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Abstract

| use the bootstrap to study a comprehensive saofidl400 instrumental
variables regressions in 32 papers published ifotim@als of the American
Economic Association. |V estimates are more oftemd to be falsely significant
and more sensitive to outliers than OLS, while hg\a higher mean squared error
around the IV population moment. There is litedence that OLS estimates are
substantively biased, while 1V instruments oftepesr to be irrelevant. In
addition, | find that established weak instrumenet-fests are largely
uninformative and weak instrument robust methoaeegaly perform no better or
substantially worse than 2SLS.

*| am grateful to Ruoqi Zhou for excellent reseaasisistance.



I: Introduction

The economics profession is in the midst of a “ibiitl revolution”
(Angrist and Pischke 2010) in which careful reskatesign has become firmly
established as a necessary characteristic of appbek. A key element in this
revolution has been the use of instruments to ifjecausal effects free of the
potential biases carried by endogenous ordinast kguares regressors. The
growing emphasis on research design has not gamkihdand, however, with
equal demands on the quality of inference. Despaevidespread use of Eicker
(1963)-Hinkley (1977)-White (1980) robust and ckrstl covariance estimates, in
finite samples heteroskedastic and correlated £g8tdt produce test statistics
whose distribution is typically much more dispersiegh believed. This
complicates inference in both ordinary and two stegst squares, but is
compounded in the latter, where first stage jast statistics are used to buttress
the credibility of second stage results. In trapgr | show that two stage least
squares (hereafter, 2SLS or IV) methods produématds that, in practice, rarely
identify parameters of interest more accuratelgudrstantively differently than is
achieved by biased ordinary least squares (OLS).

| use the bootstrap to study the distribution ef tatistics for a
comprehensive sample of 1533 instrumented coefisim 1400 2SLS
regressions in 32 papers published in the joumfaise American Economic
Association. | maintain, throughout, the exactc#pmation used by authors and
their identifying assumption that the excluded ahlés are orthogonal to the
second stage residuals. When | bootstrap, | deampkes in a fashion consistent
with the error dependence within groups of obsé@mmatand independence across
observations implied by authors’ standard errocwdations. Thus, this paper is
not about point estimates or the validity of funeésutal assumptions, but rather
concerns itself with the quality of inference witlithe framework established by

authors themselves. The bootstrap shows that ational tests have rejection



rates much greater than nominal size, i.e. systeafigtunderstate confidence
intervals, and that these distortions grow in jo@sts. Bootstrapping the
bootstrap, however, | also find that the bootsitsglf continues to understate
confidence intervals. Thus, the results repor&dw are likely to be generous.

| find that, depending upon the bootstrap methatiySLS point
estimates are falsely declared significant betwéamd Y2of the time, while their
bootstrapped 99 percent confidence interval indutle OLS point estimate
between 92 and 94 percent of the time and theegytaf the bootstrapped OLS 99
percent confidence interval between 75 and 83 peafehe time. The
extraordinary sampling variability of IV estimateseflected in their sensitivity to
outliers. With the removal of only or two clustensobservations 45 and 63
percent, respectively, of reported .01 significa8LS results can be rendered
insignificant at the same level. | find that oBlyo 14 percent of regressions can
reject the null that the OLS estimates are in @attiased at the .01 level. This is
important because the In mean squared error of 2Btu$d its own population
moment is on average 4.77 greater than the In sg@ered error of OLS around
its population moment, so if OLS is unbiased the @fs2SLS is, from a quadratic
loss point of view, a regrettable choice. Surpgsy, | find that the In mean
squared error of 2SLS around its population mongaoh average 1.52 greater
than that of OLS around the same moment, i.e. pliegpwork biased OLS is on
average more accurate in estimating the 1V poparatioment than 2SLS itself!
Moreover, the bias of 2SLS methods is greater tharbias of OLS (from the
2SLS moment) in about 1/6 of coefficients. | fithat the null that all first stage
coefficients are zero can only be rejected atQidevel between 52 to 70 percent
of the time, i.e. if4 to %2 of published regressions one cannot rejechthl that
the instruments are totally irrelevant and the ol correlation between the
endogenous variables and the excluded instrumaespjte the exogeneity of the

latter in the population, is due to a wholly undaisie finite sample correlation



between the instruments and the endogenous er@nly. one in ten to twelve
instrumented coefficients resides in a regresdiahrejects the instrument
irrelevance and the no-OLS bias nulls at the .0&lleOnly 5 to 6 percent of
instrumented coefficients meet these standardeedilality while producing a
confidence interval that does not contain the ObBitpestimate.

Weak instruments can, in principle, play a rolenany of the maladies
described above. A weak first stage relationségults in variation of predicted
values well below that of the original regresspreducing less efficient estimates
than OLS. Weak instruments also produce biasefficeats with highly non-
normal distributions whose tail variation may becmgreater than believed,
generating empirical rejection rates under the muith greater than nominal size.
| find that conventional first stage F statistiessé a much wider sampling
distribution than recognized, with those basednendefault covariance estimate
showing an average rejection probability of .28that.01 level when the null of
zero effects is true, which remains as high as villéén clustered/robust
covariance estimates are used. In light of thtgnstruct bootstrap equivalent F-
statistics by inverting the bootstrapped p-valué famd that instruments are much
weaker than believed, with only 30 to 40 percentegfessions showing a
bootstrapped F greater than 10. However, outditteeovery weakest of
instruments, with Fs less than 1, no F-statistiarof form is associated with
second stage size biases. While weak instrumésttetcthe distribution of
second stage test statistic distributions, beybedmeakest cases these effects are
completely dominated by the biases created by ¢pardure of heteroskedastic,
correlated and non-normal errors from the iid ndngeal, making inference with
both 2SLS and OLS equally inaccurate, despite sieeoti cluster/robust
covariance estimates. The simplest evidence sfisithe fact that the average

excess size of 2SLS and OLS versions of the sagnesgions are roughly the



same. Non-iid errors confound the measurementsbfiment strength, but also
make it less relevant, as instrument strength igsheomain source of size biases.

There is a growing professional tendency to usakvirestrument pre-tests
based upon conventional first stage F-statistiestablish the credibility of 2SLS
results. | apply the weak instrument pre-testStotk and Yogo (2005) and show
that, outside of the most extreme cases whereaimgeational first stage F is less
than 1, they provide little protection against essceize as coefficients which pass
the tests have rejection rates under the null warelmo better than those which
do not. The bounds on both size and bias thadwgyposed to be assured by the
tests are grossly violated by regressions whick.p&ven this, and the fact that |
find that conventional Fs greater than 10 have38 t0 .213 probability of arising
when the instruments are in fact completely irralgythe increasing use of these
pre-tests to legitimize results is unfortunate.

The finding that first stage relations are much keedhan believed might
lead to an increased reliance on weak instrumdnistomethods. My results
indicate this would be ill-advised. | examine geformance relative to 2SLS of
three weak instrument robust inference and estimatiethods. The Anderson-
Rubin (1949) method tests second stage significapg@ojecting the dependent
variable directly on the excluded instruments aasl leen endorsed by a number
of econometricians as a solution to the problemnfefence with weak
instruments (e.g. Dufour 2003, Baum, Schaffer abiran 2007, Chernozhukov
and Hansen 2008). It performs very poorly, asoitogection onto a broader space
magnifies size distortions in over-identified eqoas, while in exactly identified
equations it has few advantages since, as alreatdg nwith non-ideal errors
outside of the most pathologically weak first stagjations OLS and 2SLS have
similar coverage bias. The limited information nmaxm likelihood (LIML)
method has been found, in analysis with iid distades, to have better median

bias and coverage bias, especially with weak instnis, than conventional 2SLS



(Anderson, Kunitomo & Sawa 1982, Anderson 1983ig8taand Stock 1997, and
Stock and Yogo 2005). In practical applicatiofintl that none of these properties
holds, as LIML performs much worse than 2SLS ors lbiad mean squared error
(particularly when instruments are weak), with deantages in size. Fuller
(1977) designed his k method as an adjustmenttbates finite moments for the
LIML estimator, and, in iid settings, Rothenber§84) showed that to a second-
order approximation Fuller's method is the unbiasethss estimator with
minimum mean squared error, while Stock and Yo@®%2 concluded that bias in
Fuller’s k is more robust to weak instruments tB&hS. | find that Fuller’s
method has lower mean squared error and bias ®&8,ut, again outside of
extreme cases with conventional Fs less than 4 jghinrelated to any measure of
the strength of instruments. In sum, in practagglication most of the
predictions of iid based theory are found to beuet

The concern with the quality of inference in 2S&ed in this paper is
not new. Sargan, in his seminal 1958 paper, rdlsedssue of efficiency and the
possibility of choosing the biased but more acau@itS estimator, leading later
scholars to explore relative efficiency in Monterl8aettings (e.g. Summers 1965,
Feldstein 1974). The current professional emphasiwrst stage F-statistics as
pre-tests originates in Nelson and Startz (1990aylo used examples to show
that size distortions can be substantial whentiieagth of the first stage
relationship is weak, and Bound, Jaeger and Bdl895), who emphasized
problems of bias and inconsistency with weak imstrnts. These papers spurred
path-breaking research, such as Staiger and Si8&kJ and Stock and Yogo's
(2005) elegant derivation and analysis of wealumsént asymptotic
distributions, renewed interest in older weak imnstent robust methods, and
motivated the use of such techniques in critiqiesetected papers (e.g. Albouy
2012, Bazzi and Clemens 2013). The contributiothisf paper within this

literature is two-fold: first, in showing that dapures from the iid ideal that



motivates most theoretical work raises importargsgjons, both regarding the
measurement of instrument strength and the practsedulness of iid based
results; and, second, in highlighting the importantredirecting some attention
away from uninformative first-stage pre-tests tdeolconcerns regarding mean
squared error and the relative efficiency of 2Sh8 @LS.

The paper proceeds as follows: Section Il belogirseby describing the
rules used to select the sample and its charaatsrid have not allowed myself
any discretion in picking papers or regressions anbject to some basic rules
regarding data and code availability and methogdieqh have used all papers
produced by a search on the AEA website. Sectigrdvides a brief review of
notation and the bootstrap methods used in ther gaglalighting the reason why
the bootstrap itself may produce rejection ratesigr than nominal size. Section
IV presents the results described above concethmgample itself, while
sections V and VI review the disappointing perfongeof weak instrument pre-
tests and weak instrument robust methods. Se¥ftioconcludes.

All of the results of this research are anonymiz@&tus, no information
can be provided, in the paper, public use fileprorate conversation, regarding
results for particular papers. Methodological éssare more important than
individual results and studies of this sort relpopghe openness and cooperation
of authors. For the sake of transparency, | p@eioimplete code (in preparation)
that shows how each paper was analysed, but tHerreager to know how a
particular paper fared will have to execute thideethemselves. Public use data
files (in preparation) provide the results and @pal characteristics of each 2SLS
regression in an anonymized fashion, allowing neteas to reproduce the tables

in this paper and use the data in further analysis.
1. The Sample

My sample is based upon a search on www.aeawebsong the keyword

"Instrument" covering the American Economic Reviawd the American



Economic Journals for Applied Economics, Econonatidy, Microeconomics
and Macroeconomics which, at the time of its impatation, yielded papers up
through the July 2016 issue of the AER. | therpgenl papers that:

(a) did not provide public use data files and Statdildocode’;

(b) did not include instrumental variables regressions;

(c) used non-linear methods or non-standard covariest@ates;

(d) provided incomplete data or non-reproducible regjoes.
Public use data files are necessary to performaaalysis, and | had prior
experience with Stata and hence could analysele®{br this programme at
relatively low cost. Stata is by far the most papprogramme as, among papers
that provide data, only five make use of othensafe. The keyword search
brought up a number of papers that deal with insémts of policy, rather than
instrumental variables, and these were naturabtippled from the sample.

Conventional linear two stage least squares wikieethe default or
clustered/robust covariance estimate is the ovdmihgly dominant approach,
so, to keep the discussion focused, | droppedrimerdeviations. These include
two papers that used non-linear IV methods, onempapich clustered on two
variables, the union of which encompassed theeesimple making it impossible
to implement a pairs bootstrap that respects th&secorrelations the authors
believe exist in the data, and another paper whiguely used auto-correlation
consistent standard errors (in only 6 regressioss)g a user-written routine that
does not provide formulas or references in its doentation. One paper used
Fuller's modification of LIML methods. Since thisethod is considered a weak
instrument robust alternative to 2SLS, | keep thpap in the sample, examining
its regressions with conventional 2SLS and, aloith the rest of the sample,

using LIML and Fuller methods. A smattering of GMivethods appear in two

Conditional on a Stata do-file, a non-Stata fordea file was accepted.



papers whose 2SLS regressions are otherwise irtindbe sample. Inference in
the generalized method of moments raises issuiés @ivn that are best dealt with
elsewhere, so | exclude these regressions frorarthbysis.

Many papers provide partial data, indicating tedrs should apply to
third parties for confidential data necessary fwoduce the analysis. As the
potential delay and likelihood of success in sugpliaations is indeterminate, |
dropped these papers from my sample. One papeidpobcompletely “broken”
code, with key variables missing from the data filed was dropped from the
sample. Outside of this case, however, code flitierature is remarkably
accurate and with the exception of two regressiomse paper (which were
droppedy. | was able to reproduce, within rounding errononiscule deviations
on some coefficients, all of the regressions reggbim tables. |took as my sample
only IV regressions that appear in tables. AltBuwesspecifications are sometimes
discussed in surrounding text, but catching alhswterences and linking them to
the correct code is extremely difficult. By linmg myself to specifications
presented in tables, | was able to use coefficisténdard errors and
supplementary information like sample sizes antisagistics to identify, interpret
and verify the relevant parts of authors’ code.oTpapers critique the results of
other papers. | use these, as they provide dataate for 73 regressions in 9
papers otherwise not in my sample.

As shown in Table I, my final sample consists ofp@pers, 16 appearing
in the American Economic Review and 16 in other ABé&rnals? Of the 1400 IV

regressions in these papers, 1359 involve onlyemg@genous variable, with 1087

2| also dropped 2 other regressions that had 1@omitibservations, as bootstrapping these
regressions is beyond the computational resounagkable to me.

3In referring to “papers” below, however, | count@apers reviewed in a single review
paper as one paper.

“The AEJ: Microeconomics does not appear in thd §ample because the six papers that
showed up in my search either did not provide a €l or used non-linear methods.



Table I: Characteristics of the Sample

32 papers 1400 2SLS regresqibs33 coefficients)

endogenous regressors covariance
& excluded instruments  estimate

16 AER 1087 1&1 105 default 767 t&F

7 AEJ: A. Econ. 272 1& >1 1035 clustered 633 N & chi?
4 AEJ: E. Policy 41 >1& >1 260 robust

5 AEJ: Macro

Journal distribution

Notes: AER = American Economic Review; AEJ = American Ewanic Journal; t, F, N & cf =
t, F, standard normal and -squared distribution

of these exactly identified by one excluded inst&enm Multiple testing, in the
form of multiple coefficients of substantive intst@resented within one
estimating equation, is extremely rare, with onlyegjuations involving more than
one instrumented endogenous variable. This cdatsa®ngly with practice in
field and laboratory experiments, where | find iaung (2017) that about half of
estimating equations include multiple treatment sneas, with an average of 5
treatment measures per equation. When equatiersvaridentified, the number
of instruments can be quite large, with an averdde excluded instruments
(median of 14) for 1.3 endogenous variables in @@€¥identified equations in 15
papers. Thus, econometric issues concerning tireehdimensionality of
instruments are relevant in a substantial subsetjeétions and papers.

Turning to statistical inference, almost all oé fhapers in my sample use
the Eicker (1963)-Hinkley (1977)-White (1980) robusvariance matrix or its
multi-observation cluster extension. One papes tise default 2SLS covariance
estimate, as does a solitary regression in anp#yegr where the old fixed effects
command the author chose for that regression didllaw the clustering used in
other regressions in the same paper. Differeta$@mmands make use of
different distributions to evaluate the significaraf the same 2SLS estimating

equation, with the sample roughly equally dividetieen results evaluated using



Table 1I: Tests of Normality, Cluster CorrelatiomcbBHeteroskedasticity
(fraction of regressions rejecting the null at 1x3and .01 levels)

1400 second stage 1533 first stage

regressions regressions
1x10*° .01  1x10° .01
normality of residuals .709 .854 .665 .857
no cluster fixed effects .805 942 .801 .940
homoskedasticityBreusch & Pagan 1979) .780 .873 .730 .863
homoskedasticitykoenker 1981) .526 729 487 .704
homoskedasticitywooldridge 2013) 573 .756 .530 .728

Notes As the theory underlying the homoskedasticity testieveloped in an OLS framewo
the second stage tests are performed using thev®is®n of theauthors’ estimating equatic

the t and F (with finite sample covariance cor@wd) and those evaluated using
the normal and chi In directly evaluating authors’ results, | uke tistributions
and methods they chose. For more general comparisowever, | move
everything to a consistent basis using, in turtheeithe default or
clustered/robustcovariance estimates and the same t and F distritsu(with
finite sample covariance corrections) for all 2Sirfsl OLS results.

Table Il shows that non-normality, intra-clusterrelation and
heteroskedasticity of the disturbances are impofeatures of the data generating
process in my sample. Using Stata’s test of ndtynadsed upon skewness and
kurtosis, | find that about of first and second stage regressions rejectuhie n
that the residuals are normal at the TX16vel and about .85 at the .01 level. In
equations which cluster, cluster fixed effectsfatend to be significant .80 of the
time at the 1x1®°level and .94 of the time at the .01 level. Irseldo ¥ of these

°| use the robust covariance estimate for the péya¢used the default covariance estimate
throughout, cluster the solitary regression mertibabove, and also cluster three regressions
where the author used the robust covariance estimatotherwise clustered all other regressions
in the paper.
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regressions the authors’ original specificatioriudes cluster fixed effects, but
where there is smoke there is likely to be fire, it is unlikely that the cluster
correlation of residuals is limited to a simple medfect; a view apparently
shared by the authors, as they cluster standasdsetespite including cluster
fixed effects. Tests of homoskedasticity involvihg regression of squared
residuals on the authors’ right-hand size variables cluster fixed effects (where
authors cluster), using the test statistics anulibigions suggested by Breusch and
Pagan (1979), Koenker (1981) and Wooldridge (20E3ct the null between
.487 to .780 of the time at the 1x'fllevel and between .704 and .873 of the time
at the .01 level. These tests are based uporsthergtion that the disturbances
are iid normal or at least iid, and hence the idhstion theory underlying each test
is often undermined by the results of the otfiess,it would be incorrect to
conclude that they show that residuals are simettasly non-normal, correlated
and heteroskedastic. They do indicate, howevgnjfgiant departures, on at least
some dimension, from the iid ideal. This is booa¢ by the poor predictive power
of iid based theory in this sample, as shown later.
[11. Notation and Bootstrap Methods

(a) Notation

| follow fairly standard notation. With lower cabeld letters indicating
vectors and upper case bold letters matrices,dtegkenerating process is taken as
given by:

@ y=YB+Xd+u

Y =ZI+XA+V

®The Breusch & Pagan test assumes the residuaiisl m@rmal, while the other two tests of
homoskedasticity assume they are iid. The tesbohality assumes the residuals are iid. The test
for cluster fixed effects uses the default covaz@amatrix, as the number of cluster fixed effects
equals the maximum possible rank of the clusteadaxce matrix, and hence implicitly assumes
that with these fixed effects the residuals are lidhould note that in implementing the normality
and heteroskedasticity tests on residuals, whet®eiweight | use the weights to remove the
known heteroskedasticity in the residuals beforming the tests.

11



wherey is the n x 1 vector of second stage outcorfefie n x k matrix of
endogenous regresso¥sthe n x k matrix of included exogenous regressars,
the n x kk matrix of excluded exogenous regressors (instrashjanthe n x 1

vector of second stage disturbances, \érde n x k matrix of first stage
disturbances. The remaining (Greek) letters ararpaters, wittg representing

the parameters of interest. The nuisance variablesd their associated
parameters are of no substantive interest, so T teisdenote the residuals from the
projection onX and characterize everything in terms of theseluads. For
example, with denoting estimated and predicted values, the icieif estimates
for OLS and 2SLS are given by:

A~

@ Boe= VYT, Boo = (YYV)IYY, whereY =ZZ'Z)*ZY.

(b) The Bootstrap

Conventional econometrics uses assumptions amdsiic theorems to
infer the distribution of a statistic f calculatedm a sample with empirical
distribution i drawn from an infinite parent population with distition F, which
can be described as {(Fy). In contrast, the bootstrap estimates the bistion of
f(F1|Fo) by drawing random samples ffom the population distribution;Fand
observing the distribution of f¢fR) (Hall 1992). If f is a smooth function of the
sample, then asymptotically the bootstrapped 8istion converges to the true
distribution (Lehmann and Romano 2005), as, intelyi, the outcomes observed
when sampling £from an infinite sampleFapproach those arrived at from
sampling i from the actual populationyF

In bootstrapping the distribution of a test statishe derives a bootstrap
estimate of its p-value and simultaneously leabwiaithe size distortions of the
conventional test. To be concrete,llgtdenote a moment of the parent population
that is of interest. In conventional statistics abserve the concomitant moment

w1 in R, construct a test statistic measuring its distdrara a hypothesized value
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of wp, say 0, and use theory to evaluate its likelihobarising in sampling. By
drawing samplesjrand testinguw, = ps, i.e. centring the test statistic around the
known population moment ofiFwe learn something about the distribution of the
test statistic for Fof u; = po = 0 under the nully = 0 for k. This forms the basis
of the bootstrap p-value. At the same time, byyapg conventional p-value
calculations to each test pf = n; we learn about size, asis the true null when
sampling z from R. It is worth emphasizing that these size caloutathave no
necessary implications regarding the validity & thull for F, although it is true
that a finding that the test statistic has unexggtlarge dispersion (producing
positive size distortions) will typically result ambootstrap upward adjustment of
the conventional p-value for tests of the null Fer

The bootstrap can be iterated to identify its ovge slistortions. Consider
drawing a samplesArom F; calculating the test statistic for the tgst= p;, and
then drawing bootstrap samplesffom F, and using the distribution of the test
statistic forus = ppto evaluate the p-value of the earlier test statigeerforming
this many times reveals the size distortions ofbetstrap, since, in each case,
one is using the bootstrap to evaluate a nullithlebown to be true. In principle,
knowledge of these size distortions could be usextijust the original bootstrap
p-value for the test qf; = o (Hall 1986, Hall & Martin 1988). However, given
the large number of regressions studied in thigpdgind this to be beyond my
computing resources, as it requires the calculaifdt®000s of bootstraps for each
of the original 1000s of bootstraps used to evaltia paper’s test statistics. | do,
however, draw 10 iterated bootstraps for each édlstving me to calculate the
average bootstrap size distortion across all thts teexamine, although not
providing enough information to adjust any givereon

| make use of two bootstrap test statistics. fifiséis the bootstrap-c,
which uses the bootstrap distribution of coeffitseto calculate their covariance

13



matrix and Wald statistics, computing the prob#pili

3) (B, ~B.)'V(B,) (B, ~B.) > (B, ~0)'V(B,) (B, —0)
where B, is the vector of coefficients estimated using taele F, B, is the
vector of coefficients estimated in tHedraw of sample From F, V(B,) is the
covariance matrix o, calculated across all draws, & the null hypothesis
being tested in the original population. In theecaf an individual coefficient, the
common variance in the denominator on both sidaseacancelled and the
method reduces to calculating the probability:

@ B; —B.)* >(B)*

If the distribution of coefficients is unbiased amatrmal, this amounts to
calculating their variance. Any estimate of vacams, however, subject to
sampling variatior. Since the distributions used to evaluate tesistits are
convex around critical values, this variation tetaproduce size greater than
nominal value, even in the bootstrap. Iteratinglbotstrap by bootstrapping the
bootstrap, as described earlier, amounts to estigpdte variance of the estimate
of the variance, which can be used to adjust tloédb@p critical values. Further
iterations could, in turn, estimate the variancéhef estimate, and so forth. At
each stage, one can take a step up what Mostaliefakey (1977) describe as the
“misty staircase” of statistical inference, deriyian estimate of the variance of the
previous estimate of variance.

The second bootstrap measure | use is the bqwitstnehich uses the
iteration by iteration covariance estimate to clt®ithe Wald statistic, computing
the probability:

5) (B, —B,)'V(B,) (B, ~B,) > (B, ~0)'V(B,) (B, ~ 0)

"This is not a matter of sampling variation arisirgm using a finite number of bootstrap
draws from Fto estimate the variance of the coefficients. hBgtjust as for any conventional
estimate of variance, the bootstrap estimate itselffunction of the sample Brawn from k.

14



where V (B, )s the conventional covariance estimatefdfcalculated in the'l
draw andV (B,) is the conventional covariance estimate for thgiral sample.
In the case of an individual coefficient, this amtsuto estimating the distribution

of squared t-statistics calculating the probabhility

(6)[[3‘3 —_Bl} {Aﬁl }
o,) | L)

whered denotes the estimated standard error of the cieifi If the coefficients

and standard errors followed normally based distigms, this would amount to
calculating the degrees of freedom of the t-distidn, which identifies the
variance of the variance. Thus, in principle tbetstrap-t can place one further
up the misty staircase, attaining higher accuraitlyout the computational cost of
iterating the bootstrap. This relies, however,ufiee conventional estimate of
variance being roughly accurate. If the convergimariance estimate is poor, the
bootstrap-t can prove less accurate than the laptst as it simply adds noise to
the estimated distribution of coefficients (compegeations (4) and (6)),
providing not the desired estimate of the variapicie variance of coefficients,
but simply a noisier estimate of the varianceind that in the case of 2SLS
estimates, where the conventional estimate of negids very inaccurate, the
bootstrap-t has less accurate size than the baptstrwhile in the case of OLS
estimates, where conventional variance estimageslaser to actual coefficient
variation, it performs as well and often much brettt@n the bootstrap-c. Results
with both measures are reported in the tables below
IV: Consistency without Inference

Table Il reports the statistical significance loé tcoefficients of
instrumented right-hand side variables using cotiweal and bootstrap
techniques. As shown, using authors’ covariant®utzion methods and chosen

distribution (normal or t), .322 of instrumentecefccients are statistically
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Table 1ll: Coefficient Significance: Rejection fea and Size Distortions
using Conventional Methods and the Bootstrap
(1533 coefficients in 1400 regressions)

two stage least squares ordinary least squares
rejection average rejection average
rates size rates size

.01 .05 .01 .05 .01 .05 .01 .05

authors’ methods .322 .502 .052 .109
clustered/robust .297 .478 .046 .100 509 .603 .049 .102

default 393 525 .095 .165 579 .691 .127 .204
bootstrap - t 213 374 .028 .071 431 .545 .023 .072
bootstrap - ¢ 151 277 .019 .054 449 .569 .024 .071

Notes: .01/.05 = level of the test; rejectiates = fraction of coefficients rejecting the rofil

0; average size = based upon the bootstrap, avezpgtion rate of the null when true.

Bootstrap-t implemented using the clustered/robagance estimate.
significant at the .01 level and .502 at the .Q&le As authors use diverse
methods, the remainder of the table, and (unldswtse noted) all further
analysis below, evaluates results using consistemats and distributions. In the
second row | use the robust or clustered covariamateix for each equation, and
in the third | use the default covariance estintliteughout. Both are evaluated
using the t-distribution with the same degreegeédom and finite sample
covariance adjustments as OLS, to facilitate compas with that method. As
expected, use of the t-distribution lowers sigiifice rates slightly relative to
those found with the normal distribution used bthats in almost half of the
regressions in the first row. Also as expected,défault covariance estimate
produces somewhat higher rejection rates, wittdifierence concentrated in
papers which cluster to correct for the well-kndwas brought about by the
correlation between errors within clusters andrimsented “treatment” which
does not vary within clusters (Kloek 1981, Moult#86)®

8 n regressions which cluster across multiple oketéns, moving from the default to the
clustered covariance estimate lowers the fractfafDbsignificant results from .47 to .33, while in
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The changes wrought by the use of different congrat distributions or
covariance estimates are trivial relative to thiosmd by applying the bootstrap.
As shown in Table 1ll, when the distribution oftasstics (bootstrap-t) is used to
evaluate significance, significance rates fall bgat's at each level, while when
the distribution of coefficients (bootstrap-c) sed, significance rates fall by Y.
The changes in p-values are substantial, as showigure I, which plots the
bootstrap p-values against the conventional cledfesbust p-values of the second
row of Table lll. Among 2SLS coefficients whichegiound to be .01 significant
using authors’ methods, but not so using the bagidt the average p-value rises
from .004 to .040, with % of these showing boofspavalues in excess of .052,
while among those for which the bootstrap-c revessgnificance, the average p-
value rises from .003 to .075, with ¥ of these shgwootstrap p-values in excess
of .108.° Using authors’ methods all of the 32 papers insayple have at least
one .05 significant instrumented coefficient, afidat 4 have at least one .01
significant coefficient. Using the bootstrap-t and3 and 6 papers, respectively,
have no .05 significant coefficients and a total@fand 14, in each case, have no
.01 significant coefficients whatsoever.

Table Il also reports the size of conventional aondtstrap methods

estimated by bootstrap sampling the data and testennull of whether the

regressions which use the single-observation rolmrsion the same adjustment actually increases
the fraction of significant results from .20 to .28lthough a failure to cluster at the treatmavel

is not uncommon in randomized experiments (see Yy@017), | find no such cases in my IV
sample. Every regression in which instrumenteattnent is applied to groups of observations
clusters at that or a higher level of aggregation.

°I recognize that in a frequentist world, a p-vadfie011 is no more significant at the .01
level than a p-value of .11, so all that mattetthésfrequency of 0/1 significance reported in Eabl
I, not the magnitude of the changes in p-valueswever, based upon the comments of seminar
participants, most economists appear to operaejunasi-Bayesian world in which the actual p-
value matters (as it affects the posterior proligdof the null). | should note that coefficients
found to be significant using the bootstrap butswtising conventional methods are very rare.
For example, of the 327 and 232 coefficients fotmble significant at the .01 level using the
bootstrap-t and bootstrap-c, respectively, onlat& 2 (in turn) are not significant using authors’
methods.
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estimated coefficients equal their known populatimmments. As shown,
conventional 2SLS methods have substantial coverage with clustered/robust
methods rejecting the null when true .046 of theetat the .01 level and .100 of
the time at the .05 level, while estimates usirggdéfault covariance matrix do
even worse with, for example, an average rejectits of .095 at the .01 level.
The bootstraps, however, also have empirical gieatgr than nominal value, with
the bootstrap-t rejecting the true null .028 arkl.6f the time at the .01 and .05
levels, respectively, and the bootstrap-c doingebetvith average rejection rates
of .019 and .054 at the two levels. The weakefopeance of the bootstrap-t

reflects the inaccuracy of the conventional 2SL&avee estimates where, | find,
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the In clustered/robust standard error has onBp@ correlation with the In of the
bootstrapped estimate of the coefficient standenat.e In contrast, the
comparable correlation in the case of OLS is .2860LS standard error
estimates convey more information, which is whyglze of the bootstrap-t is at
least as accurate, and often better, than th&edbootstrap-c in the OLS settings
examined further on. Regardless, the implicatibthe excess size of both
bootstrap methods, here and later, is that thefgignce rates reported using
bootstrap techniques are likely to be generous.

Table Ill also compares the results of 2SLS methwaitls OLS versions of
the same equations. While the estimated sizefertgional and bootstrap
methods in 2SLS and OLS is comparable, conventiOh& results are much
more robust to the introduction of the bootstraphwhe number of .01 and .05
significant results falling by only about 15 anddé€)cent, respectively.
Significant OLS results have, to begin with, loywevalues with, for example, an
average p-value of .0008 among .01 significantltesis compared to the .0022
achieved by similar 2SLS results. Moreover, thpselue changes which do
occur are much more dramatic in the case of 2S§¢ Shawn in Figure | above.
For example, the'band 98' percentiles of the difference between the 2SLS
bootstrap-t and clustered/robust conventional presbre -.046 and .154,
respectively, while the same percentiles for tlifedince between the OLS
bootstrap-t and conventional p-values are -.008.886.

Table IV highlights the extraordinary uncertaintyreunding 2SLS
estimates. As shown, the conventional clusteredsb.99 2SLS confidence
interval contains the OLS point estimate .866 eftime and the entirety of the
OLS confidence interval .675 of the time. Bootgpad confidence intervals,
however, are much wider. In the case of the bagdt the .99 two-sided
confidence interval, arrived at by multiplying tbenventional point estimate of

the standard error by the bootstrapped estimateedfil values of the absolute
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Table IV: Confidence Intervals and Critical Valy@é$33 coefficients)

confidence intervals (Cl) and point estimat@s (

Bols U C|25Is Clols U C|25Is BZSlS U Clols C|25I5 U Clols

.99 .95 .99 .95 .99 .95 .99 .95
clustered/robust .866 .723 .675 542 .325 .267 .003 .003
bootstrap - t 922 .803 .747 618 .379 .307 .004 .005
bootstrap - ¢ 940 851 .833 .708 .361 .300 .002 .002

cumulative distribution of t-statistic .01 critloalues

.01 .10 .25 .50 .75 .90 .99
conventional 2.58 2.58 2.59 2.61 2.68 2.68 2.77
bootstrap-t 2SLS  1.67 2.35 2.66 3.13 3.88 4.84 8.77
bootstrap-t OLS 2.25 2.54 2.68 2.92 3.62 5.22 9.45
bootstrap-c 2SLS 2.19 2.64 2.93 4,52 8.08 30.8 112.8
bootstrap-c OLS 241 256 264 282 338 514 8.20

Notes: .99/.95 = level of the confidence inggrviNumbers reported in the top panel are fraction
of coefficients meeting the specified criteria. Nagrs reported in the bottom panel are the
percentiles of the critical values of the absolgkie of the t-statistic. For the bootstrap-c a t-
statistic equivalent is calculated by dividing tteefficient deviation critical value by the origina
clustered/robust standard error estimate.

value of the conventional t-statistic, contains@ieS point estimate .922 of the
time and the bootstrapped OLS confidence intei®&l of the time. For the
bootstrap-c, the two-sided .99 confidence interaiyed at by calculating the tail
values of the absolute value of the coefficientiaigons from the parent
population moment, contains the OLS point estim@4@ of the time and the
entirety of the bootstrapped OLS confidence intei®383 of the time. In contrast,
the .99 OLS confidence intervals, whether bootgtedpor conventional, contain
the 2SLS point estimate only abdatof the time and the entirety of the 2SLS
confidence interval virtually never.

The bottom panel of Table IV reports the cumulatistribution, across
the 1533 coefficients, of the two-sided t-statiddit critical values of conventional

and bootstrap tests. Relative to the conventidiséibution, based as it is upon

20



the putative degrees of freedom of the 2SLS and @g&ssions, the bootstrap-t
2SLS and OLS distributions are extraordinarily dised, with critical values that
are both much smaller and much larger than thcaen@ed by the conventional
distribution. Within the bootstrap-t, however, @ees that, with the exception of
the extreme ends, bootstrapped 2SLS critical vauesot systematically larger
than those of bootstrapped OLS. The table alstutzes equivalent “t-statistic”
critical values for the bootstrap-c by dividing tt@efficient deviation critical
values by the original sample’s conventional est&ntd the standard error. For
OLS this calculation produces a distribution tisajiiite similar to that of the
bootstrap-t. For 2SLS, however, the bootstrapstdtistic” critical values are
systematically larger. Since the difference betwthe bootstrap-c and bootstrap-t
is that the latter divides the sample by sampldfioient estimate (common to
both methods) by the sample by sample standard estionate, this indicates that
the standard error estimate is correlated withat@ns of coefficients from the
population moment. | find that the average coti@tebetween the absolute
deviation of the 2SLS coefficient from the popwatimoment and the
conventional clustered/robust and default standenat estimates is,
extraordinarily, .475 and .525, respectively, while comparable average
correlations for conventional OLS estimates arg a0 and .228 in each case.
This is actually a positive feature, in that it isnthe frequency with which the
extreme coefficient outcomes of 2SLS lead to fatsgventional rejections, but it
also shows that the distributions do not remotatisf/ the assumptions
underlying the t-statistic, which is supposedly thgo of independent random
variables. The tails of the actual distributior2&LS t-statistics are similar to
those of OLS, producing similar size distortionsewhas is customary, t-statistics
are used to evaluate significance. However, tbpgrtional understatement of

conventional confidence intervals is systematicgilyater in 2SLS (as evidenced
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by the greater “t-statistic” critical values in theotstrap-c) indicating a greater
downward bias in conventional 2SLS standard erstmates.

Reported 2SLS results are remarkably dependemt apttiers. Figure I
graphs the maximum and minimum coefficient p-valwesculated using authors’
methods, found by deleting one cluster or obsewudti each regression. With the
removal of just one cluster or observation, .4%epiorted .01 significant 2SLS
results can be rendered insignificant at that lewéh the average p-value, when
such changes occur, rising from .004 to .134. @osely, .21 of .01 insignificant
results can be rendered significant at the saned, lenth the average p-value
falling from .106 to .004. The average gap betwberdelete-one maximum and
minimum p-values is .28, with large differencesequng even in regressions
with thousands of clusters or observations. Withdeletion of two observations,
no les$® than .63 of .01 significant results can be rendiamsignificant (with
average p-values rising to .253) and .39 of .OigimBcant results can be made
significant, while the average gap between maxinanchminimum delete-two p-
values is at least .45. In contrast, when OLSienssof the same regressions are
examined, insignificant OLS results are found teeha similar sensitivity to
outliers, but significant results do not. With tleenoval of one or two
observations, .25 and .39, respectively, of .0lgmBcant OLS results can be
made significant, but only .15 and .26 of .01 digant OLS results can be made
insignificant with the same deletions. In regressiwith original p-values greater
than .1, the average gap between the maximum amdonin delete-one or
-two OLS p-values is .48 and .71, which is simitathe same gaps for 2SLS
regressions with original p-values greater thaf)@ and .72). In regressions

where the original p-value is less than .1, howether average delete-one/-two

1%No less” because computation costs prevent me fraiculating all possible delete-two
combinations. Instead, | delete the cluster/oks@m with the maximum or minimum delete-one
p-value and then calculate the maximum or minimamnél by deleting one of the remaining
clusters/observations.
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maximum & minimum p-values

maximum & minimum p-values

Figure II: Sensitivity of P-Values to Outliers (Instrumented Coefficients)
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Table V: Testing OLS Bias, Durbin-Wu-Hausman T¢$t00 regressions)

rejection rates average size
.01 .05 .01 .05

DWH; .296 416 107 .180
DWH; .300 421 .109 .182
DWHj5 .351 469 134 220
bootstrap —t 137 .269 .032 .075
bootstrap — ¢ .084 .190 .021 .061

Notes: Unless otherwise noted, as in Tablabbve. Conventional test statistics
evaluated using the éhistribution. DWH-DWH; useV;-V3, as listed in the text.
Bootstrap-t based updry; results using/; andV, are very similar.

OLS gaps are only .04 and .07, while the same fgaigbe corresponding 2SLS
regressions are .12 and .25.

The motivation for using 2SLS stems from the fésat the correlation of
endogenous regressors with the error term will pcecsubstantially biased and
inconsistent estimates of parameters of interéable V shows that there is
actually limited evidence of this in my sampleeport the Durbin (1954) - Wu
(1973) - Hausman (1978) test based upon the Walidtst formed by the
difference between the 2SLS and OLS coefficientredes. Following Staiger
and Stock’s (1997) classification, | use threeteslastimates of the variance of

the coefficient difference, namely:

() V= (V) 262, = (V9) 6% Vo =[(V0)* =(F9) 0% Vo =[(V)*=(79) 163

ols? ols

where Y and Y follow the notation described earlier agd,, and 6, denote the

ols

2SLS and OLS estimates of the variantef the second-stage disturbances. The
different forms of the test arise from the facttthath estimates af* are

consistent under the null. | estimakéin both cases by dividing the sum of
squared residuals by the same finite sample-kxkadjustment. This ensures that
V is always positive definite and orders the tesistics so that DWH< DWH,

< DWHs;, where DWH denotes the Wald statistic calculated wWith
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As shown in Table V, once again conventional tektsv sizeable size
distortions, with rejection rates in excess ofalfhe .01 level. Conventional
Wald tests reject the null of no bias abubf the time at the .01 level, but
comparable rejection rates for the bootstrap-t-arate only .137 and .084,
respectively, with the bootstrap-c again showinglen size distortions. Only 13
of the 32 papers in my sample have any regresgionhkich the zero difference
null is rejected by the bootstrap-t at the .01 llezed only 23 have regressions
which reject the null at the .05 level. Comparahlenbers for the bootstrap-c are
14 and 18 papers, respectively. In the overwhedmajority of regressions
reported in published papers, there is actuallgarapelling evidence that use of
OLS methods produces substantively biased estim&asn the width of 2SLS
confidence intervals recorded earlier above, #ssliit is not surprising.

Table VI uses bootstrapped samples from the auttata sets to estimate
the mean squared error (MSE) and bias around valuegerest produced by
2SLS and OLS estimatior. | consider two scenarios: (1) OLS is inconsisterd
the original 2SLS coefficient estimate is the degipopulation moment; (2) OLS
is consistent and either the original OLS or 2Sbg&fficient estimate is the
desired population moment. As mean squared endbas varies with units of
measurement, | normalize by dividing the estim&e2SLS by OLS and taking
the logarithm, which limits the influence of outkeon the average and ensures
that reported results (modulo a sign change) arsesitive to the choice of
denominator. As shown, on average 2SLS’s In mgaargd error around its own
population moment is 1.52 greater than that of ©@a&fficients around theame
2SLS population moment, as an average reductief.®® in the 40 percent of

cases where 2SLS does better is more than offsiebgverage 3.27 In increase in

As shown by Kinal (1980), with normal disturbancesy the first k — k, moments of
2SLS estimates exist. However, the disturbancesyisample are not normal and the dependent
variables do not allow for the unbounded outcorhas generate this result. The MSE and bias
calculations presented in this paper are for thented disturbances actually present in the data.
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Table VI: Average Relative Ln Mean Squared Erruat &n Bias
Around 2SLS and OLS Population Moments (2000 boagisterations)

Btrue = BZSlS Btrue = BZSlS or Bols
MSE Bias MSE Bias
N mean N mean N mean N mean

all 1533 152 1533 -1.75| 1533 4.77 1533 2.44
IV <OLS 600 -1.20 1295 -2.24 18 -259 124 -796
IV>OLS 933 3.27 238 941 | 1515 4.83 1409 2.72

Notes: N = number of coefficients falling irgach category; otherwise, numbers reported are
the mean In relative squared deviation around (M8H) absolute deviation from (bias) the
2sls point estimates (left panel) or each methods point estimate (right panel) of the
population moment of interest.

the 60 percent of cases where it does worse. Wfgards to In relative bias, 2SLS
does better, achieving an average -1.75 In relagigaction in the absolute
deviation from the 2SLS population moment. Howedespite the fact that the
bias of OLS is motivation for the use of 2SLS mean 16 percent of
coefficients 2SLS shows a greater bias than OLS8maréhe 2SLS population
moment, with an average .941 increase in In redatias.

Table V showed that there is generally not muckdewe that OLS
estimates are, in fact, substantively biased.ohlseration of this, the right panel
of Table VI calculates the mean squared error aasl df the two methods under
the null that OLS is not biased. Since in thieec2SLS remains consistent, albeit
inefficient, | give each method the benefit of bt and calculate its mean
squared error and bias around its own populatiomemi. As shown, in 99
percent of coefficients 2SLS has higher mean sguam®r, with an average In
ratio of 4.83 in these cases. Similarly, in 92cpet of coefficients 2SLS has a
larger bias, with an average In increase of 2.M2ese results highlight the
substantial risks involved in using 2SLS and thpontance of being very certain
that OLS does, in fact, yield intolerably biasetireates.
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Table VII: Identification & Strength of the FirStage (1397 regressions)

instrument relevance test

rejection rates average size
.01 .05 .01 .05
clustered/robust .905 951 .160 217
default .924 .959 .284 .363
bootstrap - t 518 .646 .085 121
bootstrap - ¢ .704 .891 .096 135
first stage E
mean F>10 prob (F > 10)
clustered/robust 125 728 .089
default 474 .790 213
bootstrap - t 7.4 .338 .063
bootstrap - ¢ 9.0 .397 071

Notes: .01/.05 = level of the test; (#) 1&59 regressions with one endogenous
regressor; F > 10 = fraction of sample with F >d@b(F>10) = bootstrapped estimate of
probability under the null of zero effects of afistage F greater than 10.

Table VII asks whether 2SLS equations are evertiitehby testing the
null that all first stage coefficients on the exizd exogenous variables are z&ro.
Using the conventional test with the clustered/stlmovariance estimate, .905 of
first stage regressions reject the null of a ragrio 4irst stage relation at the .01
level. This share falls to only .518 using thetist@p-t and .704 using the
bootstrap -c. Size distortions are remarkable) vili60 and .284 average rejection
rates when the null is true at the .01 level usimyclustered/robust and default

covariance estimates, respectively. As exploratieron-line appendix, size

n the case of the 1359 regressions with one enmngevariable, this is simply the F-test
of the significance of the excluded instrumentthim first stage regression. In the case of the 41
regressions with more than one endogenous variestiack the first stage coefficients and use the
covariance matrix for Zellner’s (1962) seeminglyelated regression model with identical
regressors (Greene 2012) as the default covarigstonate and White’s (1982) sandwich
covariance estimator as the clustered/robust cavesi estimate, and test joint significance using
the chf distribution. | only report statistics for 1395gressions in the table because for three of
the regressions with multiple endogenous variathlesotal number of coefficients tested is several
multiples of the number of observations per equatiod the covariance matrix is utterly singular.
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distortions increase as more coefficients are detstgether and in the 310
equations with more than one excluded instrumeaingxed in the table there are,
on average, 25.7 coefficients being simultaneotesied. Size distortions for the
bootstrap are also very large, with an averagetiejerate at the .01 level of .085
using the bootstrap-t and .096 using the bootstra@onsequently, the bootstrap
significance rates reported in the left panel stidnd considered quite generous.
The strength with which the instrument irrelevanad is rejected, as
measured by the size of the first stage F-statistitypically used as an indicator
of the degree to which the problems of bias an@gxsize associated with weak
(but non-zero) identification are likely to be aded. The bootstrap indicates,
however, that the distribution of these test siaiss much more dispersed than
typically recognized, suggesting that they oveestastrument strength. To this
end, Table VII calculates an F-equivalent of thetbtvapped p-values by inverting
them with the clustered/robust degrees of freédmised to evaluate the paper's
conventional F-statistic. While the mean of thevemtional F is 474 using the
default covariance estimate and 125 using theasledtrobust covariance
estimate, it falls to 9.0 and 7.4 when equivaleméscalculated using the bootstrap-
¢ and -t, respectively. Based upon conventiondhaus, about % of regressions
have an F greater than 10, which is commonly tasean indicator of instrument
strength, but only about to .4 exceed this value when bootstrap p-value
equivalents are calculated. The bootstrap digiohwof the F-statistics reveals
that when the regression is completely unidentified all first stage coefficients
on excluded exogenous variables are zero, the otional F statistic with the
clustered/robust and default covariance estimatgssater than 10 .089 and .213
of the time, respectively. Thus, allowing that ghelusion restriction holds in the

aggregate population, with disturbingly high fregag a report of a strong first

13As | bootstrap in clusters when the regressiontetas
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stage relationship might actually reflect a firs@mple correlation of otherwise
irrelevant excluded exogenous variables with tisedtels, producing biased
estimates. Issues associated with the use ofrtesfage F statistic as a pre-test
are explored more fully in the next section anthiconclusion.

As in the case of 2SLS p-values, the calculatezhgth of the first stage
2SLS relationship is remarkably dependent upomweoteservations, as shown in
Figure 11l below. The first two graphs in each rdepict the ratio of the minimum
F found by deleting one or two clusters or obséowatto the actual test statistic in
the full sample, while the third and fourth graphgach row depict the ratio of
the actual test statistic to the maximum F foundiélgting one or two clusters or
observations? The upper and lower panels refer to F-statisi@dsulated using
the default and clustered/robust covariance eséisnagspectively. On average,
the default F can be reduced to .66 (.51) of ilssample value with the deletion
of just one (two) observation(s), while the clustérobust does slightly better,
falling to .72 (.60) of its full sample value. Gamsely, the ratio of the actual to
delete-one (two) maximum default F averages .88)(while the clustered/robust
F is more sensitive in this direction, averaging (£3). The average proportional
sensitivity is slightly greater in regressions wattiginal Fs less than ten, but the
differences are hardly meaningfdl.As is to be expected, the largest movements
are found in small samples with 100 or less clgsterobservations, but
proportional changes of .1, .2 or more are distiglyicommonplace in samples
with 10s and 100s of thousands of observationshawn in the figure. These

results point to the extraordinary sampling valtigbof F statistics, explaining the

The delete-two ratios are upper bounds since, fasehe do not do a full delete-two
search but instead simply take the delete-one maxi@r minimum and then search across the
remaining clusters/observations.

5The average ratios for F's greater than 10 (leas it0) moving left to right through the
top and then bottom panels are .66 (.64), .52 (.88)(.74), .79 (.63), .72 (.71), .61 (.58), .684{,
.and 54 (.50). The only substantial differencesfaund in the third and fourth panels of the top
row, depicting the potential increases in the déefau
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minimum F / actual F

minimum F / actual F

Figure Ill: Proportional Change of First Stage F with Removal of One or Two Clusters or Observations
(1359 regressions with one endogenous regressor)
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gross size distortions of conventional methodstaedlifficulties even the
bootstrap finds in providing accurate size, as shewarlier in Table VII.

The sources of delete-one and -two sensitivitywargh exploring.
Consider the generic regression on a matrix ofaegprsX. The change in the
estimated coefficient for a particular regressbrought about by the deletion of
the vector of observationss given by:

© B, - B = ~X& XX
whereX is the vectoof residuals ok projected on the other regressaxs thei
elements thereof, ang the vector of residuals for observatioralculated using
the delete-coefficient estimates. The deleteesiduals are related to the
estimated residuals through the formaja (I —=H ;) €, , whereH;; denotes the
X i block of the hat matrid = X(X'X)™X' .® The default and clustered/robust

covariance estimates are of course given by:

D X EX,
) defaultiﬁ - clusteredbbust—— —
2
n-k n-k (X'X)

~y~

Define gig, /¢'e, €€, /€'¢ and X/ X, /X'X as the groupshares of squared deléte-
residuals, squared actual residuals, and coeffiesrrage’’ respectively.

Clearly, the standard error estimate and the aoeffi estimate relative to the

standard error estimate will be more sensitivénéodeletion of some observations

i when these shares are uneven.
Table VIII summarizes the maximum residual anettage shares found in

my sample. In the 1359 first stage regressionis ane endogenous variable, the

%Where there are regressors that are non-zero ohly@s in the case of cluster fixed
effects, so thakt- Hj; is singular, one applies the formula by calculgtihusing the residuals of the
projection of the other regressors on these meaguee the partitioned regression versiot)f

Since “leverage” is typically defined as the diagloelements of the matrit formed
using all regressors, while the measure describedeais the equivalent for the partitioned
regression of .
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Table VIII: Largest Shares of Squared ResidualSafficient Leverage
(1359 regressions with one endogenous variable)

2SLS first-stage 2SLS second-stage OLS version

one two .05 one two .05 one two .05
cl/obs cl/obs cl/obs cl/obs cl/obs cl/obs cl/obs cl/obs cl/obs

XX /XX 172 288 563 .163 .273 .526 213 .286 .457
€e /e 155 244 440 162 242 437 160 .239 .434

Apa Apa

geg /e'e 135 226 424 148 223 412 152 229 422

Note: cl/obs = clusters or observations.etelng upon whether the regression is clustered or
not. .05 = largest 5 percentiles.

largest one or two clusters or observations accauméaverage, for .172 and .288
of total leverage, respectively, while the largisietet (estimated) residual shares
are .155 and .244 (.135 and .226). The largesté&eptiles account for around %2
of total leverage and squared residuals. To mgemumbers in perspective, in
my study of experimental papers (Young 2017) | finel largest (8 percentile)
leverage and residual observation shares of OL®ssipns average .05 (.27) and
.09 (.34), respectively. With massive outliersboth residuals and regressors,
estimated first stage F statistics are largelyrdateed by a handful of
observations and have a volatility and distribugonsistent with that fact. Table
VIl also reports the concentration of leverage eeglduals in the second-stage
regression and in its OLS version. For the sesiagde regression, | treat the
instrumented values of the endogenous variablesafected by deletions, and
calculate the deleteresiduals accordingly, to provide an indicatiorira

volatility of coefficient estimates if the firstage relation were unchangifiy As
can be seen, the concentration of leverage anduadsiin second stage relations is
roughly equal to that found in OLS versions of tegressions (using the

uninstrumented endogenous variables), suggestaighby would, on average,

®The reported estimated residual shares are thessbéithe actual 2SLS residuals used in
the 2SLS covariance estimate.
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Table IX: Consistency without Inference: 2SLS nadical Application
(1533 coefficients in 1400 2SLS regressions)

bootstrap-t bootstrap-c

.01 .05 .01 .05
coefficient significant using authors’ methods .322 502 322 .502
Boi= Posis<o & MM =0<a 101 .189 .083 176
Bois= Posis< o, T=0<0, & Clos OClagis .080 170 .076 .169
Bois= Pasis< o, I =0 < a, & Bois OClagis .048 132 .056 .136
Boi= Posis< o, I=0<a, &Poss=0<a .059 136 .057 142

Notes: Numbers reported are fraction of coiffits meeting the specified criteria. .01/.05 =elev
of the test¢) and complementary confidence intervBbis= P2sis< o = bootstrapped p-value of
Durbin-Wu-Hausman test of zero OLS bias less thdil = 0 < a. = bootstrapped p-value of
instrument irrelevance test less tharClys [ Clags or Bois L1 Clags = bootstrapped OLS confidence
interval or OLS point estimate not included in tsipped 2SLS confidence intervigdgs= 0 <a =
bootstrapped p-value of 2SLS coefficient less than
have a similar deletesensitivity. Unfortunately, the first-stage re&atis most
certainly not unchanging, and is in fact dependgon a small set of
observations. This imparts an additional, extraxg, degree of volatility and
sensitivity to 2SLS estimates.

Table IX brings the preceding results together.néted in the top line,
using authors’ method®; and % of reported coefficients are significanthat.01
and .05 levels, respectively, leading the readeptelude that 2SLS methods
have revealed something about the world. In tihretdines | consider alternative
criteria for evaluating published results. A gatdrting point seems to be to
require that the Durbin-Wu-Hausman test indicage there is a statistically
significant OLS bias, as the relative mean squareat and bias of 2SLS when
OLS is unbiased is simply too much to bear, andgoner, that one can reject the
null hypothesis that the model is utterly unideatfwith all of the first stage
coefficients equal to O, as in this case “iderdificn” is achieved through an
undesirable finite sample correlation between tis¢ruments and the error term.

Only .101 and .189 of estimated coefficients areegressions which meet these
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criteria at the .01 and .05 levels using the boapst, while only .083 and .176 of
estimated coefficients meet these criteria usiegdobotstrap-c. | should note that
imposing these preliminary requirements at thee@gl largely ensures that 2SLS
has a lower mean squared error and bias aroundehsured 2SLS population
moment than OLS, as imposing these additional reqents would only lower
the fraction of acceptable coefficients by an adddl .003 or .004.

With these basic prerequisites for credibility lage, one might then ask
whether 2SLS estimates rule out the OLS resu#tsaccepting that, taking into
full account their covariance, the OLS and 2SLSuytajion moments are
different, one might still want to know if the OleStimates are unlikely to be true.
The weak form of this demand might be that the 28&iidence interval does
not encompass the entirety of the OLS confidentarval, while the strong form
might be that it does not contain the actual OLBtpestimate. At the .01 and .05
levels, only about .080 and .170 of 2SLS resuk®aieither bootstrap measure,
meet the weak criterion while satisfying the OL&sband identification
prerequisites. The two bootstrap measures ardrafawrly close agreement with
regards to the strong criterion, with .048 and .@BRoefficients, at the two
significance levels, meeting it using the bootstrapd .056 and .136 using the
bootstrap-c. Putting aside comparison with OLSalsernative approach,
following the DWH and identification pre-teststesask whether the 2SLS
bootstrap p-value rejects the null of zero effestgygesting that, aside from
finding that OLS is biased, we have uncovered aningéul causal relationship.
Here again the two bootstrap measures are in aelggEment, with just under .06
and around .140 of coefficients meeting this coadiat the .01 and .05 levels,
respectively. In sum, while IV estimates may basistent, in finite samples they
allow for little inference. Using either bootstraqgasure in only about .05 or .06
of cases are 2SLS coefficient estimates both styamgdible and significantly

different from either the OLS point estimate orael hese results are generous as
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they are based on bootstrapped tests with positreebiases, particularly in the

case of testing instrument relevance.

V. Weak Instrumentsand Weak Instrument Pre-Tests

A weak first stage relation between the excludesherous variables
and the endogenous second stage regre¥ssrknown to create many of the
2SLS ailments noted in the previous section, nataefe estimated standard
errors relative to OLS, even greater tail variatioan estimated (producing size
larger than nominal value), and biased point esémaAs shown by Rothenberg
(1984)™° the usual root-N convergence to a distribution @athe case of 2SLS
and iid normal errors, be thought of as a functibthe square root of the first
stage concentration paramegémwhich, in the case of a single endogenous
regressor equalH’Z 'ZH/JV2 , Where, as beford] denotes the first stage
coefficients on the excluded instrumedtand o is the residual variance of the
first-stage equation. The concentration parantsterbe thought of as effective
sample size, and as it goes to infinity the distitn of the 2SLS estimator
converges to the normal distribution with variaegeal to the default 2SLS
estimate of variance, while the bias of the 2SLiBresdor relative to OLS goes to
zero. Moreover, for a given sample size, as timeeotration parameter increases
the efficiency of 2SLS relative to OLS improvesilaes variation of predicted
valuesY'Y rises relative to that of the OLS regress®t¥ . With weak
instruments, however, the predicted 2SLS variasasmall relative to OLS, the
distribution of coefficients is grossly non-normwath potentially fat tails, and
point estimates are biased in the direction of @LSven worse, possibly biased
more than OLS if there is any correlation betwgesnd the second stage errors.
The sample counterpart of the concentration parmmethe Wald test statistic on

the excluded instruments in the first-stage re@vesnamelyﬁ’f’fﬁ/&vz. The

See also the helpful exposition in Stock, Wrighd &iogo (2002).
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first stage F-statistic equals this value dividgdp and authors increasingly
report this to convince readers of the reliabitifytheir results. In this section |
show that conventional F-statistics and tests baped these statistics are a poor
predictor of the coverage and coefficient biasesébin published results.
Tables X and Xl evaluate instrument strength uSitagk and Yogo’s
(2002) weak instrument tests. Staiger and Sto8R{)Lderived the asymptotic
distribution of the 2SLS estimator under the asdionpf iid errors and a
concentration parameter that asymptotically doeégyraw with sample size. On
the basis of this, Stock and Yogo (2002) develapesimarkable set of weak
instrument tests, deriving the critical valuesha first stage F-statistic large
enough to reject the null that the instrumentssaféciently weak so as to
generate a proportional bias relative to OLS greth@n some level “b” or a size
greater than some level “r" above the nominal leveln the tables | divide
regressions based upon whether or not they rdjeatreéak instrument null gfin
favour of the strong instrument alternative Y leind report the fraction which,
based on bootstrap draws from the paper’s data $iae or bias greater than the
indicated bound. 1 also report the maximum frattid H; observations violating
the bounds that would be consistent with the S&adlogo test having its
theoretical nominal size of no greater than0%Vith critical values depending

upon the number of instruments and endogenousssmie Stock and Yogo

#Let Ny and N denote the known number of regressions classifietér H and H,
respectively, and WW,, S and $ the unknown number of regressions with weak arahgt
instruments classified under each group, withad(Wy+W,;) and S = p($+S,), whereo and p
denote size and power and | assumeop Moreover, let N> a(N;+Ng), which holds for all cases
with N; > 0 presented below. Solving for)M;, one finds that it is maximized when p = 1 and
.05, with W/N; = (1/19)(N/N,). The reason why VN, is maximized when p =1, i.e. is
paradoxicallyincreasing in power, is because, holding constant the obsekyeand N and
unknown size, lower power means a greater fraaifdhe total sample must be strong which in
turn means that there are feweyr @hservations. | should note that given the Stowk Yogo
theory, the share of regressions inwith size greater than “r’ should actually be ldsan
(1/19)(NY/N,) as even weak instruments, depending upon thelation between the first and
second stage error terms, need not have coveragtegthan “r".
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Table X: Fraction of Regressions with Size Gre#itan “r” in Specifications
that Don’t (H)) and Do (H) Reject the Stock & Yogo Weak Instrument Null

maximum acceptable size (“r") for a nominal .08tte
10 A5 .20 .25
H H H H
0 H1 0 H1 0 H1 0
F<1F>1 F<1F>1 F<1F>1 F<1F>1

Hi

(A) default F used as Stock and Yogo test statistic
N (number) 17 365 944 17 200 1109 17 152 1157 17 135 1174

defaultco0 .82¢ .32¢ .59% .76t .26( .43¢ .647 .15¢ .367 .41z .09¢ .27¢
cl/robust cov .882 .334 .332 .882 .190 .150 .588 .072 .087 .471 .052 .050
maximum .022 .011 .008 .007

(B) clustered/robust F used as Stock and Yogcstasistic
N (number) 23 748 555 23 268 1035 23 185 1118 23 161 1142

cl/robust cov .826 .392 .249 .739 .123 .163 .435 .070 .089 .348 .043 .052
maximum .074 .015 .010 .009

(C) bootstrap-t equivalent F used as Stock and Yegostatistic
N (number 263 96C 102 26z 56€ 497 26Z 467 59€ 262 37€ 687

cl/robust cov .673 .254 .282 .433 .102 .095 .278 .051 .042 .205 .032 .011
maximum .625 .088 .064 .049

Notes: N = number of regressions in each cajegefault and cl/robust cov = using these
covariance matrices to calculate t-statistics stiere of regressions with conventional size greater
than “r"; maximum = maximum share of the samplé tlegects H in favour of H with size greater
than “r” consistent with the test having size .68€ text and accompanying footnote).
provide bias critical values for only 179 of thgmessions in my sample, but in the
case of size their table of critical values cov&826 of the 1359 regressions with

one endogenous regressbr.

2n the case of multiple endogenous variables, ghestatistic is based upon the minimum
eigenvalue of the Cragg-Donald (1993) underider@tifon statistic (the sum of whose eigenvalues
quite intuitively equals the default covarianceraeate based test statistic used to test the ramk ze
null for equations with multiple endogenous regoes®arlier in Table VII). In numerical analysis
of examples, Stock and Yogo find that bias and aizenon-increasing in all eigenvalues of the
Cragg-Donald statistic, and hence consider themmim eigenvalue as a conservative worst case
scenario. As they provide critical values for ldsan half of the 41 regressions in my sample with
multiple endogenous variables, and as these dritidaes are based upon a conjecture and not a
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Table X begins by using the default covariancevest to evaluate both
the F-statistic and coefficient significance, as th the measure consistent with
Stock and Yogo’s iid-based theory. As shown ingbdA), this produces
disastrous results. Excluding regressions witkxareptionally weak F less than 1,
the fraction of regressions with size greater tmaat the .05 level is actually
always substantially greater in regressions whipbct the weak instrument null
Ho in favour of the alternative of strong instrumeHis Using the clustered/robust
covariance estimate to evaluate the significancegrfessions, whether with the
default F (panel A) or the clustered/robust F (p&)eone finds that the fraction
of regressions with rejection rates greater thamtximum desired size “r’ is
neither systematically higher nor lower in Hegressions than it is ingH
regressions with an F greater thaff IMoreover, the share of regressions with
size greater than “r” is grossly inconsistent with maximum that should arise
given the test’s putative .05 nominal size. Thiggsomewhat better in the bias
test (Table XI). Regardless of whether one useslédfault or clustered/robust F,
the fraction of regressions with relative bias tgethan “b” falls systematically as
one moves from regressions with F less than hdset with F greater than 1 that
don’t reject the weak instrument nulh,Ho regressions that rejec k favour of
the strong instrument alternativg.HHowever, the fraction with a bias greater
than “b” in the strong instrument set 14 again much too high and inconsistent
with the Stock and Yogo test having a nominal siz®5. In contrast, use of the
bootstrap-t equivalent F statistic, in the bottaangd of each table, produces size
and bias in Hregressions that is mostly consistent with thetasing a nominal

size of .05. Calculation of the bootstrap equintle however, is about as costly

result, | keep the analysis as simple as possipfedusing on the simple case of a single
endogenous regressor.

“The substantial gap between rejection rates faarid H for r = .1 in panel (B), which
disappears forr = .15, is due to a large mass higth rejection rates just below the r = .1 cutoff
point.
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Table XI: Fraction of Regressions with RelativaBi{Greater than “b” in
Specifications that Don't (§) and Do (H) Reject the Weak Instrument Null

maximum acceptable relative bias “b”
.05 .10 .20 .30
H H H H
0 H1 0 H1 0 H1 0
F<1F>1 F<1F>1 F<1F>1 F<1F>1

(A) default F used as Stock and Yogo test statistic
N (number) 2 100 77 2 98 79 2 93 84 2 83 94

shart 1.0 .95C .31z 1.0C .867 .25% 1.0C .667 .20z 1.0C .51¢ .10¢
maximum .070 .067 .060 .048

(B) clustered/robust F used as Stock and Yogcstasistic
N (number 4 104 71 4 99 76 4 89 86 4 76 99

share 1.00 .913 .310 1.00 .848 .250 1.00 .685 .186 .750 .539 .111
maximum .080 .071 .057 .043

(C) bootstrap-t equivalent F used as Stock and Yegostatistic
N (number 8 171 0 8 171 0 8 144 27 8 11¢ 52

share 1.00 661 - 100 .579 -- .875 .514 .000 .750 .412 .000
maximum .296 .129

Notes: share = share of regressions in eaiggory with bias > “b”; otherwise, as in Table X.

as simply bootstrapping the size and bias of tHeS28gression.

In the on-line appendix | provide regressions #tatw that, once Fs less
than one are removed from the sample, no F statadtany form, is significantly
or even negatively correlated with size. Once Fs less than oneam®eved,
conventional Fs are not significantly correlatethwiias or mean squared error
either, although the point estimate of the relatiop is at least negative. In the
non-iid world of published results, conventionas Bre a very poor measure of the
strength of the first-stage relation, as they areriore dispersed than indicated by
their putative distribution (Table VII earlier), Wi size distortions do not differ
substantially between 2SLS and OLS frameworks @ ébkarlier and XIi
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below), indicating that the finite sample probleofisnference based upon
clustered/robust covariance matrices, rather tharstrength of first stage
relations, are the dominant problem. Outside oihgahat the F is greater than
the absurdly low value of 1, little information amost certainly no protective
bound) is gained in reporting the conventionalrgitk of the first stage relation.
VI: Weak Instrument Robust Inference

The finding that the strength of the first stagatienship may be
substantially weaker than indicated by conventidfiatatistics and that F-test
based pre-tests are largely uninformative mighd lg@ctitioners to use well-
known “weak-instrument robust” alternatives to 2SUfortunately, the
professional understanding of such alternativésmged upon theory and
simulations with iid disturbances. In this sectlarview three such methods, the
Anderson-Rubin (1949) approach, the limited infaioramaximum likelihood
(LIML) method, and Fuller's (1977) k modificatiori bIML, showing that in a
world with non-iid disturbances these methods dencsubstantially inferior to
conventional 2SLS.

The Anderson-Rubin significance test makes ushefeéduced form for
the second stage endogenous varigbl8pecifically, substituting for the
endogenous regressofswe have:

@) y = YB+Xd+u = (ZIT+XA+V)p+Xd+u

~ Yy = ZOB+X(AB+3)+(VB+u) = ZP, + XP, +&
If p=0thenpz =IIp =0, so by running the OLS regressionyadn the excluded
and included exogenous variables and testing thegmnificance of the excluded
exogenous variables, one can test the null thatdk#icients on the instrumented

variables are zerd. The test is robust to weak instrument$as 0 under the

%0ne can also test non-zero val@gsf p by running the equation—Y po = Zp, + Xpx +
g, as under these circumstanfes= I1(B-po).
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null whatever the value dl and the strength of the correlation betw&eandZ.
As it is an OLS equation, it does not suffer frony af the extra variation brought
on by 2SLS estimation with a weak concentratiorapester, allowing for more
accurate inference. For these reasons, it hasreeemmended as a solution to
the problem of weak instruments by Dufour 2003, Ba8chaffer and Stillman
2007, and Chernozhukov and Hansen 2008, amongsothtsrrecognized
weaknesses include the fact that it does not dibovthe testing of individual
components of and may have very low power in over-identified &ipns where
the dimensionality oZ is much greater than that¥f particularly if some of the
excluded instruments are irrelevant (i.e. have §itage coefficients near zerd).

Table XII below uses the bootstrap to calculatedize distortions of the
Anderson-Rubin approach and compare these to tbasd using conventional
2SLS, in both cases using the clustered/robustr@nee estimate to calculate p-
values. As shown, the Anderson-Rubin method dgtpakforms worse than
2SLS. Empirical size is on average slightly lartpam 2SLS in exactly identified
equations, but much greater in over-identified ¢éigua, which have a startling
average rejection probability of .285 at the .OZle Dividing the sample by the
default, clustered/robust and bootstrap-t equiva&1 S first stage F, | find that
only in the case of exactly identified equationfhwihe very weakest of
instruments, i.e. with a conventional F less thadaks the Anderson-Rubin
approach provide any improvements over 2SLS. Hisesy its performance is
systematically worse, particularly in the case wdreidentified equations.

The results of Table Xll once again show thatitiaecuracy of inference
in the presence of non-ideal errors is the cept@iblem in both OL%nd 2SLS,

overwhelming and dominating any issues associatgoweak instruments in the

#t is also sensitive to the exclusion restrictisimce ifZ affectsy other than througlt, p;
will be non-zero even wheh=0. However, | accept, here and throughout, thecliasimise that
the exclusion restriction applies, as otherwisecthtire 2SLS endeavour is ill-conceived.
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Table XlI: Size Distortions with Anderson-Rubin ¥kelnstrument Robust Inference

exactly identified equations

overidentified eqoas

A-Rubin 2SLS A-Rubin 2SLS

N .01 05 .01 .05 N .01 05 .01 .05

all 1100 .053 .115 .046 .097 297285 .373 .055 .123
Fa<1l 15 .038 .101 .293 .354 2 .353 .483 .248 .341
1<Fy<10| 133 .048 .116 .037 .082| 136 .336 .451 .057 .134
Fq> 10 952 .054 .116 .044 .095| 159 .240 .305 .051 .112
For<1 19 .037 .101 .246 .306 4 235 .362 .138 .222
1<Fur<10| 209 .047 .109 .034 .074| 138 .331 .445 .056 .132
Ferr > 10 872 .054 .117 .045 .097| 155 .244 .309 .052 .113
Fo<l 255 .108 .187 .100 .171 15 .624 .703 .106 .198
1<k <10 | 379 .039 .099 .028 .066| 250 .239 .329 .044 .107
F,> 10 466 .034 .089 .032 .081 32 .482 558 .120 .213

Notes: N = number of equations in each grotiperavise numbers reported are average size using
clustered/robust covariance estimates at the .005devels. | Fy & F, = default, clustered/robust
and bootstrap-t equivalent' $tage F statistics.

latter. Generally, needlessly increasing the dsirality of a test tends to lower

its power. In the case of clustered/robust comaeaestimates, however,

increasing the dimensionality of a test appeam®duce the opposite problem,

raising the probability of rejecting the null whene. | confirm this in the on-line

appendix, where | show that size distortions intjoests using clustered/robust

covariance estimates are systematically increasitiyge number of individual

coefficient components. As also shown in the agpgmowever, while estimates

using the default covariance estimate do not apjodaave this property, they

have greater size distortions overall (as alre@@y sn Table Il earlier) and find

no advantage in the Anderson-Rubin method outdideroventional first stage Fs

less than 1. In a world with correlated and hetleedastic errors, use of default

covariance estimates is fraught with peril, assis of clustered/robust methods in

high-dimensional tests. Clustered/robust covagastimates do better in testing
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only one coefficient at a time, as is the caseforost all the exactly identified
tests in Table XIl, but even here size distortiareslarge enough that, outside of
the very weakest cases, they dominate considesatibimstrument strength.

The LIML and Fuller-k estimators are members ofkkeass family of
estimators (Theil 1953) which form the estimatéhef coefficient vector using:

@D B = (Y'(-xMz)Y)Y'( -xM,)y
where, as before,denotes the residuals from the projection onnbkided
instrumentsX andM 5 =1 —Z(Z’Z)Z’ is the residual-maker from the projection
on the excluded instrumenZ. OLS and 2SLS correspondi@qual to 0 and 1,
respectively. The LIML estimator satgy. equal to the smallest eigenvalue of
(YiMY) (YIY,)(YIM 5 Y,) 7%, whereY, =[¥, Y] while Fuller's k setsrujer
equal tox m. — C/N-ky-kx , where c is a pre-determined constant and, Mxkis
the number of observations minus the number ofreestage endogenous and
exogenous regressors. It is easily seendhat > 1 and must equal 1 when the
equation is exactly identified,in which case the LIML estimator is the same as
2SLS. Early analysis based upon normal disturtsskewed that LIML has less
median bias and converges to the normal distribdtister than 2SLS (Anderson,
Kunitomo & Sawa 1982, Anderson 1983). In Montel@amulations, Staiger
and Stock (1997) found that LIML has much more satsize than 2SLS, a
result later confirmed by Stock and Yogo’s (200®ak instrument asymptotics
that concluded that “LIML is far superior to 2SL®ien the researcher has weak
instruments” with “coverage rates that are quiteselto their nominal rates.” The

LIML estimate, however, is so dispersed that wibhnmal disturbances it has no

®provided that the matrices are non-singular, th@mim eigenvalue, by the properties of
the Rayleigh quotient, equals the minimum acrolss @, +1 x 1) such thatz =1 of :

When the equation is exactly identifiefi;z is ky+1 x ky (i.e. of rank k), so there existsa# 0
such thatz'Y,Z = 0", ensuring that the minimum is 1.
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Table Xlll: Coefficient Size Distortions with LIMand Fuller-k Inference

overidentified equations all equations
LIML 2SLS Fuller-k 2SLS
N 01 05 .01 .05 N .01 05 .01 .05
all 385 .065 .109 .049 .117 1524047 .097 .046 .100
Fa<1 2 .032 .058 .248 .341 17 122 .219 .288 .352

1<Fky<10| 136 .087 .130 .057 .134| 269 .063 .112 .047 .108
Fq> 10 247 .054 .098 .043 .106| 1238 .042 .092 .042 .094

For<1 4 .156 .182 .138 .222 23 .121 .205 .227 .292
1<Fyr<10| 138 .080 .123 .056 .132| 347 .053 .097 .043 .097
Ferr > 10 243 .055 .100 .044 .107| 1154 .043 .095 .043 .097

Fo<1l 15 .213 .248 .106 .198| 270 .094 .166 .100 .172
1<k,<10| 250 .051 .098 .044 .107| 629 .040 .085 .034 .083
F,> 10 120 .077 .116 .054 .127| 625 .033 .079 .034 .085

Notes: As in Table XII.

moments (Mariano 1982). Fuller (1977) introducedapproach as a means of
guaranteeing that all moments exist. Rothenbe3§4)showed that to a second-
order approximation (given iid normal errors) Ftillek with ¢ set equal to 1 is the
unbiased k-class estimator with minimum mean sqguearer. Stock and Yogo's
(2005) weak instrument asymptotics led them to kalecthat Fuller’s k is “more
robust to weak instruments than 2SLS when viewewh fhe perspective of bias.”
The one paper in my sample that uses Fuller’s k tigs value of ¢, as do Stock
and Yogo (2005), so in the analysis below | sejuaéto 1 as well.

Table XIII presents the bootstrap estimated sizZellL and Fuller-k
estimators using clustered/robust covariance estgnaontrasting these with
2SLS estimates. In the case of over-identifiedaéigus, where LIML results may
differ from 2SLS, average size using LIML methosigieater than 2SLS at the
.01 level and lower at the .05 level with, outsiddetter performance in the two
regressions with a default F less than 1, no systierdependence upon the

conventional strength of the first-stage relatidising default covariance
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Table XIV: Average Relative (to 2SLS) In Mean SepehError and Bias

LIML (385 coefficients) Fuller-k (1524 coefficiesit

MSE mean me_d|an MSE mean me_d|an
bias bias bias bias

all regressions 5.35 1.35 .667 -1.11 -.287 .037

Fa<1 12.3 2.55 1.91 -7.45 -2.40 -2.26
1<kK<10 7.98 1.94 .992 -1.18 .023 430
Fq> 10 3.84 1.01 478 -1.01 -.326 -.017
Far<1 13.7 5.22 5.36 -6.58 -1.47 -1.58
1<Fy, <10 7.70 1.79 .821 -1.50 -.420 .257
Feir > 10 3.88 1.03 .502 -.886 -.224 .003
Fo<l1 12.2 4.27 3.83 -.498 -.052 -.044
1<k <10 4.00 .824 176 -1.89 -.530 -.004
F, > 10 7.30 2.07 1.29 -.592 -.145 113

Notes: Reported values are average In ratlative to 2SLS. Numbers used to calculate
averages equal those reported in rows of Table Xliéan squared error, mean and median bias
calculated around each method’s own population nmbme

estimates to construct p-values, LIML does everse/owith size at the .01 and
.05 levels double and 1.5 times, respectively, h&SLS (details in the on-line
appendix). In sum, the results regarding sizedaspen iid disturbances and
Monte Carlo simulations mentioned above are, ig phactical setting, flatly
contradicted. Fuller's k modification of LIML doétter, producing average
results that are quite similar to 2SLS, the onffedence being substantially better
performance in the few regressions with conventiésdess than 1.

Table XVI examines the mean squared error and rmpdmmedian bias of
the different methods around their respective patrh moments by comparing
the distribution of coefficients produced by boptsamples from the original

data to each method’s point estimates for the maigiata itself® The LIML

*The three methods are all consistent and hencepasiially identical, so there is no
sense in which one can define a “correct” mome&unsequently, | evaluate each method against
its own computation of the desired population moniemhe parent data.
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estimator performs extraordinarily poorly in almesery respect. Its MSE is
greater than that of 2SLS in 99 percent of regoessiwith an average In increase
of 5.35, and its mean bias is greater than thatafS 3 of the time, with an
average In increase of 1.35. Its median bias, aacording to the iid normal
analysis cited above should be better than 2SL&;tisally .667 worse, as an 1.83
In increase in the more than half of cases wheteats worse more than offsets the
-.863 In reduction in the fewer cases where it duter. The results for Fuller’s k
are much more encouraging. Fuller's method hagtonean squared error and
mean bias than 2SLS about % of the time, achieswegall average In reductions
of -1.11 and -.287 on these measures, while mdd&mis on par with 2SLS. The
LIML estimator does systematically worse in regi@ss with weaker instruments,
while Fullers-k does best in regressions with cotie@al Fs less than 1, but
beyond these has no consistent association witsumesof instrument strength.

The results of this section show that establisitedased theory is largely
misleading: in practical samples weak instrumeabtist” methods perform no
better, and often much worse, even when first sksgare less than 10. Beyond
the handful of regressions with the very weakeshstruments, i.e. those with
conventional Fs less than 1, there appears tdtleetb recommend in the
Anderson-Rubin approach, particularly in overidieedi equations. Similarly, the
LIML estimator combines no improvements in sizethvgrossly increased MSE
and mean and median bias. Fuller's method hadasisize as 2SLS, but provides
substantial improvements in MSE and in bias (adtléa Fs less than 1) over
2SLS. This is the only area in which iid basedtlgemost notably Rothenberg’'s
mean squared error result, works.

Putting aside issues of weak instruments and théwoeyresults above
suggest that use of Fuller's k method can providstntial advantages in MSE,
albeit without improved statistical inference. Rafireg Table VI's earlier analysis

of MSE around the IV population moment, | find thatrage In MSE relative to
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OLS across all regressions of 1.52 using 2SLS fall27 using Fuller's method.
MSE using Fuller’'s method is worse than OLS onigtgly less frequently than
2SLS (.51 vs. .61), but it does better in theseuaistances, with the average In
MSE disadvantage of 3.27 using 2SLS falling to uStg Fuller's method. In
terms of squared loss around the IV moment, Fallerethod is still on average
less desirable than OLS, but appears to avoid trstwutcomes of 2SLS.
VII. Conclusion

Contemporary IV practice involves the screeningeported results on the
basis of the first stage F-statistic, as, beyogdmentation in favour of the
exogeneity of instruments, the acceptance of figelirests on evidence of a strong
first stage relationship. The results in this paqeygest that this approach is not
helpful, and possibly pernicious. ConventionapFsvide none of the bounds on
size and bias suggested by asymptotic iid basédatvalues. Beyond extremely
weak cases, with Fs less than 1, conventionaldiegje F-statistics have no
negative relationship whatsoever to size, and atssitally significant relation to
bias or mean squared error. In contrast, thesievexry substantial probability of a
large F arising when there is absolutely no refediop between the excluded
instruments and the endogenous second stage \esjabth the probability of a
clustered/robust or default first stage F gredtantl10 in such circumstances
exceeding, in my sample, 8 and 20 percent, reyadgti In a world in which
economists experiment with plausible instrumentheprivacy of their offices,
publicly reported results could easily be filledliminstruments which, while
legitimately exogenous in the population, are nindess irrelevant or very nearly
so, with the strong reported F being the resu#trotinfortunate finite sample
correlation with the endogenous disturbances, mogwnpleasantly biased
estimates. The widespread and growing use oftasstics with underappreciated
fat tails to gain credibility using uninformativetecal values is less than ideal.

Economists use 2SLS methods because they wiskinagnore accurate
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estimate of parameters of interest. In this regaxglicit consideration of the
tradeoffs between 2SLS and OLS seems naturalstabkshing the conceptual
basis for modern 2SLS, Sargan (1958) suggesteddilian their inefficiency,
2SLS results only be given consideration if theinfocdence interval excludes the
OLS point estimate. Earlier above, | suggestedstapped Durbin-Wu-
Hausman and instrument relevance tests as miniragkpts, based upon the
inefficiency of 2SLS when OLS is unbiased and taegers of finite sample
“identification” when instruments are irrelevantdathen incorporated variants of
Sargan’s criterion. These approaches, howeveawthmway information. A more
systematic alternative, imaginatively suggestedrélgstein (1974), is to use
estimates of mean squared error to form a weighvedage of the 2SLS and OLS
estimators. The bootstrap, with its estimatelative bias and mean squared
error given the moments found in a paper’'s sangale,be used to inform this
analysis in making inferences about the broadeulatipn from which it is drawn.
An approach of this sort merits further exploration

No reader of the instrumental variables papersighud in the journals of
the American Economic Association can help butniygressed by the ingenuity
with which they achieve identification of a wideriey of important effects using
thoughtful sources of exogenous variation. The d&voted to research design
deserves, however, an equally careful and complaneimference design, one
that combines the information in 2SLS and OLS ugirggtical measures of their

strengths and weaknesses.
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