ′′  

εεεε ii ′′ /  

εεεε ii ˆˆ/ˆˆ ′′  

.172 

.155 

.135 

.288 

.244 

.226 

.563 

.440 

.424 

.163 

.162 

.148 

.273 

.242 

.223 

.526 

.437 

.412 

.213 

.160 

.152 

.286 

.239 

.229 

.457 

.434 

.422 

      Note:  cl/obs = clusters or observations, depending upon whether the regression is clustered or 
not.  .05 = largest 5 percentiles. 
 

largest one or two clusters or observations account, on average, for .172 and .288 

of total leverage, respectively, while the largest delete-i (estimated) residual shares 

are .155 and .244 (.135 and .226).  The largest 5 percentiles account for around ½ 

of total leverage and squared residuals.  To put these numbers in perspective, in 

my study of experimental papers (Young 2017) I find the largest (5th percentile) 

leverage and residual observation shares of OLS regressions average .05 (.27) and 

.09 (.34), respectively.  With massive outliers, in both residuals and regressors, 

estimated first stage F statistics are largely determined by a handful of 

observations and have a volatility and distribution consistent with that fact.  Table 

VIII also reports the concentration of leverage and residuals in the second-stage 

regression and in its OLS version.  For the second-stage regression, I treat the 

instrumented values of the endogenous variables as unaffected by deletions, and 

calculate the delete-i residuals accordingly, to provide an indication of the 

volatility of coefficient estimates if the first-stage relation were unchanging.18  As 

can be seen, the concentration of leverage and residuals in second stage relations is 

roughly equal to that found in OLS versions of the regressions (using the 

uninstrumented endogenous variables), suggesting that they would, on average,  

                                                 
18The reported estimated residual shares are the shares of the actual 2SLS residuals used in 

the 2SLS covariance estimate. 
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Table IX:  Consistency without Inference: 2SLS in Practical Application 
 (1533 coefficients in 1400 2SLS regressions) 

 bootstrap-t bootstrap-c 

 .01 .05 .01 .05 

coefficient significant using authors’ methods 
βols= β2sls < α & Π = 0 < α 
βols= β2sls < α, Π = 0 < α, &  CIols ⊄ CI2sls 
βols= β2sls < α, Π = 0 < α, & βols ∉CI2sls 
βols= β2sls < α, Π = 0 < α,  & β2sls = 0 < α 

.322 

.101 

.080 

.048 

.059 

.502 

.189 

.170 

.132 

.136 

.322 

.083 

.076 

.056 

.057 

.502 

.176 

.169 

.136 

.142 

   Notes:  Numbers reported are fraction of coefficients meeting the specified criteria. .01/.05 = level 
of the test (α) and complementary confidence interval.  βols= β2sls < α = bootstrapped p-value of 
Durbin-Wu-Hausman test of zero OLS bias less than α; Π = 0 < α  = bootstrapped p-value of 
instrument irrelevance test less than α; CIols ⊄ CI2sls or βols ∉CI2sls = bootstrapped OLS confidence 
interval or OLS point estimate not included in bootstrapped 2SLS confidence interval; β2sls = 0 < α = 
bootstrapped p-value of 2SLS coefficient less than α. 

have a similar delete-i sensitivity.  Unfortunately, the first-stage relation is most 

certainly not unchanging, and is in fact dependent upon a small set of 

observations.  This imparts an additional, extraordinary, degree of volatility and 

sensitivity to 2SLS estimates. 

Table IX brings the preceding results together.  As noted in the top line, 

using authors’ methods, ⅓ and ½ of reported coefficients are significant at the .01 

and .05 levels, respectively, leading the reader to conclude that 2SLS methods 

have revealed something about the world.  In the lower lines I consider alternative 

criteria for evaluating published results.  A good starting point seems to be to 

require that the Durbin-Wu-Hausman test indicate that there is a statistically 

significant OLS bias, as the relative mean squared error and bias of 2SLS when 

OLS is unbiased is simply too much to bear, and, moreover, that one can reject the 

null hypothesis that the model is utterly unidentified with all of the first stage 

coefficients equal to 0, as in this case “identification” is achieved through an 

undesirable finite sample correlation between the instruments and the error term.  

Only .101 and .189 of estimated coefficients are in regressions which meet these 
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criteria at the .01 and .05 levels using the bootstrap-t, while only .083 and .176 of 

estimated coefficients meet these criteria using the bootstrap-c.  I should note that 

imposing these preliminary requirements at the .01 level largely ensures that 2SLS 

has a lower mean squared error and bias around the measured 2SLS population 

moment than OLS, as imposing these additional requirements would only lower 

the fraction of acceptable coefficients by an additional .003 or .004.   

With these basic prerequisites for credibility in place, one might then ask 

whether 2SLS estimates rule out the OLS results, i.e. accepting that, taking into 

full account their covariance, the OLS and 2SLS population moments are 

different, one might still want to know if the OLS estimates are unlikely to be true.  

The weak form of this demand might be that the 2SLS confidence interval does 

not encompass the entirety of the OLS confidence interval, while the strong form 

might be that it does not contain the actual OLS point estimate.  At the .01 and .05 

levels, only about .080 and .170 of 2SLS results, using either bootstrap measure, 

meet the weak criterion while satisfying the OLS bias and identification 

prerequisites.  The two bootstrap measures are also in fairly close agreement with 

regards to the strong criterion, with .048 and .132 of coefficients, at the two 

significance levels, meeting it using the bootstrap-t and .056 and .136 using the 

bootstrap-c.  Putting aside comparison with OLS, an alternative approach, 

following the DWH and identification pre-tests, is to ask whether the 2SLS 

bootstrap p-value rejects the null of zero effects, suggesting that, aside from 

finding that OLS is biased, we have uncovered a meaningful causal relationship.  

Here again the two bootstrap measures are in close agreement, with just under .06 

and around .140 of coefficients meeting this condition at the .01 and .05 levels, 

respectively.  In sum, while IV estimates may be consistent, in finite samples they 

allow for little inference.  Using either bootstrap measure in only about .05 or .06 

of cases are 2SLS coefficient estimates both strongly credible and significantly 

different from either the OLS point estimate or zero.  These results are generous as 
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they are based on bootstrapped tests with positive size biases, particularly in the 

case of testing instrument relevance. 

V. Weak Instruments and Weak Instrument Pre-Tests 

A weak first stage relation between the excluded exogenous variables Z 

and the endogenous second stage regressors Y is known to create many of the 

2SLS ailments noted in the previous section, namely large estimated standard 

errors relative to OLS, even greater tail variation than estimated (producing size 

larger than nominal value), and biased point estimates.  As shown by Rothenberg 

(1984),19 the usual root-N convergence to a distribution can, in the case of 2SLS 

and iid normal errors, be thought of as a function of the square root of the first 

stage concentration parameter µ
2 which, in the case of a single endogenous 

regressor equals 2/
~~

vσΠZZΠ ′′ , where, as before, Π denotes the first stage 

coefficients on the excluded instruments Z and 2
vσ is the residual variance of the 

first-stage equation.  The concentration parameter can be thought of as effective 

sample size, and as it goes to infinity the distribution of the 2SLS estimator 

converges to the normal distribution with variance equal to the default 2SLS 

estimate of variance, while the bias of the 2SLS estimator relative to OLS goes to 

zero.  Moreover, for a given sample size, as the concentration parameter increases 

the efficiency of 2SLS relative to OLS improves, as the variation of predicted 

values YY
~̂~̂ ′ rises relative to that of the OLS regressors YY

~~ ′ .  With weak 

instruments, however, the predicted 2SLS variation is small relative to OLS, the 

distribution of coefficients is grossly non-normal with potentially fat tails, and 

point estimates are biased in the direction of OLS or, even worse, possibly biased 

more than OLS if there is any correlation between Z and the second stage errors.  

The sample counterpart of the concentration parameter is the Wald test statistic on 

the excluded instruments in the first-stage regression, namely 2ˆ/ˆ~~ˆ
vσΠZZΠ ′′ .  The 

                                                 
19See also the helpful exposition in Stock, Wright and Yogo (2002). 
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first stage F-statistic equals this value divided by kZ and authors increasingly 

report this to convince readers of the reliability of their results.  In this section I 

show that conventional F-statistics and tests based upon these statistics are a poor 

predictor of the coverage and coefficient biases found in published results. 

Tables X and XI evaluate instrument strength using Stock and Yogo’s 

(2002) weak instrument tests.  Staiger and Stock (1997) derived the asymptotic 

distribution of the 2SLS estimator under the assumption of iid errors and a 

concentration parameter that asymptotically does not grow with sample size.  On 

the basis of this, Stock and Yogo (2002) developed a remarkable set of weak 

instrument tests, deriving the critical values of the first stage F-statistic large 

enough to reject the null that the instruments are sufficiently weak so as to 

generate a proportional bias relative to OLS greater than some level “b” or a size 

greater than some level “r” above the nominal level α.  In the tables I divide 

regressions based upon whether or not they reject the weak instrument null (H0) in 

favour of the strong instrument alternative (H1) and report the fraction which, 

based on bootstrap draws from the paper’s data, have size or bias greater than the 

indicated bound.  I also report the maximum fraction of H1 observations violating 

the bounds that would be consistent with the Stock & Yogo test having its 

theoretical nominal size of no greater than .05.20  With critical values depending 

upon the number of instruments and endogenous regressors, Stock and Yogo 

                                                 
20Let N0 and N1 denote the known number of regressions classified under H0 and H1, 

respectively, and W0, W1, S0 and S1 the unknown number of regressions with weak and strong 
instruments classified under each group, with W1 = α(W0+W1) and S1 = p(S0+S1), where α and p 
denote size and power and I assume p > α.  Moreover, let N1 > α(N1+N0), which holds for all cases 
with N1 > 0 presented below.  Solving for W1/N1, one finds that it is maximized when p = 1 and α = 
.05, with W1/N1 = (1/19)(N0/N1).  The reason why W1/N1 is maximized when p = 1, i.e. is 
paradoxically increasing in power, is because, holding constant the observed N1 and  N0 and 
unknown size, lower power means a greater fraction of the total sample must be strong which in 
turn means that there are fewer W1 observations.  I should note that given the Stock and Yogo 
theory, the share of regressions in N1 with size greater than “r” should actually be less than 
(1/19)(N0/N1) as even weak instruments, depending upon the correlation between the first and 
second stage error terms, need not have coverage greater than “r”. 
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Table X:  Fraction of Regressions with Size Greater than “r” in Specifications  
that Don’t (H0) and Do (H1) Reject the Stock & Yogo Weak Instrument Null 

 maximum acceptable size (“r”) for a nominal .05 test 

 .10 .15 .20 .25 

 
H0 

H1 
H0 

H1 
H0 

H1 
H0 

H1 
F < 1 F > 1 F < 1 F > 1 F < 1 F > 1 F < 1 F > 1 

(A) default F used as Stock and Yogo test statistic 

N (number) 17 365 944 17 200 1109 17 152 1157 17 135 1174 

default cov 
cl/robust cov 
 maximum 

.824 

.882 
 

.329 

.334 
 

.593 

.332 

.022 

.765 

.882 
 

.260 

.190 
 

.436 

.150 

.011 

.647 

.588 
 

.158 

.072 
 

.367 

.087 

.008 

.412 

.471 
 

.096 

.052 
 

.279 

.050 

.007 

(B) clustered/robust F used as Stock and Yogo test statistic 

N (number) 23 748 555 23 268 1035 23 185 1118 23 161 1142 

cl/robust cov 
 maximum 

.826 
 

.392 
 

.249 

.074 
.739 

 
.123 

 
.163 
.015 

.435 
 

.070 
 

.089 

.010 
.348 

 
.043 

 
.052 
.009 

(C) bootstrap-t equivalent F used as Stock and Yogo test statistic 

N (number) 263 960 103 263 566 497 263 467 596 263 376 687 

cl/robust cov 
 maximum 

.673 
 

.254 
 

.282 

.625 
.433 

 
.102 

 
.095 
.088 

.278 
 

.051 
 

.042 

.064 
.205 

 
.032 

 
.011 
.049 

   Notes:  N = number of regressions in each category; default and cl/robust cov = using these 
covariance matrices to calculate t-statistics, the share of regressions with conventional size greater 
than “r”; maximum = maximum share of the sample that rejects H0 in favour of H1 with size greater 
than “r” consistent with the test having size .05 (see text and accompanying footnote).  

provide bias critical values for only 179 of the regressions in my sample, but in the 

case of size their table of critical values covers 1326 of the 1359 regressions with 

one endogenous regressor.21 

                                                 
21In the case of multiple endogenous variables, the test statistic is based upon the minimum 

eigenvalue of the Cragg-Donald (1993) underidentification statistic (the sum of whose eigenvalues 
quite intuitively equals the default covariance estimate based test statistic used to test the rank zero 
null for equations with multiple endogenous regressors earlier in Table VII).  In numerical analysis 
of examples, Stock and Yogo find that bias and size are non-increasing in all eigenvalues of the 
Cragg-Donald statistic, and hence consider the minimum eigenvalue as a conservative worst case 
scenario.  As they provide critical values for less than half of the 41 regressions in my sample with 
multiple endogenous variables, and as these critical values are based upon a conjecture and not a 



38 

Table X begins by using the default covariance estimate to evaluate both 

the F-statistic and coefficient significance, as this is the measure consistent with 

Stock and Yogo’s iid-based theory.  As shown in panel (A), this produces 

disastrous results.  Excluding regressions with an exceptionally weak F less than 1, 

the fraction of regressions with size greater than “r” at the .05 level is actually 

always substantially greater in regressions which reject the weak instrument null 

H0 in favour of the alternative of strong instruments H1.  Using the clustered/robust 

covariance estimate to evaluate the significance of regressions, whether with the 

default F (panel A) or the clustered/robust F (panel B), one finds that the fraction 

of regressions with rejection rates greater than the maximum desired size “r” is 

neither systematically higher nor lower in H1 regressions than it is in H0 

regressions with an F greater than 1.22  Moreover, the share of regressions with 

size greater than “r” is grossly inconsistent with the maximum that should arise 

given the test’s putative .05 nominal size.  Things go somewhat better in the bias 

test (Table XI).  Regardless of whether one uses the default or clustered/robust F, 

the fraction of regressions with relative bias greater than “b” falls systematically as 

one moves from regressions with F less than 1, to those with F greater than 1 that 

don’t reject the weak instrument null H0, to regressions that reject H0 in favour of 

the strong instrument alternative H1.  However, the fraction with a bias greater 

than “b” in the strong instrument set H1 is again much too high and inconsistent 

with the Stock and Yogo test having a nominal size of .05.  In contrast, use of the 

bootstrap-t equivalent F statistic, in the bottom panel of each table, produces size 

and bias in H1 regressions that is mostly consistent with the test having a nominal 

size of .05.  Calculation of the bootstrap equivalent F, however, is about as costly  

                                                                                                                                       
result, I keep the analysis as simple as possible by focusing on the simple case of a single 
endogenous regressor. 

22The substantial gap between rejection rates for H0 and H1 for r = .1 in panel (B), which 
disappears for r = .15, is due to a large mass with high rejection rates just below the r = .1 cutoff 
point. 
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Table XI:  Fraction of Regressions with Relative Bias Greater than “b” in 
Specifications that Don’t (H0) and Do (H1) Reject the Weak Instrument Null 

 maximum acceptable relative bias “b” 

 .05 .10 .20 .30 

 
H0 

H1 
H0 

H1 
H0 

H1 
H0 

H1 
F < 1 F > 1 F < 1 F > 1 F < 1 F > 1 F < 1 F > 1 

(A) default F used as Stock and Yogo test statistic 

N (number) 2 100 77 2 98 79 2 93 84 2 83 94 

share 
maximum 

1.00 
 

.950 
 

.312 

.070 
1.00 

 
.867 

 
.253 
.067 

1.00 
 

.667 
 

.202 

.060 
1.00 

 
.518 

 
.106 
.048 

(B) clustered/robust F used as Stock and Yogo test statistic 

N (number) 4 104 71 4 99 76 4 89 86 4 76 99 

share 
maximum 

1.00 
 

.913 
 

.310 

.080 
1.00 

 
.848 

 
.250 
.071 

1.00 
 

.685 
 

.186 

.057 
.750 

 
.539 

 
.111 
.043 

(C) bootstrap-t equivalent F used as Stock and Yogo test statistic 

N (number) 8 171 0 8 171 0 8 144 27 8 119 52 

share 
maximum 

1.00 
 

.661 
 

--- 
--- 

1.00 
 

.579 
 

--- 
--- 

.875 
 

.514 
 

.000 

.296 
.750 

 
.412 

 
.000 
.129 

     Notes:  share  = share of regressions in each category with bias > “b”; otherwise, as in Table X. 

 

as simply bootstrapping the size and bias of the 2SLS regression. 

In the on-line appendix I provide regressions that show that, once Fs less 

than one are removed from the sample, no F statistic, of any form, is significantly 

or even negatively correlated with size.  Once Fs less than one are removed, 

conventional Fs are not significantly correlated with bias or mean squared error 

either, although the point estimate of the relationship is at least negative.  In the 

non-iid world of published results, conventional F’s are a very poor measure of the 

strength of the first-stage relation, as they are far more dispersed than indicated by 

their putative distribution (Table VII earlier), while size distortions do not differ 

substantially between 2SLS and OLS frameworks (Table III earlier and XII 
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below), indicating that the finite sample problems of inference based upon 

clustered/robust covariance matrices, rather than the strength of first stage 

relations, are the dominant problem.  Outside of noting that the F is greater than 

the absurdly low value of 1, little information (and most certainly no protective 

bound) is gained in reporting the conventional strength of the first stage relation. 

VI:  Weak Instrument Robust Inference 

The finding that the strength of the first stage relationship may be 

substantially weaker than indicated by conventional F-statistics and that F-test 

based pre-tests are largely uninformative might lead practitioners to use well-

known “weak-instrument robust” alternatives to 2SLS.  Unfortunately, the 

professional understanding of such alternatives is based upon theory and 

simulations with iid disturbances.  In this section I review three such methods, the 

Anderson-Rubin (1949) approach, the limited information maximum likelihood 

(LIML) method, and Fuller’s (1977) k modification of LIML, showing that in a 

world with non-iid disturbances these methods are often substantially inferior to 

conventional 2SLS.   

The Anderson-Rubin significance test makes use of the reduced form for 

the second stage endogenous variable y.  Specifically, substituting for the 

endogenous regressors Y, we have: 

εXβZβu)(vβδ)βX(∆βZΠy

uXδv)βX∆ZΠuXδYβy

XZ ++=++++=→

++++=++= ()10(
  

If β = 0 then βZ = Πβ = 0, so by running the OLS regression of y on the excluded 

and included exogenous variables and testing the joint significance of the excluded 

exogenous variables, one can test the null that the coefficients on the instrumented 

variables are zero.23  The test is robust to weak instruments as βZ = 0 under the 

                                                 
23One can also test non-zero values β0 of β by running the equation y – Yβ0 = ZβZ + XβX + 

ε, as under these circumstances βZ = Π(β-β0).   
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null whatever the value of Π and the strength of the correlation between Y and Z.  

As it is an OLS equation, it does not suffer from any of the extra variation brought 

on by 2SLS estimation with a weak concentration parameter, allowing for more 

accurate inference.  For these reasons, it has been recommended as a solution to 

the problem of weak instruments by Dufour 2003, Baum, Schaffer and Stillman 

2007, and Chernozhukov and Hansen 2008, among others.  Its recognized 

weaknesses include the fact that it does not allow for the testing of individual 

components of β and may have very low power in over-identified equations where 

the dimensionality of Z is much greater than that of Y, particularly if some of the 

excluded instruments are irrelevant (i.e. have first stage coefficients near zero).24   

 Table XII below uses the bootstrap to calculate the size distortions of the 

Anderson-Rubin approach and compare these to those found using conventional 

2SLS, in both cases using the clustered/robust covariance estimate to calculate p-

values.  As shown, the Anderson-Rubin method actually performs worse than 

2SLS.  Empirical size is on average slightly larger than 2SLS in exactly identified 

equations, but much greater in over-identified equations, which have a startling 

average rejection probability of .285 at the .01 level.  Dividing the sample by the 

default, clustered/robust and bootstrap-t equivalent 2SLS first stage F, I find that 

only in the case of exactly identified equations with the very weakest of 

instruments, i.e. with a conventional F less than 1, does the Anderson-Rubin 

approach provide any improvements over 2SLS.  Elsewhere, its performance is 

systematically worse, particularly in the case of over-identified equations. 

 The results of Table XII once again show that the inaccuracy of inference 

in the presence of non-ideal errors is the central problem in both OLS and 2SLS, 

overwhelming and dominating any issues associated with weak instruments in the  

                                                 
24It is also sensitive to the exclusion restriction, since if Z affects y other than through Y, βZ 

will be non-zero even when β = 0.  However, I accept, here and throughout, the basic premise that 
the exclusion restriction applies, as otherwise the entire 2SLS endeavour is ill-conceived.  
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Table XII:  Size Distortions with Anderson-Rubin Weak Instrument Robust Inference 

 exactly identified equations overidentified equations 

  A-Rubin 2SLS  A-Rubin 2SLS 

 N .01 .05 .01 .05 N .01 .05 .01 .05 

all  1100 .053 .115 .046 .097 297 .285 .373 .055 .123 

Fd < 1 
1 < Fd < 10 

Fd > 10 

15 
133 
952 

.038 

.048 

.054 

.101 

.116 

.116 

.293 

.037 

.044 

.354 

.082 

.095 

2 
136 
159 

.353 

.336 

.240 

.483 

.451 

.305 

.248 

.057 

.051 

.341 

.134 

.112 

Fcl/r < 1 
1 < Fcl/r < 10 

Fcl/r > 10 

19 
209 
872 

.037 

.047 

.054 

.101 

.109 

.117 

.246 

.034 

.045 

.306 

.074 

.097 

4 
138 
155 

.235 

.331 

.244 

.362 

.445 

.309 

.138 

.056 

.052 

.222 

.132 

.113 

Fb < 1 
1 < Fb < 10 

Fb > 10 

255 
379 
466 

.108 

.039 

.034 

.187 

.099 

.089 

.100 

.028 

.032 

.171 

.066 

.081 

15 
250 
32 

.624 

.239 

.482 

.703 

.329 

.558 

.106 

.044 

.120 

.198 

.107 

.213 

   Notes:  N = number of equations in each group; otherwise numbers reported are average size using 
clustered/robust covariance estimates at the .01 or .05 levels.  Fd, Fcl/r & Fb = default, clustered/robust 
and bootstrap-t equivalent 1st stage F statistics. 

 
latter.  Generally, needlessly increasing the dimensionality of a test tends to lower 

its power.  In the case of clustered/robust covariance estimates, however, 

increasing the dimensionality of a test appears to produce the opposite problem, 

raising the probability of rejecting the null when true.  I confirm this in the on-line 

appendix, where I show that size distortions in joint tests using clustered/robust 

covariance estimates are systematically increasing in the number of individual 

coefficient components.  As also shown in the appendix, however, while estimates 

using the default covariance estimate do not appear to have this property, they 

have greater size distortions overall (as already seen in Table III earlier) and find 

no advantage in the Anderson-Rubin method outside of conventional first stage Fs 

less than 1.  In a world with correlated and heteroskedastic errors, use of default 

covariance estimates is fraught with peril, as is use of clustered/robust methods in 

high-dimensional tests.  Clustered/robust covariance estimates do better in testing 
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only one coefficient at a time, as is the case for almost all the exactly identified 

tests in Table XII, but even here size distortions are large enough that, outside of 

the very weakest cases, they dominate considerations of instrument strength. 

The LIML and Fuller-k estimators are members of the k-class family of 

estimators (Theil 1953) which form the estimate of the coefficient vector using: 
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)κ(

~
)

~
)κ(

~
(ˆ)11( ~
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~ −′−′= −  
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Z

~~~~
~ ′′−=  is the residual-maker from the projection 

on the excluded instruments Z
~

.  OLS and 2SLS correspond to κ equal to 0 and 1, 
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2
1

2
1

)
~~

)(
~~

()
~~

( 1~1111~1
−− ′′′ YMYYYYMY

ZZ
, where ]

~~[
~

1 Y,yY = ,while Fuller’s k sets κFuller 

equal to κLIML  – c/N-kY-kX , where c is a pre-determined constant and N-kY-kX is 

the number of observations minus the number of second stage endogenous and 

exogenous regressors.  It is easily seen that κLIML ≥ 1 and must equal 1 when the 

equation is exactly identified,25 in which case the LIML estimator is the same as 

2SLS.  Early analysis based upon normal disturbances showed that LIML has less 

median bias and converges to the normal distribution faster than 2SLS (Anderson, 

Kunitomo & Sawa 1982, Anderson 1983).  In Monte Carlo simulations, Staiger 

and Stock (1997) found that LIML has much more accurate size than 2SLS, a 

result later confirmed by Stock and Yogo’s (2005) weak instrument asymptotics 

that concluded that “LIML is far superior to 2SLS when the researcher has weak 

instruments” with “coverage rates that are quite close to their nominal rates.”  The 

LIML estimate, however, is so dispersed that with normal disturbances it has no 
                                                 

25Provided that the matrices are non-singular, the minimum eigenvalue, by the properties of 
the Rayleigh quotient, equals the minimum across all z (kY+1 x 1) such that z′z = 1 of : 
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~~~~~~~~
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When the equation is exactly identified, ZY
~~

1′  is kY+1 x kY (i.e. of rank kY), so there exists a z ≠ 0 

such that 0ZYz ′=′′ ~~
1 , ensuring that the minimum is 1. 
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 Table XIII:  Coefficient Size Distortions with LIML and Fuller-k Inference 

 overidentified equations all equations 

  LIML 2SLS  Fuller-k 2SLS 

 N .01 .05 .01 .05 N .01 .05 .01 .05 

all 385 .065 .109 .049 .117 1524 .047 .097 .046 .100 

Fd < 1 
1 < Fd < 10 

Fd > 10 

2 
136 
247 

.032 

.087 

.054 

.058 

.130 

.098 

.248 

.057 

.043 

.341 

.134 

.106 

17 
269 

1238 

.122 

.063 

.042 

.219 

.112 

.092 

.288 

.047 

.042 

.352 

.108 

.094 

Fcl/r < 1 
1 < Fcl/r < 10 

Fcl/r > 10 

4 
138 
243 

.156 

.080 

.055 

.182 

.123 

.100 

.138 

.056 

.044 

.222 

.132 

.107 

23 
347 

1154 

.121 

.053 

.043 

.205 

.097 

.095 

.227 

.043 

.043 

.292 

.097 

.097 

Fb < 1 
1 < Fb < 10 

Fb > 10 

15 
250 
120 

.213 

.051 

.077 

.248 

.098 

.116 

.106 

.044 

.054 

.198 

.107 

.127 

270 
629 
625 

.094 

.040 

.033 

.166 

.085 

.079 

.100 

.034 

.034 

.172 

.083 

.085 

   Notes: As in Table XII. 

moments (Mariano 1982).  Fuller (1977) introduced his approach as a means of 

guaranteeing that all moments exist.  Rothenberg (1984) showed that to a second-

order approximation (given iid normal errors) Fuller’s k with c set equal to 1 is the 

unbiased k-class estimator with minimum mean squared error.  Stock and Yogo’s 

(2005) weak instrument asymptotics led them to conclude that Fuller’s k is “more 

robust to weak instruments than 2SLS when viewed from the perspective of bias.” 

The one paper in my sample that uses Fuller’s k uses this value of c, as do Stock 

and Yogo (2005), so in the analysis below I set c equal to 1 as well.  

Table XIII presents the bootstrap estimated size of LIML and Fuller-k 

estimators using clustered/robust covariance estimates, contrasting these with 

2SLS estimates.  In the case of over-identified equations, where LIML results may 

differ from 2SLS, average size using LIML methods is greater than 2SLS at the 

.01 level and lower at the .05 level with, outside of better performance in the two 

regressions with a default F less than 1, no systematic dependence upon the 

conventional strength of the first-stage relation.  Using default covariance  
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Table XIV:  Average Relative (to 2SLS) ln Mean Squared Error and Bias 

 LIML (385 coefficients) Fuller-k (1524 coefficients) 

 MSE 
mean 
bias 

median 
bias 

MSE 
mean 
bias 

median 
bias 

all regressions 5.35 1.35 .667 -1.11 -.287 .037 

Fd < 1 
1 < Fd < 10 

Fd > 10 

12.3 
7.98 
3.84 

2.55 
1.94 
1.01 

1.91 
.992 
.478 

-7.45 
-1.18 
-1.01 

-2.40 
.023 
-.326 

-2.26 
.430 
-.017 

Fcl/r < 1 
1 < Fcl/r < 10 

Fcl/r > 10 

13.7 
7.70 
3.88 

5.22 
1.79 
1.03 

5.36 
.821 
.502 

-6.58 
-1.50 
-.886 

-1.47 
-.420 
-.224 

-1.58 
.257 
.003 

Fb < 1 
1 < Fb < 10 

Fb > 10 

12.2 
4.00 
7.30 

4.27 
.824 
2.07 

3.83 
.176 
1.29 

-.498 
-1.89 
-.592 

-.052 
-.530 
-.145 

-.044 
-.004 
.113 

   Notes:  Reported values are average ln ratios relative to 2SLS.  Numbers used to calculate 
averages equal those reported in rows of Table XIII.  Mean squared error, mean and median bias 
calculated around each method’s own population moment. 

estimates to construct p-values, LIML does even worse, with size at the .01 and 

.05 levels double and 1.5 times, respectively, that of 2SLS (details in the on-line 

appendix).  In sum, the results regarding size based upon iid disturbances and 

Monte Carlo simulations mentioned above are, in this practical setting, flatly 

contradicted.  Fuller’s k modification of LIML does better, producing average 

results that are quite similar to 2SLS, the only difference being substantially better 

performance in the few regressions with conventional Fs less than 1.   

Table XVI examines the mean squared error and mean and median bias of 

the different methods around their respective population moments by comparing 

the distribution of coefficients produced by bootstrap samples from the original 

data to each method’s point estimates for the original data itself.26  The LIML 

                                                 
26The three methods are all consistent and hence asymptotically identical, so there is no 

sense in which one can define a “correct” moment.  Consequently, I evaluate each method against 
its own computation of the desired population moment in the parent data. 
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estimator performs extraordinarily poorly in almost every respect.  Its MSE is 

greater than that of 2SLS in 99 percent of regressions, with an average ln increase 

of 5.35, and its mean bias is greater than that of 2SLS ¾ of the time, with an 

average ln increase of 1.35.  Its median bias, which according to the iid normal 

analysis cited above should be better than 2SLS, is actually .667 worse, as an 1.83 

ln increase in the more than half of cases where it does worse more than offsets the 

-.863 ln reduction in the fewer cases where it does better. The results for Fuller’s k 

are much more encouraging.  Fuller’s method has lower mean squared error and 

mean bias than 2SLS about ¾ of the time, achieving overall average ln reductions 

of -1.11 and -.287 on these measures, while median bias is on par with 2SLS.  The 

LIML estimator does systematically worse in regressions with weaker instruments, 

while Fullers-k does best in regressions with conventional Fs less than 1, but 

beyond these has no consistent association with measures of instrument strength.  

The results of this section show that established iid based theory is largely 

misleading: in practical samples weak instrument “robust” methods perform no 

better, and often much worse, even when first stage Fs are less than 10.  Beyond 

the handful of regressions with the very weakest of instruments, i.e. those with 

conventional Fs less than 1, there appears to be little to recommend in the 

Anderson-Rubin approach, particularly in overidentified equations.  Similarly, the 

LIML estimator combines no improvements in size, with grossly increased MSE 

and mean and median bias.  Fuller’s method has similar size as 2SLS, but provides 

substantial improvements in MSE and in bias (at least for Fs less than 1) over 

2SLS.  This is the only area in which iid based theory, most notably Rothenberg’s 

mean squared error result, works. 

Putting aside issues of weak instruments and theory, the results above 

suggest that use of Fuller’s k method can provide substantial advantages in MSE, 

albeit without improved statistical inference. Repeating Table VI’s earlier analysis 

of MSE around the IV population moment, I find that average ln MSE relative to 
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OLS across all regressions of 1.52 using 2SLS falls to .27 using Fuller’s method.  

MSE using Fuller’s method is worse than OLS only slightly less frequently than 

2SLS (.51 vs. .61), but it does better in these circumstances, with the average ln 

MSE disadvantage of 3.27 using 2SLS falling to 1.55 using Fuller’s method.  In 

terms of squared loss around the IV moment, Fuller’s k method is still on average 

less desirable than OLS, but appears to avoid the worst outcomes of 2SLS.  

VII.  Conclusion 

 Contemporary IV practice involves the screening of reported results on the 

basis of the first stage F-statistic, as, beyond argumentation in favour of the 

exogeneity of instruments, the acceptance of findings rests on evidence of a strong 

first stage relationship.  The results in this paper suggest that this approach is not 

helpful, and possibly pernicious.  Conventional Fs provide none of the bounds on 

size and bias suggested by asymptotic iid based critical values.  Beyond extremely 

weak cases, with Fs less than 1, conventional first stage F-statistics have no 

negative relationship whatsoever to size, and no statistically significant relation to 

bias or mean squared error.  In contrast, there is a very substantial probability of a 

large F arising when there is absolutely no relationship between the excluded 

instruments and the endogenous second stage variables, with the probability of a 

clustered/robust or default first stage F greater than 10 in such circumstances 

exceeding, in my sample, 8 and 20 percent, respectively.  In a world in which 

economists experiment with plausible instruments in the privacy of their offices, 

publicly reported results could easily be filled with instruments which, while 

legitimately exogenous in the population, are nevertheless irrelevant or very nearly 

so, with the strong reported F being the result of an unfortunate finite sample 

correlation with the endogenous disturbances, producing unpleasantly biased 

estimates.  The widespread and growing use of test statistics with underappreciated 

fat tails to gain credibility using uninformative critical values is less than ideal.   

 Economists use 2SLS methods because they wish to gain a more accurate 
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estimate of parameters of interest.  In this regard, explicit consideration of the 

tradeoffs between 2SLS and OLS seems natural.  In establishing the conceptual 

basis for modern 2SLS, Sargan (1958) suggested that, given their inefficiency, 

2SLS results only be given consideration if their confidence interval excludes the 

OLS point estimate.  Earlier above, I suggested bootstrapped Durbin-Wu-

Hausman and instrument relevance tests as minimal pre-tests, based upon the 

inefficiency of 2SLS when OLS is unbiased and the dangers of finite sample 

“identification” when instruments are irrelevant, and then incorporated variants of 

Sargan’s criterion.  These approaches, however, throw away information.  A more 

systematic alternative, imaginatively suggested by Feldstein (1974), is to use 

estimates of mean squared error to form a weighted average of the 2SLS and OLS 

estimators.  The bootstrap, with its estimates of relative bias and mean squared 

error given the moments found in a paper’s sample, can be used to inform this 

analysis in making inferences about the broader population from which it is drawn.  

An approach of this sort merits further exploration. 

No reader of the instrumental variables papers published in the journals of 

the American Economic Association can help but be impressed by the ingenuity 

with which they achieve identification of a wide variety of important effects using 

thoughtful sources of exogenous variation.  The care devoted to research design 

deserves, however, an equally careful and complementary inference design, one 

that combines the information in 2SLS and OLS using practical measures of their 

strengths and weaknesses. 
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